
Falcon: Live Reconfiguration for Stateful Stream
Processing on the Edge

Pritish Mishra∗, Nelson Bore†, Brian Ramprasad∗, Myles Thiessen∗, Moshe Gabel∗, Alexandre da Silva Veith‡

Oana Balmau†, Eyal de Lara∗

‡Nokia Bell Labs alexandre.da silva veith@nokia-bell-labs.com
†McGill University nelson.bore@mail.mcgill.ca, oana.balmau@mcgill.ca

∗University of Toronto {pritish,brianr,mthiessen,mgabel,delara}@cs.toronto.edu

Abstract—Stream processing is an attractive paradigm for de-
ploying applications in geo-distributed edge-cloud environments.
However, the reverse economics of scale in edge networks and the
movement of data sources between edges require the ability to
dynamically reconfigure the deployment of stateful applications
to adapt to workload variations and user mobility. Unfortunately,
existing stream processing engines either do not support the
reconfiguration of stateful operators or are ill-suited to edge-
cloud environments since they stop application processing during
reconfiguration or require costly duplication of application state.

We propose Falcon, a new stream processing engine. At its
core lies a live key migration approach to allow reconfiguration
to occur with minimal disruption to processing, even across dis-
tant datacenters. Falcon supports the reconfiguration of stateful
operators including different windowing approaches and source
mobility across different edge regions. It scales gracefully with
network latency, the number of datacenters, and the size and
number of keys. Our evaluation in geo-distributed edge-cloud
deployments shows that Falcon reduces the length of processing
interruptions and their impact on latency by 2 to 4 orders of
magnitude compared to the existing state-of-the-art frameworks
such as Apache Flink, Trisk, and Meces.

Index Terms—stateful stream processing, reconfiguration, hi-
erarchical edge computing, seamless

I. INTRODUCTION

Emerging mobile and edge applications, such as traffic
monitoring [1], autonomous driving [2], remote health moni-
toring [3]–[6], and augmented reality [7] generate substantial
data from edge and mobile sensors requiring low latency of
a few tens of milliseconds. To meet these demands, cloud
providers have started to adopt a hierarchical approach that
augments their traditional wide-area datacenters with addi-
tional (smaller) datacenters that get progresively close to the
edge of the network [8], [9]. For instance, Amazon offers
options like Local Zones (datacenters serving metropolitan
areas), Wavelength (datacenters integrated with 5G networks),
and Outposts (on-premises server racks) for deploying compu-
tation and data [10]. Similarly, Microsoft recently introduced
Azure Stack Edge [11].

Stream processing is a common paradigm for data process-
ing in which applications are structured as a dataflow graph
with vertices representing operators and edges representing
data streams along which data tuples propagate between opera-
tors [12]. Several works such as R-Storm [13], SpanEdge [14],

EdgeWise [15], E2DF [16], and DART [17], have proposed
stream processing frameworks for edge-cloud environments.
These frameworks, however, assume a static placement of
operators between edge and cloud datacenters.

The smaller size of edge datacenters, however, leads to
higher storage and compute costs (compared to the cloud)
that make it inefficient to run operators continuously on the
edge. It is therefore desirable for edge stream processing
frameworks to be able to react to workload changes by
seamlessly reconfiguring the number of operator copies, or
instances, and their placement. For example, the framework
should spawn an additional instance of an operator on an edge
datacenter only when the reduction in bandwidth costs out-
weighs the higher CPU costs of the edge datacenter. Recently,
we proposed Shepherd [18], a stream processing framework
that supports this by providing seamless reconfiguration with
minimal downtime using a network of routers to transfer
data tuples between operators. Unfortunately, Shepherd only
supports stateless operators.

In practice, however, many operators are stateful. These
operators store contextual information as state to be used for
future computations. For instance, recommendation systems
store and utilize the user’s past activity record for personal-
ized recommendations. Similarly, online model training stores
updated model parameters after each training round [19].
Crucially, operations like aggregation and join, which are
common in many applications, require processing data in small
batches using windows that are stored as operator state [20].

Compared to stateless operator reconfiguration, disruption-
free reconfiguration of stateful operators is a much harder
problem that requires addressing four key challenges: (i) pre-
serving state correctness, since tuples that can modify the state
are being processed concurrently to the state migration; (ii)
maintaining the semantics of in-order processing and ensuring
that tuples are processed exactly once, which further requires
fault-tolerance and avoiding duplicate tuple processing; (iii)
migrating large open windows and maintaining windowing
semantics such that windows are closed in exactly the same
manner as they would have been without a reconfiguration;
and (iv) addressing source mobility, where mobile data sources
move from one edge to another requiring keys associated
with the data source to be migrated to the new edge. Source

1

mobility is not a concern for stateless operators as tuples are
independent from each other and can be processed at any
operator instance.

Our contributions: We present Falcon, a new stream pro-
cessing framework for the hierarchical edge-cloud that enables
seamless stateful operator reconfiguration and supports source
mobility.

Falcon uses a novel live key migration protocol that com-
bines four techniques: Dual routing [21], [22] creates a tem-
porary duplicate data flow that routes tuples to both the source
and destination instances. This technique allows Falcon to
mask the latency of state transfer to the new operator by con-
tinuing to run the application on the original instance. Marker-
based synchronization [23], [24] injects special punctuation
marker tuples into the live data stream to demarcate the phases
of the protocol. This avoids the need for lengthy message
exchanges to coordinate between source and destination which
would incur latency spikes due to network delays. Lastly,
emission filters [18] allow an operator instance to synchronize
state by processing buffered tuples without emitting output,
thus avoiding the need to later de-duplicate emitted tuples.
To tie these together, Falcon adopts the late binding approach
to tuple routing introduced by our prior work, Shepherd [18],
but adapts it to more challenging problems of stateful operator
reconfiguration and data source mobility.

Falcon also includes a source mobility protocol that detects
when a source has moved between edges and adapts to this
movement by seamlessly migrating the processing and state
belonging to this source. This protocol also handles data
source “ping-pong” where a source moves back and forth
between two edge nodes.

We evaluate Falcon on a geo-distributed edge-cloud network
of AWS datacenters. During reconfiguration, Falcon achieves
a disruption lasting 10–15 milliseconds, lower than the round-
trip time to the root datacenter. In contrast, disruption in ex-
isting frameworks ranges between hundreds of milliseconds to
several tens of seconds. Moreover, Falcon reduces peak latency
during reconfiguration to just 40-45 milliseconds, a decrease
of up to 4 orders of magnitude compared to competitors.

In summary, the paper makes the following contributions:

1) A study of the limitations of existing stream processing
frameworks when deployed in a hierarchical edge-cloud
environment, centered on state management during opera-
tor reconfiguration (Section II).

2) The design and implementation of Falcon, the first stream
processing framework to support low-latency state migra-
tion during operator reconfiguration and source mobility for
the hierarchical edge-cloud (Section III). Falcon’s source
code is available at https://github.com/delara/falcon.

3) An experimental evaluation on geo-distributed edge-cloud
datacenters, showing that Falcon reduces processing disrup-
tion and peak latency during reconfiguration by 2–4 orders-
of-magnitude compared to the state-of-the-art frameworks
(Section IV).

a) Low traffic scenario b) High traffic scenario

A C
Producer (Source) Aggregate Control

11A CCloud
Datacenter 11A C

2A
Region 2Region 1 Region 3

3A

SINK

Region 2Region 1 Region 3
Edge
Datacenters

Fig. 1: State reconfiguration for a stream processing applica-
tion deployed in an edge-cloud environment.

II. BACKGROUND AND MOTIVATION

Stream processing frameworks use a dataflow execution
model that represents an application as a directed acyclic graph
(DAG) whose vertices represent operators and edges represent
the data streams between operators. Operators can be sources
that ingest data into the stream, sinks that collect the results,
or processing functions that do transformations.

Users can specify the operators and how data flows between
them using an abstraction called a logical plan [25]. During
deployment, a physical plan specifies the number of instances
for each logical operator and on which computing node to
place each operator instance. A reconfiguration plan modifies
the physical plan by changing the mapping of operator in-
stances (and their states) across computing nodes, for example,
scaling to a different number of replicas, or moving an instance
to a different node. In this work, we focus on modifications
to the physical plan. Falcon assumes that physical plans are
valid implementations of the logical plan.

A. State in Stream Processing Frameworks

Stateful operators (e.g., windows, aggregates, reductions)
usually maintain the computation variables (e.g., counters,
windows, ML models) in the form of an internal state, while
stateless operators (e.g., filter, map) do not have such state.
Windows are common stateful operators, where the state stored
by each key holds a collection of objects. Closing a window
periodically releases this collection, aggregating the tuples.
The size of the state can be large for long duration windows,
multiple open windows, or large window elements.

Stream processing frameworks allow the splitting of the
data stream into multiple sub-streams based on keys. These
keys represent unique data attributes that can be specified by
the developer. The operator state is partitioned and scoped to
these keys. A fundamental assumption of the stateful stream
processing model is that a given key can be mapped to a single
operator instance. This operator instance is solely responsible
for processing tuples belonging to this key and modifying the
corresponding state of the key.

B. Reconfiguration of stateful operators

Figure 1 illustrates the benefit of frequent reconfiguration
in an example real-time traffic monitoring application. It com-

2

https://github.com/delara/falcon

45 50 55 60 65 70
Time (s)

102

103

104
P9

9
La

te
nc

y
(m

s)
 [l

og
]

Disruption Duration

Peak Latency
Jitter

Flink
Trisk
Meces
Falcon-HB
Falcon

Fig. 2: P99 latency during reconfiguration for a two-tier
(edge-cloud) infrastructure deployment. The dashed black line
indicates the reconfiguration trigger.

prises an aggregation operator (A) which aggregates informa-
tion from images generated by each motion-activated street
camera and stores this information per camera, and a control
operator (C) that analyzes the resulting events to generate
decisions guiding the traffic. In Figure 1a, during low car
traffic, running operators solely in the cloud datacenter proves
most cost-effective. The lower cost of computing at the cloud
datacenter compensates for the bandwidth cost of transmitting
raw images. Once traffic in Regions 1 and 3 increases (Figure
1b), it becomes profitable to create additional instances of
operator A on edge nodes where vehicle traffic is high as
the bandwidth savings from processing camera data locally
are higher than the processing costs of running on the pricier
edge resources (compared to cloud).

