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Abstract—It is common for storage systems designed to run
on edge datacenters to avoid the high latencies associated with
geo-distribution by relying on eventually consistent models to
replicate data. Eventual consistency works well for many edge
applications because as long as the client interacts with the same
replica, the storage system can provide session consistency, a
stronger consistency model that has two additional important
properties: (i) read-your-writes, where subsequent reads by a
client that has updated an object will return the updated value or
a newer one; and, (ii) monotonic reads, where if a client has seen
a particular value for an object, subsequent reads will return
the same value or a newer one. While session consistency does
not guarantee that different clients will perceive updates in the
same order, it nevertheless presents each individual client with
an intuitive view of the world that is consistent with the client’s
own actions. Unfortunately, these consistency guarantees break
down when a client interacts with multiple replicas housed on
different datacenters over time, either as a result of application
partitioning, or client or code mobility.

SessionStore is a datastore for fog/edge computing that ensures
session consistency on a top of otherwise eventually consistent
replicas. SessionStore enforces session consistency by grouping
related data accesses into a session, and using a session-aware
reconciliation algorithm to reconcile only the data that is relevant
to the session when switching between replicas. This approach
reduces data transfer and latency by up to 90% compared to
full replica reconciliation.

I. INTRODUCTION

Edge computing expands the traditional cloud architecture

with additional datacenter layers that provide computation and

storage closer to the end user or device. For example, a wide-

area cloud datacenter which serves a large country can be

augmented by a hierarchy of datacenters that provide coverage

at the city, neighborhood, and building levels. Edge computing

facilitates next generation mobile and IoT (Internet of Things)

applications that require low latency, or produce large data

volumes that can overwhelm the network [1], [2].

Recent storage systems for the edge [3]–[6] generally rely

on eventually consistent models [7], [8] to replicate data. These

systems propagate updates in the background and guarantee

that if no new updates are made to an object, eventually all

replicas will converge to the same value. Eventual consistency

works well for many applications where clients interact with

the same replica for the duration of their sessions. The reason

is that as long as the client interacts with the same replica, the

storage system in effect provides session consistency [7], a

stronger consistency model that has additional important prop-

erties: read-your-writes, where subsequent reads by a client

that has updated an object will return the updated value or a

newer one; and, monotonic reads, where if a client has seen a

particular value for an object, subsequent reads will return the

same value or a newer one. While session consistency does

not guarantee that different clients will perceive updates in

the same order, it nevertheless presents each individual client

with an intuitive view of the world that is consistent with the

client’s own actions. Examples of applications that can benefit

from session consistency on the edge include authentication

services, file storage applications and messaging applications.

We describe more usage scenarios for session consistency on

the edge in Section III.

Session consistency however, may not be guaranteed when

consecutive client requests are sent to different replicas. This

may occur in edge applications when: (i) a mobile client

switches between edges [9], [10]; (ii) functionality is dynam-

ically reallocated between edges [11]; or (iii) an application’s

functionality has been partitioned between different datacen-

ters [12]–[14] (e.g., running some functions on the edge and

others on the cloud). If consecutive client requests are sent

to different replicas before data needed by the client request

is replicated, the application may not be able to read its own

writes or have monotonic reads.

Figure 1 illustrates two such scenarios. In Figure 1a, client
1 writes object O on Edge1. As a result of mobility, client
1 switches its association to a different Edge2 and observes

the old value of O on its subsequent read. In the second

scenario illustrated in Figure 1b, client 2 issues a command

that results in object O being overwritten on Edge1. Client 1
then reads this value and moves to Edge2. If client 1 issues

another request that reads object O on Edge2, an old value

will be returned. While in the previous examples, clients read

and write directly to the replicas of the storage system, this is

done purely for ease of explanation. In practice, clients instead

communicate with a replica of a service (e.g., an HTTP server)

deployed on each edge datacenter that runs application code

that access the replicated datastore.

We present SessionStore, a distributed datastore tailored for

fog/edge computing that ensures session consistency between a

hierarchy of otherwise eventually consistent replicas. Whereas

previous approaches [15], [16] that provide session consistency

on top of eventual consistent storage systems target applica-

tions running on a relative small number of cloud datacenters,

SessionStore is designed for applications running on a large

and variable number of edge/fog datacenters. SessionStore

supports resource-limited data centres by leveraging partial

replication and only replicating data on demand. SessionStore

supports session consistency using a session-aware reconcil-

iation algorithm that only reconciles keys that a client either
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Fig. 1: In (a) the client writes and Edge1 but its consequent

read on Edge2 return an old value. In (2) client 1 reads a value

but when it makes the read on Edge2, an old value is returned

reads or writes at the source replica. SessionStore further

minimizes the data transfer by not transferring up-to-date data

already existing on the destination. In our example application

use case, this saving is as much as 95% in terms of data

transfer.