Reconfiguration of stateful operators requires migrating the
state stored by the keys (in this example, camera IDs are the
keys) to a different operator instance at the new location and
switching the data flow belonging to these keys to the new
operator instance such that subsequent tuples (including the
ones in-flight) are processed at the new location.

A key requirement in the reconfiguration process is main-
taining state correctness [26]: the state stored by the keys after
the reconfiguration must be equivalent to what it would have
been had the reconfiguration never happened.

To achieve this, tuples must be processed in the same order
as they arrive and no tuple is processed more than once.
Reconfiguration must also ensure that windows are closed in
exactly the same manner at the new operator instance.

C. Existing stateful reconfiguration solutions fail on the edge

State-of-the-art frameworks implementing reconfiguration
on the cloud typically use one of three strategies: full-restart
(Flink), partial-pause (Trisk, Meces), or hot backups (Falcon-
HB). Figure 2 shows the behavior of frameworks using these
approaches and our proposed solution, Falcon, during recon-
figuration of the traffic monitoring application (Figure 1). In
this experiment, processing of data from Region 1 is moved
from A1 in the cloud to a new A2 on the edge node.

Apache Flink [27] uses a full-restart approach: it stops
the entire application, migrates the affected operators and
their state, and then resumes the application. This leads to

a substantial stoppage in application processing, as shown
by the spike in application latency after the reconfiguration
is triggered. Since network latency causes the application to
restart on the cloud earlier than the edge datacenter, we see a
double spike in Flink’s performance.

Trisk [28] implements a partial-pause approach [29], [30]
where only the processing of keys affected by migration is
paused. While a step forward, we observe it still requires
stopping the parts of the application that are affected by the
reconfiguration, leading to latency peaks in the order of a
few seconds. Meces [31] uses on-demand state transfer, an
optimization of the partial-pause approach that downloads the
state on-demand and processes keys in the background. Meces
reduces the latency spike to a few hundred milliseconds but
does not improve the disruption duration as fetching of each
key’s state over high latency network link is quite expensive.

Rhino [32] uses the hot backups approach that maintains
up-to-date replicas of operator state at other nodes, and
switches processing to backups as needed. It still incurs
stoppage for migrating the state of keys changed between the
last replication and the trigger of reconfiguration. Moreover,
maintaining hot backups for each operator is infeasible in large
deployments on expensive resources. Since Rhino is not open-
source, we implement its hot backup strategy over Falcon.
This Falcon-HB version benefits from late-binding design
(Section III-C), which explains the low disruption duration.

Conversely, the Falcon live reconfiguration approach de-
tailed in the next section, performs very well. It reduces
the peak latency by 1 order of magnitude compared to the
next best approach, Meces, while also decreasing disruption
duration to 10–15 milliseconds.

We also observe that cloud-based frameworks incur higher
latency after the reconfiguration (e.g., at 67-second mark for
Flink) since they use a single message broker on the cloud
to which all sources connect. Post-reconfiguration, tuples
generated at the edge must first be sent to the cloud broker,
only to be then routed back to the edge. Since cloud-edge links
have significantly higher latency than links inside the cloud,
the result is higher application latency. In contrast, application
latency remains unchanged for Falcon (and Falcon-HB) as it
uses a broker network for tuple routing (Section III-C).

In summary, we find that existing techniques for stateful
reconfiguration in cloud deployments fall short in edge-cloud
environments. Disruption incurred by these techniques is not
tolerable for edge applications requiring real-time processing.
For instance, a disruption of a few seconds for the traffic
monitoring application could lead to a delay in detecting
an increase in traffic leading to more congestion due to a
missed opportunity to redirect traffic. Similarly, a spike of
hundreds of milliseconds could lead to a delay in detecting
accidents or missing toll notifications. Moreover, given their
poor reconfiguration performance, existing stream processing
frameworks cannot efficiently support source mobility, a crit-
ical requirement for edge applications.

3

III. FALCON

Falcon is a stream processing framework that supports effi-
cient reconfiguration in hierarchical edge-cloud environments.
Given a reconfiguration plan that switches a running applica-
tion from one physical plan to another, Falcon implements
it while avoiding disruptions to the application processing.
In addition, Falcon automatically detects and moves tuple
processing to handle moving data sources.

Falcon’s key design goals are minimizing processing inter-
ruptions during reconfiguration, avoiding message-based coor-
dination between source and destination instances, supporting
source mobility, and supporting a wide array of reconfiguration
operations. Falcon maintains strict in-order and exactly-once
processing guarantees. Our one key assumption is operator
determinism, meaning replaying a tuple after restoring the
operator state from a checkpoint yields the same state.

The rest of this section is organized as follows. We start
with an overview of the system architecture (Section III-A).
We next detail how Falcon handles key state and windowing
operators (Section III-B), and how it routes tuples (Sec-
tion III-C). We then introduce the Migrate primitive which
supports many reconfiguration operations (Section III-D), and
how the live key migration protocol implements this primitive
(Section III-E). Section III-F describes how Falcon handles the
movement of data sources. Finally, we discuss fault tolerance
and implementation (Sections III-G and III-H).

A. System Architecture

Falcon is designed for hierarchical datacenter deployments
organised like a tree, where the root node is a cloud datacenter
and the leaf nodes are edge datacenters located in close
proximity to data sources. Additional datacenter nodes can
form the intermediate tiers between the root and the leaves.

Falcon’s design relies on the root datacenter (the cloud)
having a global view of deployed operator instances and
their keyspaces. It hosts an instance of each operator in the
application DAG, enabling processing of unhandled tuples
from lower hierarchy levels. This root datacenter also manages
reconfiguration by redeploying operator instances (replicas of
the homologous operators in the cloud) following a recon-
figuration plan or source mobility detection. Falcon installs a
router on every datacenter in the hierarchy by following late-
binding routing design [18]. The routers send incoming tuples
to the operator instance on the current node if possible, or
send it up to the parent datacenter (Details in Section III-C).

Falcon allows routing rules at both individual key and
key-range granularity levels. In contrast to only the key-
range granularity supported by other frameworks [28], [31],
[33], Falcon’s design allows handpicking individual keys for
migration to better support source mobility without sacrificing
scalability.

Falcon is composed of three subsystems: the Job Manager,
the Routers and the Workers.
• The Job Manager running at the root of the hierarchy

manages applications and monitors deployed operators. In

particular, it manages reconfiguration by redeploying the
operators following a reconfiguration plan received from the
client (Sections III-B, III-D and III-E), and it manages
source mobility (Section III-F).

• The Routers are deployed at each datacenter node in the
edge-cloud hierarchy. Routers manage the flow of tuples
across operators and datacenters. Data sources connect to the
nearest datacenter and tuples generated by them first arrive
at a common datacenter queue. The local router either sends
tuples to one of the operator queues within the datacenter
or forwards them to the datacenter queue of the parent
datacenter (Section III-C).

• Multiple Workers can be deployed at each datacenter node
in the edge-cloud hierarchy. Each Worker, managed by the
Job Manager, can serve multiple operator instances (e.g.,
one per core). Each operator instance contains an operator
process, a state manager, and an I/O port implemented as
a ZeroMQ socket [34]. The operator process reads tuples
from its queue, updates the state in memory, and writes
output using the I/O port. To maintain state, each node has
a replica of a geo-distributed key-value store shared by the
Workers, such as SessionStore [35], [36] or Feather [37].

B. Keyed State and Windows

State in Falcon is partitioned by keys, a common approach
for stateful operators in stream processing engines [38]. To
preserve correct processing semantics, an instance of a stateful
operator can only write to the keys it controls.

Falcon allows an application to seamlessly switch between
physical plans during its runtime. One assumption in Falcon’s
design is that tuples flow only up the hierarchy and a valid
physical plan must ensure that the operator instance responsi-
ble for processing a key is located at a node that is parent to
all the producers generating tuples for this key. State in Falcon
is managed as follows.

Falcon’s Job Manager gives each operator in the logical plan
its own keyspace and mapping function, which assigns a key
to each incoming tuple (based on its contents, the originating
source, a bucketing function, etc.). The logical plan specifies
how keys are processed by each operator, allowing operations
such as splitting the stream to multiple streams by a key
(“count different types of objects”) and combining them (“sum
partial counts”). Each logical plan can then be translated to one
of many valid physical plans that specify where the processing
of each key is deployed.

Falcon also adds an implicit key ∗ to each keyspace, which
serves as a catch-all for all tuples whose key was not assigned
to an operator instance for processing. In Falcon, ∗ keys for
each operator are processed at the root node (the cloud). An
important benefit of the catch-all key is being able to process
new keys which are unknown to the application (e.g., if a new
source is added) at the root node.
Managing Windows. Falcon supports tumbling, sliding, and
event-based windows. Tumbling and sliding windows store
tuples as part of the operator state, with separate windows
for each key. Once a window is closed, its tuples are handed

4

Vehicle 1 (car) Vehicle 2 (van) Vehicle 3 (van)

Datacenter Queue

carA
Operator Queue

Datacenter Queue

vanA
Operator Queue

Edge1 Datacenter Edge2 Datacenter

Parent Datacenter

C*
Operator queue

A,car A,van

A,car

A,van
C,car

C,car
C,van

A,van

Datacenter Queue

A,van

A,van

A,van

1

2

3

4

5

6

7

8

9

10

11

Fig. 3: Example of tuple routing in Falcon. Operator instances
Acar and Avan process tuples of car and van keys, while
operator instance C∗ processes for all keys.

over to the operator for processing and the window state is
cleared (incremental aggregation can be implemented sim-
ilarly). Event-based windows are closed once either tuples
or heartbeat watermarks are received from all sources whose
timestamp exceeds the window closing time, or when a con-
figurable timeout is exceeded, similarly to Flink [33]. During
the key migration, all open windows for the key are seamlessly
migrated as part of the operator state.

C. Tuple Routing

Falcon generalizes the late binding routing design proposed
in our prior work on stateless stream processing in hierar-
chical networks [18], [39]. In late binding, the local router
in each datacenter inspects each incoming tuple to see which
operator emitted it, and hence which operator will consume
it. If there is a local replica of the consuming operator, the
tuple is processed locally; otherwise the router forwards it
to the parent node, and the process continues. Late binding
enables independent operator deployment without knowing the
location of upstream or downstream operators.

Falcon proposes keyed late binding, which generalizes the
existing late binding routing design described in to work with
stateful operators. We extend this design by also considering
the key of the tuple and the application ID when deciding
whether a tuple can be processed locally or should be for-
warded to the router of the parent datacenter. This allows
us to support keyed state, manage multiple applications and
handle source mobility which are crucial for modern stream
processing applications [40].

This simple scheme can result in complex routing pat-
terns, which we explore via the following example. Fig-
ure 3 demonstrates routing in a two-operator application
(source → A → C) deployed in an edge-cloud environment.
Tuples originate from vehicles and follow three possible paths
that exemplify an application deployed in such an environ-
ment. Each such flow is illustrated in a different color:
• Orange flow (solid): 1 Vehicle 1 connects to the datacenter

queue in edge1 datacenter and emits tuples of type A,car
meant for operator A with key ”car”. 2 The router in the

1A
DC1

Keyspace
X,	Y

A
DC2

2

Migrate (X,Y)
from A1 to A2

Keyspace
Z

a) Move Down

1A
DC1

Keyspace
X,	Y

A
DC2

2

Migrate (Z)
from A2 to A1

Keyspace
Z,	W

b) Split Up

1A
DC1

Keyspace
X,	Y

A
DC2

2 A
DC3

3
Keyspace

Z
Keyspace

W
d) Merge Up

Migrate (W)
from A2 to A1

Migrate (Z)
from A3 to A1

1A
DC1

Keyspace
X,	Y

A
DC2

2

Migrate (X)
from A2 to A1

Keyspace
Z,	W

e) Redistribute

Migrate (W)
from A1 to A2

1A Keyspace
X

A
DC2

2 A
DC3

3
Keyspace

Z
Keyspace

Y
c) Split Horizontal

Migrate (Z)
from A1 to A2

Migrate (Z)
from A3 to A1

DC1

Move Split Merge Redistribute

Up MU MU MU + MU MU + MD
Down MD MD MD + MD

Horizontal MU followed by MD

MU: Migrate Up MD: Migrate Down +: simultaneous

Fig. 4: Example reconfiguration plans that can be composed
using Falcon’s Migrate primitive.

edge1 datacenter routes A,car tuples to the local operator
Acar. 3 Acar emits tuples C,car for operator C with key
”car”. Since no operator C exists locally, the router forwards
them to the datacenter queue in the parent datacenter. 4
Router in the parent datacenter routes C,car to the local
operator C, which accepts all keys.

• Pink flow (dashed): 5 Vehicle 2 connects to the datacenter
queue in edge1 datacenter and emits tuples A,van meant
for operator A with key ”van”. 6 Since no operator A
processing key ”van” exist locally, the router forwards them
to the datacenter queue in parent datacenter. 7 A,van tuples
are routed to local operator Avan. 8 Avan emits tuples C,van ,
which are routed to local operator C which accepts all keys.

• Green flow (dotted): 9 A,van tuples emitted by vehicle
3 are 10 routed to the parent datacenter since no local
operator A exists and 11 are handled by Avan there.

D. The Migrate Primitive

Falcon offers a single simple primitive that supports a wide
range of reconfiguration operations:

Migrate(K,S,D): migrate keyset (K) from source
instance (S) to destination instance (D).

The Migrate primitive migrates keys belonging to keyset
K from the operator instance currently processing it (source)
to another operator instance (destination). If the destination
operator instance does not already exist, it is created during
the reconfiguration process. If the source instance is left with
zero keys after reconfiguration, this instance will be deleted.

5

Using the Migrate primitive, Falcon supports a wide range
of reconfigurations, which are crucial to source mobility:
Moving an operator instance from one datacenter to another
is implemented by migrating all the keys in the source to the
destination (Figure 4a). Splitting a part of an instance, for
example, due to user mobility or to improve performance,
is implemented by migrating only the relevant keys (Figure
4b). Splitting a keyspace horizontally to a sibling edge is
implemented as a migrate up to the parent datacenter followed
by a migrate down to the child (Figure 4c). Falcon also
allows merging of multiple instances into one instance by
migrating keys from multiple sources into a single destination
and supports key redistribution between two instances running
on, say cloud and edge, with a combination of migrate up
and migrate down. Such reconfiguration operations that require
multiple migrations can be run in parallel if there are no keys
common between the operations.

E. The Live Key Migration Protocol

The live key migration protocol implements the Migrate
primitive (Section III-D). Intuitively, the idea is to continue the
tuple processing on the source instance while the destination
instance transfers the state. Once the transfer completes, these
tuples are replayed at the destination to synchronize the state.

To achieve seamless live migration, Falcon uses a novel
combination of three techniques. Dual routing [21], [22] cre-
ates a duplicate data flow that routes tuples to both the source
and destination instances. Marker-based synchronization [23],
[24] injects special punctuation marker tuples (reconfig and
termination markers) into the datacenter queue to demarcate
the phases of the protocol. This avoids the need for lengthy
message exchange to coordinate between source and destina-
tion that would incur latency spikes due to network delays
(Section IV-D). Lastly, emission filters [18], allow an operator
instance to synchronize state by processing buffered tuples
without emitting output, thus avoiding the need to later de-
duplicate emitted tuples.
Protocol Steps. Figure 5 shows the steps of the protocol,
which we next discuss in detail. Consider the underlying
Migrate primitive for a Split Up operation (Figure 4b): Migrate
K from AS to AD, where a set of keys K need to be migrated
from source instance AS executing in a child datacenter to a
destination instance AD executing in a parent datacenter.

Phase 0 (Before Reconfiguration): In the initial deploy-
ment, source instance AS processes tuples belonging to keyset
S ∪ K. As shown in Figure 5a, tuples 1 and 2 belonging
to keyset S and K respectively arriving at the datacenter
queue of DC2 are forwarded to the operator queue of AS .
Similarly, tuple 3 belonging to keyset D is forwarded to the
parent datacenter DC1 to be processed by destination instance
AD. Also, note that each operator instance has a keyspace and
processes a tuple only if it belongs to a key that is present in
its keyspace (we will see its importance in Phase 1).

Phase 1 (Create Dual Route): Once the reconfiguration
is triggered, the Router begins dual routing where tuples
belonging to keyset K are sent to both the source and

destination instances. To achieve this, the system adds K to
the routing rule of the destination instance. As shown in Figure
5b, routing of AD is now modified from D to D ∪K, while
the routing rule of AS remains as S∪K. Hence, tuples 5 and 7
of keyset K arriving after the creation of dual-route are routed
to both AS and AD. Note that at this stage, these tuples are
ignored at the destination instance since its keyspace is still D
rather than D ∪K. This prevents the dual-routed tuples from
being processed twice.

Phase 2 (Inject Reconfig Markers): Immediately after
creating the dual route, Falcon injects two reconfig markers,
RS and RD, to demarcate the start of the state transfer phase
(Phase 3). To avoid pausing the operator processing queue,
Falcon injects these markers into the datacenter queue of the
child datacenter (DC2 in Figure 5b). RS will then be routed
to the source instance and RD to the destination instance.

Phase 3 (State Transfer): Upon processing RS , the source
instance AS creates an on-demand checkpoint by copying
the current state of keyset K from memory to the local
persistent storage. This on-demand checkpoint also copies all
the K tuples that had arrived at AS between the last periodic
checkpoint and the reconfig marker, RS to allow for tuple
replay later at the destination.

Upon processing RD, the destination instance AD pauses
output for tuples belonging to K, adds K to its keyspace
and triggers restore, i.e., download of K’s state from the
source instance. During the restore, K tuples are still being
processed in parallel due to dual-routing. For example, tuple
9 belonging to K that arrives during restore is processed
by AS and is buffered by AD. Once restore is complete,
AD starts processing the buffered tuples including the ones
downloaded from the source instance during restore. However,
this processing is done solely to synchronise the state and to
avoid processing tuples twice, we enable an emit filter on AD,
which prevents output when processing buffered tuples.

Phase 4 (Inject Termination Markers): Since the destina-
tion instance needs some time to clear the backlog of buffered
tuples, we continue the dual routing even after restore. Once
the backlog falls below a threshold (which depends on the
tuple arrival rate), the router injects two termination markers,
TS and TD to trigger the end of the reconfiguration process.

Phase 5 (Killing Dual Route): Immediately after injecting
the termination markers, Falcon kills the dual route by deleting
K from the routing rule of the source instance AS . This
means tuples belonging to K will now be routed only to the
destination instance AD. In our example, the routing of AS

is now modified from S ∪K to S. Since the routing rule of
AD remains as D ∪ K, tuples of K arriving after killing of
dual-route will be routed only to AD.

Phase 6 (Terminate Reconfiguration): Upon processing
the termination marker TS , the source instance removes K
from its keyspace. Hence, tuples belonging to K that arrive
between Phases 4 and 5 (e.g., tuple 11) will only be processed
by the destination instance and not by the source instance.
On processing the termination marker TD, the destination
instance disables the emit filter and resumes emitting output

6

ADPa
re

n
t

D
at

ac
en

te
r

(D
C

1
)

C
h

ild

D
at

ac
en

te
r

(D
C

2
)

datacenter queue

12

3

456 123

keyspace: S ∪ K

datacenter queue

12

3

456

45

7

7

567

RSRD

datacenter queue

457

6

RSRD

RD

RS

migrate
state

8910

datacenter queue

89TSTD 1012 1113

RS89TS12 11

RD910TD11

(a) Before reconfiguration (b) Dual routing of K and
injection of reconfig markers

(c) Processing of reconfig markers (d) After processing terminate
markers and killing dual route

tuples ∈ S

tuples ∈ D

tuples ∈ K

processed

1 2 3 4 5 6 7

create
dual route

inject
reconfig
markers

8 9 10

process
RS

process
RD

inject
terminate
markers

11

kill dual
route

12 13

process
TS

process
TD

figure (a) figure (b) figure (d)figure (c)

keyspace: D keyspace: D

keyspace: S ∪ K keyspace: S ∪ K

keyspace: D ∪ K
emit filter: K keyspace: D ∪ K

keyspace: S

AD AD AD

AS AS AS AS

X X

X

ignored
X

Ti
m

el
in

e

Fig. 5: Reconfiguration steps when migrating the key K from operator instance AS in a child datacenter to instance AD in a
parent datacenter. Annotated timeline of arriving tuples indicates the reconfiguration steps and each figure presents a snapshot
of the system at a particular point of the timeline. See Section III-E for more details.

for tuples belonging to K. Thus, tuples arriving after Phase 4
are processed solely by AD and their results are emitted.