The main contributions of this paper are: (i) a session-aware

reconciliation algorithm that enforces session consistency by

only transferring relevant client data; (ii) a prototype that

implements our algorithms; (iii) an experimental evaluation

based on micro-benchmarks and the RUBBoS benchmark that

shows SessionStore is able to guarantee session consistency

at a fraction of the latency and bandwidth costs of a strongly

consistent implementation.

II. RELATED WORK

Session consistency can in principle be provided by so-

lutions that provide stronger consistency such as in [17]

where all transactions are always executed at the local replica

through snapshot isolation, or by geo-distributed transac-

tional databases like Spanner [18], CockRoachDB [19] or

by systems that use mixed consistency [20] and workload

management [21] to provide strong consistency only where

required. Unfortunately, these solutions use variants of dis-

tributed consensus that is very expensive across the wide-area-

network [22], [23] and makes them impractical for the edge.

As we show in our experiments in Section VI, enforcing strong

consistency even for a moderate number of replicas incurs

large latency costs.

A better approach is to use causally consistent systems

like Bayou [24], COPS [25]. In practice, however, these

approaches are also not applicable to edge deployments for

three reasons: (i), these approaches assume a low and fixed

number of replicas, whereas popular edge services may have

hundreds or thousands of replicas. Many of these systems

make use of vector time stamps where the overhead grows

linearly with as the replication factor increases. While there

are methods to trim the vector [26], [27], a compact vector

clock that implicitly assigns vector positions to nodes requires

centralized arbitration (or some other method of distributed

consensus). Alternatively, the vector may include a unique

node identifier like an IP address. In the latter case, however,

significant additional storage is required, which makes using

these systems on the edge unfeasible; (ii), these approaches

assume full data replication (i.e., a complete copy of the

database is stored at each site). Unfortunately, the resource-

limited nature of edge datacenters dictates that they are only

able to store a small fraction of the total state of a service or

application. These limitations require the use of on-demand

partial replication where only the state that is relevant to the

current users of the edge datacenter is presently replicated on

the edge datacenter; and (iii), data reconciliation is not fine-

grained based on client or function data, rather reconciliation

is done on table granularity. This approach results in high

reconciliation latency and high bandwidth consumption for the

transfer. This is particularly the case when only a fraction of

the data is relevant to a given client.

Providing causal consistency on top of eventual consistency

has been studied in [15] and [16]. In these studies a layer

between the client and the data storage layer provides causal

consistency for the client using vector clocks. In addition

to the discussion on causally consistent systems presented

above, we note that these works do not focus on session-aware

reconciliation, which is crucial for our edge scenarios.

Other solutions to session consistency in the literature [7],

[24], [28] use a combination of the following basic techniques:

(1) sticky sessions can ensure that all reads and writes within

session maintained by a client always communicates with a

single replica, (2) maintain state at the client so that when a

session does change replicas, the client can service requests

from its cache till the new replica is up to date, and (3)

use vector time stamps for the requests and ensure that each

read or write is served or accepted at a replica in a manner

as to satisfy the session guarantees. The first approach is

not applicable to edge computing scenarios where the clients

switch replicas over time due to client mobility or to access

functionality deployed on different data centers. The second

approach is only applicable when the client is fully trusted

and has enough resources to store data. It is not practical

for multi-user applications where raw data is kept at the

server and is made available to clients in mediated form in

response to explicit application requests. Finally, approaches

that require vector time stamp break down when the number of

replicas is large and dynamic as the overhead grows linearly

with the replication factor. While there are methods to trim

the vector [26], [27], they come at the cost of significant

complexity and require strong coordination between replicas,

which makes using these systems on the edge unfeasible.

In addition,various approaches have been proposed for ap-

plication and service migration on the edge [11], [29], [30],

however these approaches commonly depend on VM/Con-

tainer migration methods or full application state synchroniza-

tion. Our approach provides applications with flexible, fine

grained data reconciliation through sessions. Our approach

is specially advantageous for multi-user services that use the
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Fig. 2: Hierarchical datacenter topology

same replica to handle requests on behalf of multiple clients,

where only a fraction of the replicated state is relevant to a

given client.

There have been several works on data/state reconciliation

in transactional databases [31], [32] and most key-value stores

support some form of data reconciliation across replicas [33],

[34]. However, in the former case, these solutions are heavy-

weight, as necessary to guarantee ACID transactionality. The

reconciliation function in common key-value stores are typ-

ically implemented as generic “stop-and-migrate” techniques

that do not carefully track subsets of client data. This results in

significant down times for the client. SessionStore, on the other

hand, is much more light-weight since it guarantees session

consistency as opposed to ACID transactionality.