Before emitting the results of tuples arriving after the termi-
nation marker TD (e.g., tuple 11), the destination instance AD

waits for an acknowledgment from the source AS confirming
that it has processed its own termination marker TS . This
prevents a corner case where AD would emit output of new
tuples (e.g. tuple 11) out of order, before a slower AS has
processed TS and any preceding tuples (e.g., tuple 9).

Our protocol is generic: it supports all reconfiguration
actions (Figure 4) and is exactly the same for both upward and
downward directions. The dual routing design minimizes de-
lays in the processing of tuples belonging to K. The sole inter-
ruption in processing occurs while awaiting acknowledgment
from the source to the destination instance, approximately half
the round trip network latency. This is necessary to maintain
the strict guarantees of in-order tuple processing.

When selecting an operator instance to migrate keys, it’s
crucial to choose one with sufficient spare capacity for pro-
cessing these keys. This ensures the instance can handle tuple
replay and catch up to the source instance. If no suitable
instance is available, spinning up a new one is straightforward
since states are not shared and the protocol minimizes dis-
ruptions. Keys migrated to a destination operator that cannot
handle the load would likely incur a large and increasing queue
backlog, potentially overflowing it. However, this would hap-
pen with any system, even without live migration. Overloading
an instance is a failure of the migration policy rather than the
migration mechanism, the focus of our work.

State correctness. Falcon guarantees correctness by preserv-
ing: (1) in-order processing of tuples, and (2) exactly-once
processing of tuples. Our migration protocol ensures these
properties as follows:

• During reconfiguration (Phases 1–5), tuples are routed to

both source and destination instances. These tuples are
processed and their results are emitted at the source instance.
The destination instance only processes these tuples and
doesn’t emit the results. By not emitting output tuples at
the destination, tuples emitted by the migrated key during
Phases 1–5 are only seen once by the downstream operators.
This prevents duplicate tuple processing. In addition, our
fault-tolerance mechanism prevents the dropping of any
tuples. Thus, exactly-once processing is maintained.

• For in-order processing, Falcon ensures tuples arriving post-
reconfiguration (Phase 6) are processed at the destination
instance only after those that arrived during reconfiguration
(being processed at the source instance). This is done in
Phase 6 where the destination instance waits for the source
instance to process and emit the terminate marker.

• In addition, Falcon injects the two sets of punctuation mark-
ers that indicate start and end of reconfiguration in a single
queue at the downstream data center and then forwards these
markers to the upstreams. This ensures that both source
and destination instances have the same perception of tuples
arriving before and after a marker.

In our experiments (Section IV-B), we evaluated the correct-
ness for operator migration using a deterministic dataset and
ran experiments with and without reconfiguration. We verified
that the state was identical in both experiments.

F. The Source Mobility Protocol
The second core mechanism of Falcon is its source mobility

protocol, accounting for the common scenario where data
sources move across edge nodes. This protocol involves two
steps: switching the network connection between edge routers,
and reconfiguring the stream processing application.
Router switchover. Falcon registers all routers deployed on the
edge nodes, including their IP addresses, using ETSI MEC’s
Edge Platform Application Enablement [41]. A data source

7

❺ P tuples still
processed in A1

Node-key map:

Node Keys

AC *

A1 P

A2

(a) Initial deployment (b) Mobility detection (c) During migration (d) P migrated to C

Cloud (C)
Datacenter:

❶ source of P
moves to edge 2

❸ Trigger
migration of P
from A1 to AC

❹ Dual
route P
tuples

Edge (1,2)
Datacenters:

❷ P tuples
detected in AC

Node Keys

AC *

A1 P

A2

Node Keys

AC *

A1 P

A2

Node Keys

AC P , *

A1

A2

car P

AC

A1 A2

AC

A1 A2

AC

A1 A2

AC

A1 A2

AC

A1 A2

❻
move P
to AC

(e) P migrated to edge 2

Node Keys

AC *

A1

A2 P

❼ P tuples
now processed
in AC

tuple path

migration

source
mobility

Fig. 6: Mobility of car emitting key P moving from edge 1 to edge 2. For simplicity, we only show one operator (A), replicated
on cloud C, edge 1, and edge 2. Solid arrows indicate flow of P tuples. See Section III-F for more details.

(e.g., a car, or other mobile device) uses the device application
interface to retrieve the Falcon router IP address to connect.
When the data source moves from edge A to edge B, MEC
sends a notification to the data source (using device application
assisted user context transfer in the MEC standard [42]). The
notification contains communication information, such as the
IP address of the edge B router. The data source then closes its
connection to the edge A router and opens a new connection
to the edge B router for service continuity.

Application reconfiguration. Consider a mobile source that
produces tuples with key P coming into an operator A, as
shown in Figure 6a. These tuples are processed by the operator
instance A1 located on edge 1. Falcon maintains a global node-
key map at the root node (the cloud) that stores all operator
instances and their assigned keys (top of Figure 6). When the
data source moves from edge 1 to edge 2 1 , AC detects that
the source has moved since it has received P tuple which is
already mapped to a different operator instance, A1 2 and
it triggers a migration of the key P from A1 to AC 3 . For
scaling to an N-level topology, this global mapping on the
cloud can be extended to a hierarchical mapping where parents
are only aware of the key spaces of their direct children.

To achieve seamless reconfiguration, Falcon must continue
processing of P tuples during migration. This is challenging
since P tuples now arrive at edge 2, yet their processing
is done at A1 on edge 1. To address this, Falcon uses the
dual routing mechanism (Section III-E, Phase 2) to forward
P tuples arriving at C to A1 4 while also collecting them at
AC . This is same as the usual live migration protocol, except
that the tuples are routed down the hierarchy rather than up
as usual. A1 continues to process incoming P tuples, while
AC replays them 5 , while the state of P is migrated from
A1 to AC 6 . Once the migration is completed, P tuples
arriving at the cloud node are processed by AC 7 . To avoid
unnecessary migrations during continued movement, Falcon
migrates the processing of P from AC to A2 (Figure 6e)
only if the data source remains connected to edge 2 for a
configurable minimum duration (default: 5 seconds). Note that

this design can easily be extended if the edge nodes - A1 and
A2 have a direct point-to-point connection.

Data source “ping-pong”. One interesting corner case is
when a data source moves back and forth between the same
two edge nodes. Continuing our example, while Falcon is
migrating the key P from AC to A1 in Figure 6c, the source
could move back to edge 1. If the Job Manager detects
this during the migration from A1 to AC , Falcon allows the
migration to continue since AC can process tuples from all
edges (via the catch-all mechanism), and the source could
continue moving between the edge nodes. On the other hand,
if the Job Manager detects the move back to edge 1 during
the migration from AC to A2, Falcon terminates the migration.
The ping-pong scenario can lead to another challenging corner
case for in-order processing when tuples generated by the
source before disconnecting from edge 2 arrive at AC after
the first tuple produced by the source on reconnecting to edge
1. To ensure tuples are processed in order, Falcon buffers
incoming P tuples when detecting a ping-pong. After a short
configurable duration (by default 100 ms), tuples are re-
ordered and processed based on their timestamps.

G. Fault Tolerance

For fault tolerance, Falcon relies on a set of standard
assumptions: (1) operators are deterministic, (2) machine and
network failures are not permanent, and (3) the underlying
message broker provides exactly-once processing, is fault-
tolerant, and supports tuple replay and acknowledgment. The
broker at the transport layer handles network packet loss; other
failures are handled by tuple replay. Note that failures during
reconfiguration can incur stoppage in application processing.

During steady state, all operators in a single datacenter can
be considered a single application with one broker. We use
a combination of asynchronous checkpointing, deterministic
tuple replay, and tuple acknowledgment – the same strategy
used by Flink [33] and other frameworks [28], [31], [32], [43].

During reconfiguration, there are two failure points: mes-
sage brokers and operator instances. Both these failures could

8

occur in Phases 1 and 5 of the live key migration protocol
(Section III-E). Phases 2 and 4 depend only on the broker and
Phases 3 and 6 can only be affected by operator instance fail-
ure. To handle message broker failures during reconfiguration,
Falcon waits for recovery and retries failed operations (via
dual routing, and punctuation marker injection). If an operator
instance fails during reconfiguration, Falcon uses replay: since
coordination is based on punctuation markers and the broker
is fault tolerant, instances that failed after marker processing
are restarted with tuples and markers re-delivered.

H. Implementation

Falcon is implemented in Java (approx. 50K LOC). Appli-
cation operators are implemented as Java applications running
inside Docker containers. Apache ActiveMQ Artemis [44]
serves as the message broker for our routing system, with
Falcon’s routing rules implemented as Artemis filters within
message queues. The dual-routing technique is implemented
by adding diverts within the queues for routing tuples to two
locations simultaneously, using custom filter expressions [45]
to identify tuples belonging to specific keys. To minimize
latency in intra-datacenter communication, operators within
the same datacenter utilize ZeroMQ sockets [34], with brokers
solely employed for inter-datacenter communication. For state
storage, we utilize SessionStore [35], [36], an open-sourced
geo-distributed key-value store built on top of Cassandra [46].

IV. EXPERIMENTAL EVALUATION

In this section, we set out to answer the following questions:
1) How does the reconfiguration performance of our live key

migration approach compare to the full-restart, partial-
pause and hot backup approaches? (Section IV-B)

2) What is the impact of source mobility? (Section IV-C)
3) How do network latency and topology size affect Falcon’s

reconfiguration performance? (Section IV-D)
4) How do the application characteristics affect Falcon’s re-

configuration performance? (Section IV-E)
We define three metrics of reconfiguration performance.

Disruption duration measures how long processing is dis-
rupted due to a reconfiguration event. We detect disruption
when the end-to-end tuple processing latency is greater or
equal to the mean latency during steady state, plus five times
the standard deviation. Peak latency jitter is the impact of
the interruption on application performance, defined as the
difference between peak and mean end-to-end tuple processing
latency. Lastly, reconfiguration duration is defined as the
time between the start of the reconfiguration event and the
emission of output tuples at the destination instance. Depend-
ing on the reconfiguration mechanism, this duration could
include migration of application state and in-flight followed
by a replay of these tuples at the destination instance.

A. Experimental Setup

We evaluate Falcon on an emulated hierarchical edge-
cloud deployment made of two AWS datacenters: one in
North California acting as the root (i.e., cloud) and one in
Montreal acting as the child node (edge) near the data sources.