This paper builds on workshop paper [35]. While this pre-

vious publication argued for the need for session consistency

on edge datastores, it did not provide a complete design or a

functional solution and included only a preliminary evaluation.

III. USE CASES

In this section, we give examples of scenarios that require

session consistency to guarantee that requests emanating from

the same client experience a view of the underlying data that

is consistent with the client’s own actions. We consider appli-

cations deployed on an edge network with two or more levels.

For example, Figure 2 shows a sample edge network consisting

of a cloud datacenter, and two mobile networks each with a

datacenters at its core, and one or two additional datacenters

at edge location such as base stations. Each datacenter has a

replica of the datastore, as well as additional servers to run

application code. We assume that the cloud datacenter stores

a persistent full replica of the datastore. Each of the other

datacenters hosts a partial replica and data gets replicated on-

demand. On a read access, if the data is not already available

on the local replica, it is fetched recursively from its parent.

Similarly, updates are applied to the local replica and get

propagated through the replica hierarchy in the background.

We enforce session consistency by grouping related data-

store accesses into a session based on application-specific

considerations. In the examples below, we uses a session to

group together data accesses executed on behalf of the same

user; however, it is possible to think of other applications

where a session could be used to group together accesses

executed on behalf of a device or a specific application module

or function. We consider the case where requests that belong

to the same session execute against different replicas due to:

(i) user mobility; (ii) different parts of an application being

deployed on different datacenters; or (iii) code mobility. The

use cases below follow a stateless server design pattern where

all application state is kept in the datastore, and applications

are implemented as a collection of independent stateless

functions.

Scenario 1: Mobile Client In this scenario, as a user

moves around, his/her requests get routed to the closest edge

datacenter. Session consistency is needed when the state that

is read or written when connected to one edge datacenter is

later accessed again after the user switches to a different edge.

Consider the case of a user that leverages edge computing to

edit a video. After recording a video on their phone, the user

uploads it to an edge video-editing service which stores it in

the datastore. The user then boards a bus, and proceeds to

edit the video by applying a sequence of filters (e.g., image

stabilization, cropping). By grouping the operations performed

on behalf of the user into a single session, a datastore that

provides session consistency guarantees that the effect of each

of the filtering operations is preserved even as subsequent

operation may run on different edges along the route as the

bus travels.

Scenario 2: Functional Partitioning. In this scenario,

an application’s functionality is partitioned and deployed on

different datacenters. Session consistency is needed when the

results of executing one function on one datacenter should

be made visible to another function running on a different

datacenter. As an example, consider the case of a simple access

control service that consists of three functions: login, logout,
and authorize. A client logs into the system by providing a

password to validate against a hash stored in the datastore. The

login function is deployed on the cloud datacenter to ensure

that sensitive password information is not replicated anywhere

else. After successful validation, login adds a certificate with

the user’s permissions to the datastore. Similarly, to log a

user out, logout modifies the certificate to indicate that it

is no longer valid. Subsequent client requests (e.g., read an

email, send a message) execute on one of the edge datacenters

after first running authorize, which involves reading the user’s

certificate from the datastore to verify its validity. By grouping

the operations performed on behalf of a client into a single

session, a datastore that provides session consistency would

guarantee that the version of the certificate created by the most

recent invocation to login or logout is the one that is read by

authorize.

Scenario 3: Function Mobility. In this scenario an applica-

tion (or an application component) is reallocated between dat-

acenters. Migration may be done for load balancing purposes,

when the demands of a task surpasses the locally available

resources on the current execution location, or to improve

quality of experience. Session consistency is needed when

after migration an application reads state from the datastore in

the new datacenter that was either read or written in the old

datacenter. As an example, consider the case of a interactive
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web hosted game that stores the state of the game in the

datastore. When the network is experiencing low queuing

delay, the application runs on the cloud, but migrates to a

datacenter on the edge when an increase in wide-area traffic

degrades the user’s experience. By grouping the operations

performed on behalf of each user into its own session, a

datastore that provides session consistency guarantees that

after migration the state of the game presented to the user

corresponds to the user’s last move.

The previous use cases can also run correctly on top of a

datastore that provides stronger consistency guarantees, such

as sequential consistency or casual consistency; however, the

stronger properties come at a large cost in terms of bandwidth

and latency as we show experimentally in Section VI. The

above scenarios do not require a globally consistent view of

the world; instead, they only require a view of the world

that reflects the actions of operations that belong to the same

session. The rest of this paper shows how session consistency

can provide this guarantee with low overhead in terms of data

transfer and replica switching cost.

IV. DESIGN CONSIDERATIONS

In this section, we elaborate on our design choices for

adding support for session consistency to a replicated datastore

that runs on a hierarchy of data centers that facilitate edge

computing. We consider three dimensions: when to synchro-

nize state, what state to synchronize, and how to keep track

or identify the state that needs to be synchronized.