The round-trip latency between the edge datacenter and the
cloud datacenter is measured to be 80 milliseconds for all
experiments except the latency experiment in Figure 10. We
use m5.2xlarge EC2 instances running on a 3.1 GHz Intel
Xeon Platinum 8175M with 8 threads and 32 GB RAM. The
average intra-datacenter bandwidth was 2.5 Gbps, while inter-
datacenter bandwidth was 1 Gbps.
Baselines. Shepherd is the only existing solution that sup-
ports reconfiguration on the edge. However, since it does not
support stateful reconfiguration and there are no other edge
frameworks that do this, we instead compare Falcon to existing
cloud-based frameworks that support stateful reconfiguration.

We compare Falcon to baselines representing full-restart
(Flink [47]), partial-pause (Trisk [48]), on-demand state trans-
fer (Meces [49]) and hot backups (Falcon-HB). Falcon-HB’s
hot backups mechanism is inspired by Rhino [32] since its
source code is not available and Rhino does not natively
support hierarchical edge-cloud deployment. Our Falcon-HB
version uses the late-binding routing design, avoids global co-
ordination and state alignment during reconfiguration, and can
consume tuples from a co-located message broker instead of
downloading them from the cloud broker. The checkpointing
interval in Falcon-HB is set to 500 milliseconds to minimize
reconfiguration disruption. Finally, we evaluate against a Fal-
con version that allows out-of-order tuple processing (Falcon-
OOP), to illustrate the added cost of in-order processing.
Applications. As there is no standardized benchmark for edge-
based stream processing applications at the time of writing,
we develop the traffic monitoring application TM (utilized as a
recurring example in this paper). Additionally, we modify four
workloads from Nexmark [50], [51] and two workloads from
Linear road [52], [53] to suit an edge-cloud hierarchy. These
selected workloads are typically used in evaluating stream
processing engines [28], [31], [32], [43]. Figure 7 shows the
logical plans. These applications represent the most popular
kinds of state: key-value state (TM), count-based (NQ6), and
event-based tumbling window (NQ7), and, count-based (LR-
AN) and event-based sliding window (NQ8, LR-TN) [40].
(1) Traffic Monitoring (TM). This stateful application mon-
itors the vehicles on a street to detect the ones violating the
speed limit, and allows fine-grained control of experimental
parameters. Vehicles generate tuples containing their current
speed, and the stateful MOV AVG operator computes a run-
ning average speed for each vehicle. MOV AVG uses a key-
value state where the key is the vehicle ID and the value
is its traffic statistics (current average speed and number of
observations). The next stateless TRIG operator triggers an
alert if the average speed of a vehicle exceeds the speed limit.
The lightweight nature of this application ensures that any
impact of reconfiguration on application performance is clearly
visible. The data production rate is 1500 tuples per second,
with 10 keys and 32 bytes of state per key.
(2) Nexmark Benchmark (NQ5-8). Query 5 (NQ5) uses an
event-based sliding window (WIN COUNT) of size 1-minute
(and 1-second slide) to count the number of bids per item from

9

SRC MOV
AVG SINK

Key by vehicle id

vehicle id,
curr speed

vehicle id,
avg speed

TRIG

TM

decision

SRC WIN1
FILTER SINK

Key by src id

JOIN

Join by
src id

src id,
seller id,
item id

src id,
seller id

NQ8

user id

WIN2
FILTER

Key by src id

src id,
user id

src id,
user id

SRC SPD
AVG

car id,
car speed,
seg id

LR-TN

CAR
COUNT

Key by seg id

Key by seg id
car id,
seg id

JOIN SINK

seg id,
toll

seg id,
avg speed

seg id,
car count

Join by
seg id

SRC ACC
DET

car id,
position,
seg id

LR-AN

CAR
REG

Key by seg id

Key by car id
car id,
seg id

JOIN SINK

affected
carsseg id

seg id,
car id

Join by
seg id

SRC WIN
AVG SINK

Key by seller id

SRC WIN
MAX SINK

Key by src id

JOIN

Join by src id

seller id,
item id,
price

seller id,
avg price

src id,
item id,
price

src id,
max price item,
price

NQ6

NQ7

max price item,
price

SRC WIN
COUNT

Key by src id

src id,
item id,
price

NQ5

SINKJOIN

Join by src id

src id,
hottest item,
count

hottest item,
count

Stateless Operator
Stateful Operator

Tumbling Window (Count)
Tumbling Window (Event)

Sliding Window (Count)
Sliding Window (Event)

Fig. 7: Logical plan of TM, Nexmark Benchmark (NQ5-8), and Linear Road Benchmark (LR-TN, LR-AN) applications.

a stream of bids generated by a data source and generates the
hottest item with maximum bids along with the bid count.
NQ7 uses a similar logic to calculate the maximum priced
item by instead using an event-based tumbling window in the
WIN MAX (Windowing Max) operator. The JOIN operator
aggregates the data for the entire stream.

Query 6 (NQ6) calculates the average selling price of the
last 10 items sold by a seller using a count-based tumbling
window (WIN AVG) from a stream of auction bids. Query
8 (NQ8) uses two filters in the event-based sliding windows
(WIN1, WIN2 FILTER) to respectively find the users who
joined the system in the last hour and who submitted a bid in
that period. The JOIN operator determines users common in
the two filtered results. This query uses long-running windows
(1-hour size, 1-second slide) emitting results every second.

For all queries, we configure the Nexmark Data Generator to
use a skewed data distribution with a ratio of hot to cold items
of 100. Each data source is placed at the edge node producing
1500 tuples/second. There are 10 keys and the state size per
key is 1.3KB, 1.6KB, 1KB and 82 KB for NQ5, NQ6, NQ7
and NQ8 respectively.
(3) Linear Road Benchmark (LR-TN & LR-AN). The Toll
Notification (LR-TN) query computes tolls for each segment
of an expressway. The SPD AVG (Speed Average) operator
uses an event-based sliding window (1-min size and 1-second
slide) to report the latest average speed of all cars on a
segment. Likewise, the CAR COUNT operator calculates the
number of cars on the segment. Finally, the JOIN operator uses
both these values to calculate the toll for a segment (See [52]
for the specific formula).

Accident Notification (LR-AN) query determines which
cars are affected when an accident occurs on a segment. ACC
DET (Accident Detect) operator uses a count-based sliding
window (size=10, slide=1) to report an accident if the last 10
positions of a car are same. CAR REG (Car Register) operator
maintains a mapping of each segment with the cars currently
on it and returns all cars on the segment. If an accident is
reported on a segment, JOIN operator returns the list of all
cars on the segment.

The dataset contains 101 segments and 124,000 cars with
the state size per key (where key is segment ID) of 2.8-3.1
KB for LR-TN and 50-70 KB for LR-AN. Reconfiguration

TM NQ5 NQ6 NQ7 NQ8 LR-TN LR-AN
100
101
102
103
104
105

Di
sr

up
tio

n
Du

ra
tio

n
(m

s)
 [l

og
]

x x x x

TM NQ5 NQ6 NQ7 NQ8 LR-TN LR-AN
100
101
102
103
104
105

Pe
ak

 L
at

en
cy

Jit
te

r (
m

s)
 [l

og
]

x x x x

Fig. 8: Reconfiguration stoppage. Dashed red line indicates
round-trip inter-datacenter latency. Trisk does not support
reconfiguration for event-based windows (marked X).

benefits both queries: when the number of cars on a segment
increases, the processing of the stateful operator can be moved
to the edge node to reduce the amount of data transferred to
the cloud. Conversely, moving the processing back to the cloud
during low traffic avoids expensive edge resources.

B. Reconfiguration Performance

We evaluate the impact of handling one reconfiguration.
Initially, all operators are deployed on the cloud node. After 60
seconds, each experiment triggers a reconfiguration spawning
a new instance of the stateful operator (MOV AVG for TM;
WIN COUNT, WIN AVG, WIN MAX, WIN FILTERs for
NQ5-8; SPD AVG, CAR COUNT, CAR REG for LR queries)
on the edge node and migrating processing of 50% of the keys
to this new instance. Note that state migration in Meces and
Trisk was designed for dynamic scaling rather than for improv-
ing data processing locality. Unlike Falcon, they do not allow
the user to choose which subset of the keys to migrate. Hence,
we limit experiments to scenarios with uniformly distributed
tuples across data sources, favoring baseline frameworks.

Figure 8 shows the disruption duration and peak latency
jitter (99th percentile), averaged over 5 runs. Falcon achieves
1–4 orders of magnitude reductions in both disruption duration

10

Fig. 9: Falcon reconfiguration performance when the source
moves between 2 edges (a) and 3 edges (b). We show up to
3 edges here for clarity of different phases. Falcon shows a
similar performance even for 32 edges where a source moves
from edge 1 to edge 32.

and peak latency jitter across the board. The peak latency
jitter of Flink and Trisk is in the range of tens of seconds,
while Falcon-HB and Meces bring it down to hundreds of
milliseconds. However, note that the hot backup approach has
the disadvantage of linearly increasing bandwidth with the
number of edges and state size. In contrast, Falcon achieves the
lowest jitter of ∼45 milliseconds. Falcon’s live key migration
mechanism continues tuple processing in parallel to migration.
Disruption incurred by Falcon is lower than even the round-trip
network latency (80 ms, on average) because coordination is
done through markers. The only message exchange between
the source and destination incurs a single one-way message
delay to guarantee in-order processing (Sec. III-E, phase 6),
which is often overlapped by processing at the destination.
By omitting this message, Falcon-OOP achieves a further im-
provement (by 14-20 ms) in peak latency jitter with no change
in disruption duration, showing that the cost of guaranteeing
in-order processing for Falcon is low.

A breakdown of Falcon’s performance across its six phases
is as follows: Phases 1, 2, 4, and 5 each take 2–3 ms, while
Phase 6 takes 14–16 ms for post-processing. Phase 3 takes 600
ms to 1.5 s; however, its execution is overlapped by the dual-
routing mechanism, ensuring it does not impact the overall
processing latency of the application.

C. Support for Data Source Mobility

To evaluate the mobility of data sources, we set up a
two-tier edge-cloud deployment comprised of one root (i.e.,
cloud) and three child data centers (edges). We deploy the
LR-AN application using a single car as the data source and
simulate the mobility using the MEC Sandbox [41] as a high-
velocity vehicle that connects to a new edge node every few
seconds. The sandbox also sends MEC-based notifications
when the source moves from one edge node to another. When
the car moves from one edge to another, this triggers a
reconfiguration of Accident Detect (ACC DET) operator to
migrate the processing of the key corresponding to the car
accordingly. We do not include Flink, Trisk and Meces in this
experiment, as they do not support the mobility of sources.

Figure 9 depicts the 99th percentile latency (solid green
line) and total bandwidth utilization (dashed red line) over

<1 50 100 150 200
Network Latency (ms)

101
102
103

104

Pe
ak

 L
at

en
cy

Jit
te

r (
m

s)
 [l

og
]

<1 50 100 150 200
Network Latency (ms)

100

101

102

Re
co

nf
ig

Du
ra

tio
n

(s
) [

lo
g]

Flink Trisk Meces Falcon-HB Falcon

Fig. 10: Effect of round-trip latency on peak latency jitter (left)
and reconfiguration duration (right).

time, as the data source (i.e., the car) shifts from (a) edge
1 to edge 2 and (b) from edge 1 to edge 3, via edge 2.
Latency is measured at one-second intervals. Throughout the
majority of the source movement, the tail latency stays close
to the 80ms round trip time, except for three peaks. First, the
peaks at the 3-second mark (in both Figures 9a and 9b) are
caused by the state migration from edge 1 to cloud, causing an
approximate 80ms latency increase. Mobility detection latency
is negligible, typically a few milliseconds. Second, the peaks
at the 12-second mark (Figure 9a) and the 18-second mark
(Figure 9b) are the cost of migrating state from the cloud to
the edge, where the data source is now located. Recall that
Falcon avoids too frequent migrations for fast-moving sources
by waiting a configurable time (5 seconds here) before moving
the processing from cloud to edge (Section III-F). The third,
smaller, peak that can be seen at 9 seconds in Figure 9b is the
cost of the data source re-establishing a connection with edge
2, which results in a slight delay in tuple emission.

Bandwidth usage momentarily peaks during state migration
(at 3 seconds) due to dual routing: when moving processing
from edge 1 to the cloud, tuples arriving from edge 2 to
the cloud are temporarily forwarded to edge 1 (Sec. III-F).
Processing tuples in the cloud during the transition also incurs
higher bandwidth usage temporarily: once the migration from
the cloud to the edge is complete, the bandwidth usage drops
to its normal value.

In all cases, Falcon achieves a disruption duration of 10ms
and peak latency jitter of 50–80ms, which is the same or less
than the round-trip link latency of 80ms. Both are orders of
magnitude better than what Flink, Trisk, Meces, and Falcon-
HB would achieve (based on results from Section IV-B).

We observe similar reconfiguration performance in the ping-
pong scenario where the source moves back and forth between
two edges. We omit the results due to space constraints.

D. Impact of Network and Topology Size

We evaluate the impact of network latency on reconfigura-
tion performance by using Linux Traffic Control [54] to add
latency between parent and child nodes. In the TM application,
50% of keys at the MOV AVG operator are migrated to a
new instance on the child node during reconfiguration. As
round-trip network latency increases, peak latency jitter rises
for all frameworks including Falcon (Figure 10, left). Flink
and Trisk encounter delays in state migration due to increased

11

4 8 12 16
Number of edges

101

102

103

104

Pe
ak

 L
at

en
cy

Jit
te

r (
m

s)
 [l

og
] RTT

Flink
Trisk
Meces
Falcon-HB
Falcon

Fig. 11: Impact of the number of edges on reconfiguration.
Reconfiguration triggered on Flink, Trisk and Meces fails for
7 or more edges due to timeouts.

bandwidth-delay product, while Falcon-HB incurs this delay
in migrating tuples since the last checkpoint. Meces’s on-
demand fetch approach is a poor match for high-latency
edge links, as the increased round-trip per request starts to
accumulate [55]. Falcon’s peak latency jitter is around half
the network round trip time, the time taken by the source
to acknowledge reconfiguration completion to the destination
(Section III-E, Phase 6)

The reconfiguration duration of Flink, Trisk and Meces
increases with an increase in latency while it remains nearly
constant for Falcon and Falcon-HB (Figure 10, right). The
dominant factor in reconfiguration duration for Flink, Trisk
and Meces is the time taken to transfer the backlog of in-flight
tuples, which increases with latency because of the increased
pause in tuple processing. For Meces, the duration is caused
by the delay in fetching the state on demand. In Falcon (and
Falcon-HB), the dominant factor is the nearly constant time
to start the new operator instance.

We next evaluate how the number of edges existing in a
deployment prior to the reconfiguration can affect its perfor-
mance. Initially, we have a deployment of N edges where
an instance of MOV AVG in the TM application is deployed
on the cloud and N − 1 edge nodes. During reconfiguration,
we create an instance of this operator on the N th edge and
migrate the processing of a subset of the keys to this instance.

Figure 11 shows that Falcon readily scales to many edges:
its reconfiguration performance is unaffected with increasing
edges. Conversely, as edges are added, Flink, Trisk, and Meces
experience exponential increase in peak latency jitter due to
their early-binding design, where the socket connections be-
tween all upstream and downstream operators are coordinated
globally and re-established after reconfiguration. Falcon-HB
shows a linear increase as adding edges amplifies the number
of tuples requiring replay. Falcon avoids the latency increase
since there is no direct connection between upstream and
downstream operators and there is no effect of tuple replay
on disruption. Since this design only involves the source and
destination instances, peak latency jitter stays constant regard-
less of the physical plan’s operator count or edge additions.

E. Impact of Application Characteristics

We next explore the effects of state size per key, number of
keys, and window size on reconfiguration performance.

10
KB

50
KB

10
0K

B
50

0K
B

1M
B

5M
B

10
MB

50
MB

10
0M

B

State Size Per Key

101
102
103
104
105

Pe
ak

 L
at

en
cy

Jit
te

r (
m

s)
 [l

og
]

10
KB

50
KB

10
0K

B
50

0K
B

1M
B

5M
B

10
MB

50
MB

10
0M

B

State Size Per Key

101

102

Re
co

nf
ig

Du
ra

tio
n

(s
) [

lo
g]

RTT Flink Trisk Meces Falcon-HB Falcon

Fig. 12: Impact of state size on peak latency jitter (left) and
reconfiguration duration (right).

100 500 1K 5K 10K 50K
Number of keys migrated

101
102
103
104
105

Pe
ak

 L
at

en
cy

Jit
te

r (
m

s)
 [l

og
]

10 100 1K 10K
Window Size (No. of Tuples)

101
102
103
104
105

Pe
ak

 L
at

en
cy

Jit
te

r (
m

s)
 [l

og
]

RTT Flink Trisk Meces Falcon-HB Falcon

Fig. 13: Impact of the number of keys (left) and window size
(right) on reconfiguration performance.

In Figure 12 (left), we vary the state size per key in the
TM application from 10KB to 100MB. The increase in state
size per key leads to an increase in peak latency jitter for
all frameworks except Falcon. For Flink, Trisk and Meces,
the disruption due to the state download over the network
increases with the state size. Falcon-HB achieves a lower
increase by avoiding this download. State download has no
impact on Falcon as it occurs in parallel to tuple processing.

Figure 12 (right) shows a similar pattern. The increase in
state size per key correlates with increased reconfiguration du-
ration for Flink, Trisk and Meces. This occurs as the download
duration of the application state and the transfer duration of
the in-flight tuples increase with the increase in state size.
In contrast, Falcon has to download the application state and
fewer tuples during reconfiguration. Falcon-HB achieves a
lower increase rate by avoiding the state download and only
downloading tuples that arrived since the last checkpoint.

In Figure 13 (left), we vary the number of keys migrated
during the reconfiguration of TM, using the default per-key
state size of 32 bytes. As expected, peak latency jitter for
Flink, Trisk and Falcon-HB remains nearly constant due to the
modest increase in the migrated state size. On-demand state-
transfer approach of Meces scales poorly because increasing
the number of keys results in increased stalling and queuing
overhead. Falcon’s peak latency jitter is still orders of magni-
tude lower compared to the other frameworks.

Finally, in Figure 13 (right), we evaluate the impact of
window size on reconfiguration performance, by varying the
count-based window size in the NQ6 application. Larger
windows mean larger states (ignoring incremental averaging).
Hence, increasing the window size leads to an increase in the
peak latency jitter for all the frameworks except Falcon-HB.
Even for a window of 10,000 tuples, Falcon’s peak latency

12

1 2 3 4 5 6
Number of edges

10
20
30
40
50

Cu
m

ul
at

iv
e

St
at

e
 Tr

an
sf

er
re

d
(M

B)

10
KB

50
KB

10
0K

B
50

0K
B

1M
B

5M
B

10
MB

50
MB

10
0M

B

State Size Per Key

101
102
103
104
105

Cu
m

ul
at

iv
e

St
at

e
 Tr

an
sf

er
re

d
(M

B)
 [l

og
]Falcon-HB

Falcon

Fig. 14: Impact of the number of edges (left, linear scale) and
state size (right, log scale) on the transferred data.

jitter is lower than even the network latency.

Cost of hot backups. Network transfers incur costs, espe-
cially in edge deployments. To evaluate the overhead of hot
backups, we measured the total data transferred between the
cloud and edge datacenters during experiments conducted in
Section IV-B. Falcon-HB’s checkpointing interval is set as 500
ms, as this yields the best reconfiguration performance. The
size of state transferred by Falcon-HB increases linearly with
the number of edges (Figure 14, left) and the state size per key
(Figure 14, right). The former is due to the need to replicate
state to all edges for a possible future reconfiguration, while
the latter is because of the increase in the amount of state
replicated for every checkpoint. This suggests hot backup is ill-
suited for reconfiguration in hierarchical edge networks, which
are seldom limited to a handful of nodes. In contrast, Falcon
transfers the state only once during the reconfiguration, so
its transfer size remains constant regardless of the number of
edges, and increases slowly as the state size per key grows.

V. RELATED WORK

Reconfiguration using full-restart in the cloud. Flink [33],
Spark [56], Storm [57], and Stella [58] use a full-restart re-
configuration approach interrupting the application to perform
an on-demand state checkpoint, move the checkpoint to a
new host, and restore the checkpoint. This reconfiguration
approach delivers state correctness but falls short of meeting
stringent requirements of latency peaks and system disruptions
for applications that need frequent runtime modifications. In
contrast, Falcon targets edge-cloud deployments with mobile
sources, where frequent and efficient reconfiguration is needed.