Session consistency can be enforced either proactively or re-
actively. In a proactive implementation, data is continuously

sent to other replicas eagerly. This approach supports fast

switching between replicas; however, it results in high band-

width consumption. On the other hand, a reactive implemen-

tation ensures session consistency only after a client switches

to a new replica. Before running code on behalf of a client on

a new replica, all relevant state has to be synchronized, which

may incur delay.

We argue that the reactive approach is more appropriate for

edge computing because the latency and resiliency demands of

edge computing may dictate that mobile clients must often be

served by their closest replica – thereby the proactive approach

necessities a large number of service replicas and hence a

very high replication factor that results in more resources

needed on the edge. Our experiments confirm that a proactive

implementation incurs large update latencies and high data

volumes even for a modest replication factor. Conversely, the

latency to switch between replicas that are kept in sync using

reactive replication is relatively small (see Section VI-C3).

State between replicas can be synchronized using either full
replica reconciliation or session-aware data reconciliation. In

the former, the destination replica will have the latest/synchro-

nized union of all records available at both replicas before

the switch occurs. The advantage of this method is that it is

conceptually simple, however it may result in high switching

time and high bandwidth consumption for the transfer. In the

latter, only data relevant to the session, including any records

that were read or written, are synchronized. This approach is

efficient in terms of data transfer and switching time; however,

it is more complex and requires application support to identify

relevant data accessed by the session. We argue that for multi-

user services where the same replica handles requests from

multiple clients, the second option where only the session’s

data is synchronized is more beneficial. Our experiments

show that this approach reduces bandwidth requirements and

latency. Moreover, in our experience the effort to label queries

is modest.

To keep track or identify the state that needs to be syn-

chronized, we can either tag individual records with read

and write information, or use a higher level abstraction, such

as user queries to capture access patterns. The benefit of

tagging individual records is its simplicity, which comes at

the expense of potential significant additional storage overhead

for data object. Instead, we opted to track data accesses by

recording SQL-like queries executed against the replica. While

this approach is more complex to implement, it has lower

storage requirements as simple queries can identify many data

objects.

V. SESSIONSTORE

In this section we describe SessionStore, our distributed

datastore for edge computing which guarantees session con-
sistency on top of otherwise eventual consistent replicas. The

basic idea behind our approach to ensuring session consistency
is simple, yet effective: we group related datastore operations

into sessions, and we track all the rows either read or written

to by a session through tracking the queries it executes. When

a client switches from a source to a destination replica, we

ensure that the same (or newer) versions of the rows associated

with their session are present on the destination replica before

executing new queries.

In the rest of this section, we first describe a distributed data-

store that provides eventual consistency across a hierarchy of

replicas that extend from the cloud to the edge of the network.

We next describe how we add support for session consistency

on top of this otherwise eventual-consistent datastore.

A. Eventual-Consistent Operation

Our session consistent datastore is based on PathStore, an

eventual-consistent object store introduced in [3]. PathStore

is structured as a hierarchy of replicas configured as a tree

with a persistent replica at the root, and an unlimited number

of layers of partial replicas below it. Our implementation

uses Cassandra [36] that can run on typical laptops [37] or

even Raspberry Pi’s [38], making it a feasible choice for

edge deployments. Each replica runs a separate independent

Cassandra ring, and our code is in charge of replicating data

between otherwise independent rings. We replicate data at

row granularity on demand in response to application queries.

Each of the independent Cassandra rings may in turn consist

of multiple servers and data may be internally replicated by

Cassandra for fault tolerance or performance. In the rest of
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this paper, the term replica refers to a (potentially multi-

server) Cassandra deployment on a datacenter in the PathStore

hierarchy.

The datastore provides an API based on CQL, Cassandra’s

SQL dialect, which organizes data into tables, and provides

atomic read and write operations at row granularity. CQL lets

users read and write table rows using the familiar SQL op-

eration SELECT, INSERT, UPDATE, and DELETE; however,

CQL operations are limited to a single table – there is no

support for joins.

Figure 3 illustrates a simple 3-level deployment of the

datastore (a cloud replica, and two mobile networks each with

a replica at its core, and one or two additional replicas at

edge location such as base stations). To provide low-latency,

all read and write operations are performed against the local

replica. During a read query on a local replica, if the query

has not been previously executed on the replica, we fetch it

recursively from its parent. The query is then added in a Query
Cache that keeps track of recently executed CQL queries.

Subsequent CQL queries that match an existing entry in the

cache are directly executed on the local node. Queries in the

query cache are periodically executed in the background by

a pull daemon to synchronize the local node’s content with

that of its parent (i.e., fetch new and updated records from

the parent node). To reduce unnecessary processing, we keep

track of the coverage of cache entries and the pull daemon

bypasses queries that are otherwise subsumed by other queries

that have a wider scope. For example the query SELECT(*)
FROM balloons subsumes the query SELECT (*) FROM
balloons WHERE color=red.

The datastore supports concurrent object reads and writes on

all replicas of the hierarchy; updates are propagated up toward

the root of the replica hierarchy in the background by a push
daemon. Modifications are tagged with a version timestamp

that records the time the row was inserted, and the ID of

the replica where the modification was originally recorded.

We assume that replicas are tightly synchronized using some

accurate mechanism, such as GPS clocks. As modifications

are propagated through the hierarchy (up by the push daemon
and down by the pull daemon), we use the version timestamp

to determine ordering – most recent timestamp wins.

Figure 3 illustrates the operation of PathStore for a simple

table that keeps track of balloons of different colors and sizes.

Initially (Figure 3a), the cloud replica stores 2 balloons, and all

other replicas are empty. Figure 3b shows the result of running

a query for small balloons (SELECT(*) FROM balloons
WHERE size=small) on edge D: the small red balloon is

first copied to the replica C and the query is added to edge

C’s query cache. From there, it is then pulled on to edge D.

Figure 3c shows how the state changes after an application

running on edge E adds two new balloons, one large green

and one small blue. The push daemon of edge E propagates

these two new balloons onto edge B. From there, the push

daemon of B replicates the baloons onto the cloud replica.

Figure 3d shows how the pull daemon on edge C identifies

that there is a new balloon on the cloud replica that matches
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Fig. 3: PathStore operation.

the query in its query cache, and pulls the small blue balloon

to edge C’s replica. Similarly, the pull daemon on edge D also

detects a new baloon on edge C that matches the query in its

query cache and automatically pulls the small blue baloon onto

node D.

B. Session-Consistent Operation

We next describe how we expand the above eventual-

consistent implementation with support for session consistency

across replicas. We fist describe how users can group database

accesses into sessions. We then describe how we track data

related to a session. Finally, we discuss how we perform

session-aware replica reconciliation.

1) Sessions: We enforce session consistency by group-

ing related CQL requests into a session. What constitutes

a session, however, is left to the application developer to

determine. For example, the developer can decide to make

a session representing a user, a device belonging to a user, a

set of commands executed by a function, or a subset of the

request issued by a device. Our system simply enforces session

consistency semantics among those queries that are identified

as belonging to the same session.

We identify each session using a Session Token, or stoken.

The stoken consists of a four fields: A unique session id

(SID), timestamp, current replica, and status. The stoken is

encrypted and signed to prevent forging and misrepresentation.

Developers chose between eventual and session consistency by

including (or not) the stoken together with their queries.

2) State Tracking: To keep track of data related to a session,

a CommandCache is added to each replica that stores all the

queries that were executed on behalf of a session s.

For INSERT, UPDATE and DELETE commands, we keep

track of modified rows affected by associated SELECT queries.

For example if the session executes the command where a1
is the primary key (key):
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INSERT INTO T1(key, v1) VALUES (a1, b1)

we store the following query in CommandCache[s]:

SELECT * FROM T1 WHERE key = a1

This transformation creates a query that tracks the accessed

key a1.

The entries in the CommandCache[s] precisely identify the

data accessed by a session. To recover the rows associated

with a session we just have to execute the queries without

any projections (SELECT(*) and without any aggregations

(without any GROUP BY). Our database implementation is

based on Cassandra where queries are limited to a single table

(no joins).

To keep the CommandCache small, we don’t keep queries

for a given session that are subsumed by more general ones.

We also keep queries only for data that is actually replicated by

each site. A background garbage collection mechanism deletes

queries for sessions that have been moved to other datacenters.

To support session consistency, our current implementation

can only run queries for a stoken at only one replica at a time.

We keep track of the location of this replica on the stoken
itself (the current replica field) and every site also keeps track

of sessions it is serving.

3) Session-Aware Reconciliation: We leverage the stoken
to detect when a client switches between replicas (e.g. when

it moves between edge replicas ns, nr or ns, nd as shown

in Figure 4a). When a replica receives a query it checks the

stoken. If the ID of the replica servicing the query does not

match the replica ID in the stoken then this is indicative that

the client has switched replicas and the reconciliation process

needs to start.

(a) non-siblings (b) siblings

Fig. 4: Session transfer s between ns, nd

To assure session consistency, when a switching process is

triggered on ns, ns’s SessionStore replica will not process

further commands for that session. Furthermore, requests for

the session are delayed on nd until the switch is complete.

When the switching process is finished, it is reflected in the

status field. If during the switching process the client moves

to a another edge ne, ne will wait for the switching process

on nd to finish and then fetch the data from nd.