Reconfiguration using partial-pause in the cloud. Partial-
pause reconfiguration [24], [28], [30], [59], [60] reduces the
system disruption time in redistributing operators by pausing
only the processing of the affected operators. For instance,
Megaphone [43] splits the state into small parts and moves
the state in increments. Meces [31] fetches the state for a
key only when it encounters a tuple belonging to this key.
In contrast, Rhino [32], Chronostream [21], and Gloss [22]
implement replicated dataflows. The application tuples and
operators (or checkpoints) are replicated to several hosts where
an operator could be assigned. This solution offers robustness
but is expensive, as additional resources are required for the
replicated state. Moreover, the early-binding approach used in

these systems leads to inefficient triangular routing for edge-
cloud deployment, becoming a bottleneck during rescaling.

Stream processing for edge deployments. DART [17] uses a
peer-to-peer overlay network to distribute operators on to edge
datacenters. SpanEdge [14] provides a user-friendly program-
ming environment for operator placement. Both systems take a
full-restart approach for operator scaling and reconfiguration.
Our prior work, Shepherd [18] supports reconfiguration for
stateless operators with low disruption, leveraging late binding
routing to avoid global coordination. StreamBucket [61] is
another solution designed for hierarchical edge-cloud deploy-
ment that focuses on improving the scalability of dual-routing
networks. However, both Shepherd and StreamBucket lack
support for stateful application reconfiguration. Our system
addresses the more challenging scenario of reconfiguration in
stateful applications and also supports for source mobility.

Orchestration for edge deployments. Oakestra [62] was re-
cently proposed with the goal of improving the control plane in
hierarchical orchestration for edge-cloud infrastructure. Simi-
larly, Starlight [55] accelerates the provisioning of containers
on edge devices. These solutions complement our work, and
Falcon can leverage them to streamline operator deployment.

Stateful Operator Migration vs. Live VM Migration. Live
VM migration bears some similarities to stateful operator
migration. The mutation of page tables and file modifications
resemble how tuple processing affects state during migration,
and techniques like checkpointing are used in both domains.
However, unlike operator migration, the entire VM must
be transferred to the new host [63]. This results in longer
downtimes, prompting service providers to focus on adapting
specific workloads [64]. Conversely, stateful operator migra-
tion works at a finer granularity as splitting the state into keys
and migrating these keys presents a more nuanced challenge.

VI. CONCLUSION

We presented Falcon, a stream processing framework for
live reconfiguration of stateful operators in a hierarchical edge-
cloud deployment. Falcon’s live key migration approach allows
seamlessly moving operator state between replicas; its source
mobility protocol supports data sources that move between
different edge nodes of the network. Falcon reduces reconfig-
uration latency from tens of seconds to a few milliseconds on
geo-distributed edge-cloud infrastructure and supports a wide
variety of application states and reconfiguration operations.
Future work will focus on developing adaptive placement
strategies to predict reconfiguration pro-actively and improving
the scalability of our routing mechanism.

ACKNOWLEDGEMENTS

This work was supported in part by funding from the Inno-
vation for Defence Excellence and Security (IDEaS) program
from the Department of National Defence (DND), Huawei
Technologies Canada Co., Ltd and Natural Sciences and Engi-
neering Research Council of Canada (NSERC), Collaborative
Research and Development Grants, 543885-2019.

13

REFERENCES

[1] S. Hua, M. Kapoor, and D. C. Anastasiu, “Vehicle Tracking and Speed
Estimation from Traffic Videos,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops, 2018.

[2] I. Lujic, V. D. Maio, K. Pollhammer, I. Bodrozic, J. Lasic, and I. Brandic,
“Increasing Traffic Safety with Real-Time Edge Analytics and 5G,” in
Proceedings of the International Workshop on Edge Systems, Analytics
and Networking, 2021.

[3] A. Tiwari, S. Liaqat, D. Liaqat, M. Gabel, E. de Lara, and T. H.
Falk, “Remote copd severity and exacerbation detection using heart
rate and activity data measured from a wearable device,” in 2021 43rd
Annual International Conference of the IEEE Engineering in Medicine
& Biology Society (EMBC), 2021.

[4] D. Liaqat, S. Liaqat, J. L. Chen, T. Sedaghat, M. Gabel, F. Rudzicz,
and E. de Lara, “Coughwatch: Real-world cough detection using smart-
watches,” in ICASSP 2021 - 2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2021.

[5] T. Sedaghat, S. Liaqat, D. Liaqat, R. Wu, A. Gershon, T. Son, T. H.
Falk, M. Gabel, A. Mariakakis, and E. de Lara, “Unobtrusive monitoring
of copd patients using speech collected from smartwatches in the
wild,” in 2022 IEEE International Conference on Pervasive Computing
and Communications Workshops and other Affiliated Events (PerCom
Workshops), 2022.

[6] I. Ray, D. Liaqat, M. Gabel, and E. de Lara, “Skin tone, confidence, and
data quality of heart rate sensing in wearos smartwatches,” in 2021 IEEE
International Conference on Pervasive Computing and Communications
Workshops and other Affiliated Events (PerCom Workshops), 2021.

[7] J. Wang, Z. Feng, Z. Chen, S. George, M. Bala, P. Pillai, S.-W. Yang,
and M. Satyanarayanan, “Bandwidth-efficient Live Video Analytics
for Drones via Edge Computing,” in Proceedings of the IEEE/ACM
Symposium on Edge Computing (SEC), 2018.

[8] T. Meuser, L. Lovén, M. Bhuyan, S. G. Patil, S. Dustdar, A. Aral,
S. Bayhan, C. Becker, E. de Lara, A. Y. Ding et al., “Revisiting edge ai:
Opportunities and challenges,” IEEE Internet Computing, vol. 28, no. 4,
pp. 49–59, 2024.

[9] S. Hossein Mortazavi, M. Salehe, M. Gabel, and E. de Lara, “Data
management systems for the hierarchical edge,” GetMobile: Mobile
Comp. and Comm., vol. 27, no. 2, p. 11–17, Aug. 2023.

[10] “Amazon ECS clusters in Local Zones, Wavelength Zones, and
AWS Outposts,” 2023. [Online]. Available: https://docs.aws.amazon.
com/AmazonECS/latest/developerguide/cluster-regions-zones.html

[11] “Azure Stack Edge release notes,” 2023. [On-
line]. Available: https://learn.microsoft.com/en-us/azure/databox-online/
azure-stack-edge-gpu-2202-release-notes

[12] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernández-
Moctezuma, R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt, and
S. Whittle, “The Dataflow Model: A Practical Approach to Balancing
Correctness, Latency, and Cost in Massive-Scale, Unbounded, Out-of-
Order Data Processing,” in Proceedings of the International Conference
on Very Large Data Bases (VLDB), 2015.

[13] B. Peng, M. Hosseini, Z. Hong, R. Farivar, and R. Campbell, “R-storm:
Resource-aware scheduling in storm,” in Proceedings of the 16th
Annual Middleware Conference, ser. Middleware ’15. New York,
NY, USA: Association for Computing Machinery, 2015, p. 149–161.
[Online]. Available: https://doi.org/10.1145/2814576.2814808

[14] H. P. Sajjad, K. Danniswara, A. Al-Shishtawy, and V. Vlassov,
“Spanedge: Towards Unifying Stream Processing Over Central and
Near-the-edge Data Centers,” in Proceedings of the IEEE/ACM Sym-
posium on Edge Computing (SEC), 2016.

[15] X. Fu, T. Ghaffar, J. C. Davis, and D. Lee, “Edgewise: a Better Stream
Processing Engine for the Edge,” in Proceedings of the USENIX Annual
Technical Conference (USENIX ATC), 2019.

[16] M. Nardelli, G. Russo Russo, V. Cardellini, and F. Lo Presti, “A
multi-level elasticity framework for distributed data stream process-
ing,” in Euro-Par 2018: Parallel Processing Workshops, G. Mencagli,
D. B. Heras, V. Cardellini, E. Casalicchio, E. Jeannot, F. Wolf, A. Salis,
C. Schifanella, R. R. Manumachu, L. Ricci, M. Beccuti, L. Antonelli,
J. D. Garcia Sanchez, and S. L. Scott, Eds. Cham: Springer International
Publishing, 2019, pp. 53–64.

[17] P. Liu, D. Da Silva, and L. Hu, “DART: A Scalable and Adaptive
Edge Stream Processing Engine,” in Proceedings of the USENIX Annual
Technical Conference (USENIX ATC), 2021.

[18] B. Ramprasad, P. Mishra, M. Thiessen, H. Chen, A. da Silva Veith,
M. Gabel, O. Balmau, A. Chow, and E. de Lara, “Shepherd: Seamless
Stream Processing on the Edge,” in Proceedings of the IEEE/ACM
Symposium on Edge Computing (SEC), 2022.

[19] P. Carbone, M. Fragkoulis, V. Kalavri, and A. Katsifodimos, “Beyond
analytics: The evolution of stream processing systems,” in Proceedings
of the 2020 ACM SIGMOD international conference on Management of
data, 2020, pp. 2651–2658.

[20] J. Verwiebe, P. M. Grulich, J. Traub, and V. Markl, “Survey of window
types for aggregation in stream processing systems,” The VLDB Journal,
vol. 32, no. 5, pp. 985–1011, 2023.

[21] Y. Wu and K.-L. Tan, “ChronoStream: Elastic Stateful Stream Compu-
tation in the Cloud,” in Proceedings of the International Conference on
Data Engineering (ICDE), 2015.

[22] S. Rajadurai, J. Bosboom, W.-F. Wong, and S. Amarasinghe, “Gloss:
Seamless Live Reconfiguration and Reoptimization of Stream Pro-
grams,” in Proceedings of ASPLOS, 2018.

[23] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras, “Exploiting punc-
tuation semantics in continuous data streams,” IEEE Transactions on
Knowledge and Data Engineering, vol. 15, no. 3, pp. 555–568, 2003.

[24] L. Mai, K. Zeng, R. Potharaju, L. Xu, S. Suh, S. Venkataraman,
P. Costa, T. Kim, S. Muthukrishnan, V. Kuppa et al., “Chi: A Scalable
and Programmable Control Plane for Distributed Stream Processing
Systems,” in Proceedings of the International Conference on Very Large
Data Bases (VLDB), 2018.