During a switching process, nd sends a request to the source

replica asking for all rows modified or accessed by the session

s. Having recorded all the queries executed by s, the source

Viewer Movie Version Rating
John WALL-E 825968c0-195d-5d569c585662 10
Bob Lion King 7adf7210-1958-59e16851d966 9

Susan Bambi 6833c850-1958-59e16851d966 8
Anna WALL-E 38400000-b23e-000044004725 10

TABLE I: Sample table ratings on ns

Viewer Movie Version Rating

John WALL-E d33d7fe0-195f-5d569c585662 8
Mark Cars 8b5f2471-19a2-59e168456212 9
Sara Peter Pan 1263ca45-1912-59e36a58d990 8
Anna Lion King 15460690-de22-a80b17057344 9

TABLE II: Sample table ratings on nd

replica re-executes theses queries from its CommandCache[s].

It will then transmit the resulting rows as well as Command-
Cache[s] to the destination replica.

Using queries to find accessed rows has the benefit of

aggregation. While for writes we map every row modification

to a separate query, for reads which usually dominates the

accesses to the database, a single query can track many rows.

Replication is done at full row level irrespective of columns

projected in the select query.

Table I illustrates a database table ratings that keeps track

of personalized movie ratings on ns. Column viewer is the

primary key and column version is added by SessionStore to

determine ordering between updates to the same row. Now

suppose that the following queries had been executed by

session s on ns:

SELECT * FROM Ratings WHERE viewer=ANNA

INSERT INTO Ratings(viewer, movie,
rating) VALUES(Susan, Bambi, 10)

When the session switches from ns to nd, the two queries

are executed on ns (for the INSERT command, the associate

SELECT query is executed) and only the third and fourth rows

are copied to the ratings table on nd as these are the only rows

that match the recorded queries.

4) Optimizations: We implemented two optimizations to

SessionStore’s session-aware reconciliation that take advan-

tage of data locality between different replicas and of Ses-

sionStore’s hierarchical structure.

a) Δ-list optimization: The previous algorithm can be

optimized when many clients are accessing the same rows

on different replicas. The Δ-list optimization does not copy

data that is already present at the destination replica. During

a session switch, the destination, nd, selects all primary keys

and latest version for data belonging to an application and

sends them to ns. With this data ns can then calculate rows

accessed by a session that are either not already on nd or have

a newer version.

b) Sibling optimization: Finally, we provide a special

optimized-sibling-transfer algorithm that works when the

source and destination share a common parent node. This
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optimization takes advantage that in our design, all rows read

by a node are also first replicated on its parent. In addition, the

push daemon running on nodes, periodically propagates data

written on a child onto the parent node. During a switch, only

the rows that have not yet been pushed from ns to np need

to be replicated from ns to nd. Other rows can be accessed

from np. Finally we synchronize any row on the destination

that matches any query on the CommandCache[s] by fetching

an update from the parent.

C. Failures

If a source replica fails when a destination is replicating

state from it, SessionStore has to wait for the source to be

available again and continue the transfer for the rows that

it could not already replicate. The application is informed

about any issue through an exception. The application can

then decide to wait and retry, or invalidate the session and

restart. Combining proactive replication to a few replicas with

SessionStore’s reactive approach is an avenue of future work.

VI. EXPERIMENTAL EVALUATION

In this section we evaluate the performance of SessionStore

and compare it to other alternatives for providing session

consistency on a network of distributed replicas.

A. Platform

We conduct our experiments on an emulated hierarchical

edge deployment shown in Figure 2. Our topology consists

of a cloud datacenter, and two mobile networks each with a

datacenters at its core, and one or two additional datacenters

at edge location such as base stations.

Each (emulated) datacenter is implemented in a separate

computer with 16GB of RAM and 8 CPU cores that runs

either an instance of SessionStore, PathStore, or unmodified

Cassandra, as well as an instance of Apache Tomcat. The

network between the datacenters is emulated by using Linux’s

Traffic Control. Each link has a bandwidth of 1Gbps. We

assume that the underlay IP network has the same topology as

the replica topology. This means that the point to point RTT

between e1, e3 will be t1+t2+t2+t1. Unless stated otherwise,

for the network latency between different datacenters, we

optimistically assume two-way latencies t1 = 2ms, t2 =
20ms. These relatively low latency values tilts the comparison

against SessionStore and in favor of Cassandra, which is

more adversely affected by higher latency. Finally, requests are

issued by clients running on additional computers that connect

to one of the edge datacenters (e1, e2, e3) with negligible

latency.

B. Workloads

Our evaluation uses a combination of locally-developed

micro-benchmarks and RUBBoS [39], a benchmark applica-

tion that models a discussion board. While RUBBoS was

design as a web benchmark, we use it because its data access

pattern is never the less representative of a typical multi-user

application in three aspects: (i), it involves a large amount of

state; (ii), it includes both read and write queries; and (iii),

only a small fraction of the application’s state is relevant to

any given user.

The original RUBBoS benchmark is limited to text com-

ments (1 KB in average), which are small compared to

modern media-sharing standards. To better mimic the expected

behaviour of a modern social media application, such as

Snapchat or Instagram, which allow users to upload short

videos and images, we create two new versions of the bench-

mark by adding an extra 10 KB or 100 KB of data to each

comment to simulate a small and medium multimedia attach-

ment. This increase the total size of the RUBBoS database

from 540 MB to 23.9 GB and 240 GB, respectively. We used

a RUBBoS database populated by over 2.34 million comments,

12000 stories, and 500000 users.

We used the Java Servlet-based RUBBoS implementation

which was originally designed to store its state in relational

database. We ported this code to use SessionStore instead. The

ported benchmark uses eight tables and consists of roughly 40

different queries including SELECT, INSERT, UPDATE and

DELETE.

C. Results

We next present results that quantify the overhead of

keeping track of session information, the benefits of session-

aware reconciliation, compare the approach to alternatives that

enforce stronger consistency as the cost of higher overhead,

and explore the sensitivity of SessionStore session-aware rec-

onciliation protocols to the number of queries in the command

cache.

1) Session Tracking Overhead: To measure the cost of

keeping track of session state, we compared the latency for

reading and writing single 1KB row on e1 with SessionStore.

The experiment is repeated for 10000 different rows. Figure 5a

shows a CDF of the read latencies for SessionStore in three

different scenarios that assume the rows being read are already

replicated on e1, c1, and cl, respectively. The read latency for

SessionStore is indistinguishable from PathStore(not shown),

which indicates that the session tracking overhead is negligi-

ble. As expected, the figure shows that replication at the edge

reduces read times dramatically. The average time to read a

row already available on the edge was 0.9 ms, compared to an

average of 4.65 ms and 26.2 when the row had to be fetched

from the core and cloud, respectively.

Figure 5b shows a CDF of the write latency for Ses-

sionStore. There is only one configuration as all writes are

preformed on the local replica (e1). The average write time is

0.73 ms, and is similarly indistinguishable from write time in

PathStore(not shown).

2) Session Migration: We use the RUBBoS benchmark

to evaluate the costs in terms of latency and bandwidth of

enforcing session consistency when a user switches between

two replicas as a result of mobility. We consider four different

approaches: Full-replica reconciliation, session-aware recon-

ciliation, Δ−list optimization, sibling optimization.
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Full Reconciliation
(e1, e3)

Session-Aware
(e1, e3)

Δ-List
(e1, e3)

Neighbor (e1, e2)
No users on e2

Neighbor (e1, e2)
100 users on e2

Default
RUBBoS

rows

Data Transfer
1.86 MB
(40 KB)

187.25 KB
(73.3 KB)

141.22 KB
(45 KB)

14.2 KB
(1.2 KB)

198 KB
(38 KB)

Time
562.1 ms
(20 ms)

343.9 ms
(57.8 ms)

288.52 ms
(45 ms)

15.9 ms
(1.4 ms)

62.7 ms
(17.9 ms)

Added 10KB
to each row

Data
Transfer

22.7 MB
(0.10 MB)

2.56 MB
(563.1 KB)

1.22 MB
(220 KB)

16.3 KB
(2.2 KB)

1.16 MB
(70 KB)

Time
2.24 s

(32 ms)
534.0 ms

(40.59 ms)
330.4 ms
(30.1 ms)

19.2 ms
(2.4 ms)

76.86 ms
(12.48 ms)

Added 100KB
to each row

Data Transfer
220.3 MB
(1.1 MB)

24.32 MB
(6.6 MB)

15.9 MB
(4.2 MB)

13.1 KB
(4.3 KB)

10.7 MB
(1.7 MB)

Time
10.7 s

(76 ms)
1.09 s

(169.1 ms)
741.51 ms
(105.1 ms)

20.8 ms
(3.7 ms)

153 ms
(25.5 ms)

TABLE III: Average reconciliation time and data transfer for a Rubbos client. Standard deviation in parenthesis.

(a) Reads (b) Writes

Fig. 5: CDF of latency required to read and write a 1KB row.

We use the client emulator in the RUBBoS package to sim-

ulate 100 clients connected to replica on e1 that are browsing

and commenting on the RUBBoS bulletin board. The client

emulator sent HTTP requests to Servlets running on the edge

node e1 which generated 2203 queries on the SessionStore

replica on e1. This resulted in SessionStore fetching data from

cl and replicating it on e1. A total of 1.86 MB for the text-

only version of RUBBoS, and 22.7 MB and 220.3 MB for the

versions with the small and medium multimedia attachments

was transferred. On average, each RUBBoS query resulted in

13.4 rows on the database that exemplifies the benefits of using

a query based approach compared to tagging each row.