[25] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal,
J. M. Patel, K. Ramasamy, and S. Taneja, “Twitter Heron: Stream
Processing at Scale,” in Proceedings of the ACM SIGMOD International
Conference on Management of Data, 2015.

[26] G. Wang, L. Chen, A. Dikshit, J. Gustafson, B. Chen, M. J. Sax,
J. Roesler, S. Blee-Goldman, B. Cadonna, A. Mehta et al., “Consistency
and Completeness: Rethinking Distributed Stream Processing in Apache
Kafka,” in Proceedings of the ACM SIGMOD International Conference
on Management of Data, 2021.

[27] “Apache Flink,” 2023. [Online]. Available: http://flink.apache.org/
[28] Y. Mao, Y. Huang, R. Tian, X. Wang, and R. T. Ma, “Trisk: Task-Centric

Data Stream Reconfiguration,” in Proceedings of the ACM Symposium
on Cloud Computing (SoCC), 2021.

[29] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, C. Soriente, and
P. Valduriez, “Streamcloud: An Elastic and Scalable Data Streaming Sys-
tem,” IEEE Transactions on Parallel and Distributed Systems, vol. 23,
no. 12, 2012.

[30] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and M. J. Franklin,
“Flux: An Adaptive Partitioning Operator for Continuous Query Sys-
tems,” in Proceedings of the International Conference on Data Engi-
neering (ICDE), 2003.

[31] R. Gu, H. Yin, W. Zhong, C. Yuan, and Y. Huang, “Meces: Latency-
efficient Rescaling via Prioritized State Migration for Stateful Dis-
tributed Stream Processing Systems,” in Proceedings of the USENIX
Annual Technical Conference (USENIX ATC), 2022.

[32] B. Del Monte, S. Zeuch, T. Rabl, and V. Markl, “Rhino: Efficient
Management of Very Large Distributed State for Stream Processing
Engines,” in Proceedings of the SIGMOD International Conference on
Management of Data, 2020.

[33] P. Carbone, S. Ewen, G. Fóra, S. Haridi, S. Richter, and K. Tzoumas,
“State Management in Apache Flink: Consistent Stateful Distributed
Stream Processing,” in Proceedings of the International Conference on
Very Large Data Bases (VLDB), 2017.

[34] “ZeroMQ,” 2023. [Online]. Available: https://zeromq.org/
[35] S. H. Mortazavi, M. Salehe, B. Balasubramanian, E. de Lara, and

S. PuzhavakathNarayanan, “Sessionstore: A Session-aware Datastore for
the Edge,” in Proceedings of the IEEE International Conference on Fog
and Edge Computing (ICFEC), 2020.

[36] “Pathstore Github,” 2023. [Online]. Available: https://github.com/
PathStore/pathstore-all

[37] S. H. Mortazavi, M. Salehe, M. Gabel, and E. d. Lara, “Feather:
Hierarchical Querying for the Edge,” in Proceedings of the IEEE/ACM
Symposium on Edge Computing (SEC), 2020.

[38] Q.-C. To, J. Soto, and V. Markl, “A Survey of State Management
in Big Data Processing Systems,” in Proceedings of the International
Conference on Very Large Data Bases (VLDB), 2018.

[39] A. Tiwari, B. Ramprasad, S. H. Mortazavi, M. Gabel, and E. d. Lara,
“Reconfigurable Streaming for the Mobile Edge,” in Proceedings of the

14

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cluster-regions-zones.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cluster-regions-zones.html
https://learn.microsoft.com/en-us/azure/databox-online/azure-stack-edge-gpu-2202-release-notes
https://learn.microsoft.com/en-us/azure/databox-online/azure-stack-edge-gpu-2202-release-notes
https://doi.org/10.1145/2814576.2814808
http://flink.apache.org/
https://zeromq.org/
https://github.com/PathStore/pathstore-all
https://github.com/PathStore/pathstore-all

International Workshop on Mobile Computing Systems and Applications
(HotMobile), 2019.

[40] H. Röger and R. Mayer, “A Comprehensive Survey on Parallelization
and Elasticity in Stream Processing,” ACM Computing Surveys (CSUR),
vol. 52, no. 2, 2019.

[41] “ETSI MEC Sandbox,” 2023. [Online]. Available: https://try-mec.etsi.
org/

[42] “Multi-access Edge Computing (MEC); Application mobility service
API,” 2023. [Online]. Available: https://www.etsi.org/deliver/etsi gs/
MEC/001 099/021/02.02.01 60/gs mec021v020201p.pdf

[43] M. Hoffmann, A. Lattuada, F. McSherry, V. Kalavri, J. Liagouris,
and T. Roscoe, “Megaphone: Latency-conscious State Migration for
Distributed Streaming Dataflows,” in Proceedings of the International
Conference on Very Large Data Bases (VLDB), 2019.

[44] “Apache ActiveMQ Artemis,” 2023. [Online]. Available: https:
//activemq.apache.org/components/artemis/

[45] “ActiveMQ Artemis Filter Expressions,” 2023. [Online]. Avail-
able: https://activemq.apache.org/components/artemis/documentation/
latest/filter-expressions

[46] A. Lakshman and P. Malik, “Cassandra: a Decentralized Structured
Storage System,” ACM SIGOPS Operating Systems Review, vol. 44,
no. 2, 2010.

[47] “Flink Github,” 2023. [Online]. Available: https://github.com/apache/
flink

[48] “Trisk Github,” 2023. [Online]. Available: https://github.com/sane-lab/
Trisk

[49] “Meces Github,” 2023. [Online]. Available: https://github.com/
ATC2022No63/Meces

[50] P. Tucker, K. Tufte, V. Papadimos, and D. Maier, “Nexmark–a Bench-
mark for Queries Over Data Streams,” Technical Report. Technical
report, OGI School of Science & Engineering, Tech. Rep., 2008.

[51] “Nexmark Github,” 2023. [Online]. Available: https://github.com/
nexmark/nexmark

[52] A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. S. Maskey, E. Ryvk-
ina, M. Stonebraker, and R. Tibbetts, “Linear road: a stream data
management benchmark,” in Proceedings of the Thirtieth international
conference on Very large data bases-Volume 30, 2004, pp. 480–491.

[53] “Linear Road Webpage,” 2024. [Online]. Available: https://www.cs.
brandeis.edu/∼linearroad/

[54] “Linux Traffic Control,” 2023. [Online]. Available: https:
//access.redhat.com/documentation/en-us/red hat enterprise linux/
8/html/configuring and managing networking/linux-traffic-control
configuring-and-managing-networking

[55] J. L. Chen, D. Liaqat, M. Gabel, and E. de Lara, “Starlight: Fast
Container Provisioning on the Edge and over the WAN,” in Proceedings
of the USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI), 2022.

[56] “Spark Streaming,” 2023. [Online]. Available: https://spark.apache.org/
streaming/

[57] “Apache Storm,” 2023. [Online]. Available: https://storm.apache.org/
[58] L. Xu, B. Peng, and I. Gupta, “Stela: Enabling Stream Processing

Systems to Scale-in and Scale-out On-demand,” in Proceedings of the
IEEE International Conference on Cloud Engineering (IC2E), 2016.

[59] T. Heinze, Z. Jerzak, G. Hackenbroich, and C. Fetzer, “Latency-aware
Elastic Scaling for Distributed Data Stream Processing Systems,” in
Proceedings of the ACM International Conference on Distributed Event-
Based Systems, 2014.

[60] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch,
“Integrating Scale Out and Fault Tolerance in Stream Processing Using
Operator State Management,” in Proceedings of the SIGMOD interna-
tional conference on Management of Data, 2013.

[61] B. Ramprasad, P. Mishra, M. L. Peixoto, and E. de Lara, “StreamBucket:
In-Network Adaptation for Late-binding Stream Processing Systems,” in
Proceedings of the IEEE International Conference on Cloud Networking
(CloudNet), 2024.

[62] G. Bartolomeo, M. Yosofie, S. Bäurle, O. Haluszczynski, N. Mohan, and
J. Ott, “Oakestra: A lightweight hierarchical orchestration framework
for edge computing,” in 2023 USENIX Annual Technical Conference
(USENIX ATC 23), 2023, pp. 215–231.

[63] E. Volnes, T. Plagemann, and V. Goebel, “To Migrate or Not to Migrate:
An Analysis of Operator Migration in Distributed Stream Processing,”
IEEE Communications Surveys & Tutorials, 2023.

[64] T. Le, “A survey of live virtual machine migration techniques,” Computer
Science Review, vol. 38, p. 100304, 2020.

15

https://try-mec.etsi.org/
https://try-mec.etsi.org/
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/021/02.02.01_60/gs_mec021v020201p.pdf
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/021/02.02.01_60/gs_mec021v020201p.pdf
https://activemq.apache.org/components/artemis/
https://activemq.apache.org/components/artemis/
https://activemq.apache.org/components/artemis/documentation/latest/filter-expressions
https://activemq.apache.org/components/artemis/documentation/latest/filter-expressions
https://github.com/apache/flink
https://github.com/apache/flink
https://github.com/sane-lab/Trisk
https://github.com/sane-lab/Trisk
https://github.com/ATC2022No63/Meces
https://github.com/ATC2022No63/Meces
https://github.com/nexmark/nexmark
https://github.com/nexmark/nexmark
https://www.cs.brandeis.edu/~linearroad/
https://www.cs.brandeis.edu/~linearroad/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/linux-traffic-control_configuring-and-managing-networking
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/linux-traffic-control_configuring-and-managing-networking
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/linux-traffic-control_configuring-and-managing-networking
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/linux-traffic-control_configuring-and-managing-networking
https://spark.apache.org/streaming/
https://spark.apache.org/streaming/
https://storm.apache.org/

	Introduction
	Background and Motivation
	State in Stream Processing Frameworks
	Reconfiguration of stateful operators
	Existing stateful reconfiguration solutions fail on the edge

	Falcon
	System Architecture
	Keyed State and Windows
	Tuple Routing
	The Migrate Primitive
	The Live Key Migration Protocol
	The Source Mobility Protocol
	Fault Tolerance
	Implementation

	Experimental Evaluation
	Experimental Setup
	Reconfiguration Performance
	Support for Data Source Mobility
	Impact of Network and Topology Size
	Impact of Application Characteristics

	Related Work
	Conclusion
	References