Table III shows the latency and data transferred for different

replica reconciliation scenarios for a client that moves from

e1 to either e2 or e3. The experiment is repeated 100 times,

once for every client. We first consider the worst case where

sessions move from e1 into a cold e3 replica that does

not have any data. Full-replica reconciliation (first column)

requires sending the full 1.86, 22.7, 220.3 MBs of application

data which takes 562.1 ms, 2.24 s and 10.7 s for each

of the three configurations of the benchmark. In contrast,

session-aware reconciliation (second column) only transfers

an average of 0.18, 2.56, 24.32 MBs of data, which takes

only 343.6, 534, 1090 ms. This major improvement, represents

a reduction in data and latency of close to 90%, and is

strong evidence of the benefits of leveraging session-aware

reconciliation for server applications where only a fraction of

the replicated data is relevant to a given client.

The Δ-list optimization (third column) further improves

these numbers. In this experiment, we assume that a different

set of 100 clients send requests to e3 before the transfer. e1

calculates the rows it needs to send to e3 for each user and on

average transfers 141.2KB’s of data. For the three version of

RUBBoS, Δ-list optimization only transfers 0.14, 1.22, 15.9
MB of data in 288, 330, 741 ms, which is an additional

22−35 percent improvement in each scenario compared to the

Session-Aware approach. Δ-list performs best when each row

contains a lot of data and saves on bandwidth and transfer time

by not sending those rows that are already on the destination.

We next evaluate the benefits of the sibling optimization

when a single client moves from e1 to e2. We first consider

the case where there are no other users on e2 (fourth column).

This results in only information about the queries transferred

between the two nodes which is only 16.5 KB of data and

takes less than 20 ms on average for the transfer (compared

with 10.7s with the Full Reconciliation approach) . This is

extremely fast compared to other scenarios because no other

data needs to be transferred between the nodes. If the user

executes their commands again, the data will be fetched from

c1 so the cost of fetching the data will be on demand and

when the user requires it. Finally, we assume a scenario

where another set of 100 users run the same application (and

hence run similar queries) on e2. Common queries between

the moving user and users already running on e2 may result

in synchronizing data that from the parent. This on average

increases the transfer time to 62, 76, 153 ms and a further

0.19, 1.16, 10.7 MB of data is transferred between e2, c1. In

this particular application, many queries are common between

sessions so more stale data has to be fetched from the parent.

3) Comparisons with Eager Replication and Strong Con-
sistency: In this section, we explore three alternative ways

in which unmodified Cassandra could be deployed on our
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Scenario
Average data

transfer per row
Reads SessionStore Fetch from cl 3245.8B

SessionStore Fetch from c1 1620.7 B
SessionStore Fetch From e1 0
Cassandra Full Replication 0
Cassandra Single Replication 1120.7 B

Writes SessionStore 2346.8 B
Cassandra Full Replication 6372.4 B
Cassandra Single Replication 1213.6 B

TABLE IV: Data transfer

network of six datacenters that use eager replication or strong

consistency to guarantee session consistency for a client that

can move between replicas. In these configurations, all six

datacenters form a single Cassandra ring, and each Cassandra

server creates point to point connections to other servers using

the underlying IP network.

Full Replication-All, uses a replication factor of six and

Cassandra’s All consistency model which requires all replicas

to respond before a write operation returns. We can then use

Cassandra’s One consistency model for the reads which will

fetch data from the local replica. Full Replication-Quorum,

also uses a replication factor of six and Cassandras Quorum
consistency model. This configuration requires a responses

from a quorum of replicas for both reads and writes. Single
Replication-One, uses a replication factor of one, and relies

on Cassandra’s standard hashing algorithm to uniformly dis-

tribute rows among replicas in the Cassandra ring. Reads and

writes in this configuration involve a single server. Finally to

compare to a strongly consistent database, Full Replication-
Strong acts similarly to Full Replication-All with addition of

linearizable consistency through the use of Cassandra’s light

weight transactions and the Paxos protocol [40].

Figure 5 shows the CDFs of the time required for writing

or reading a single 1KB row on e1. The experiment is

repeated for 10000 different rows. Table IV shows the average

data transferred aggregated across all links to store or read

a 1KB row for the various configurations. All Cassandra

alternatives perform poorly, which is hardly surprising given

that Cassandra is not designed to be used in this manner

and requires communication between different servers. On

the other hand, our results are optimistic as real-world edge

deployments will likely consist of a much larger number of

data-centers.

Full Replication-All handles reads very well, but pays for

it with high latency and bandwidth cost for writes. Full
Replication-Strong performs even worse as the Paxos protocol

needs additional rounds of communication between nodes.

Full Replication-Quorum is a little better for writes, but

much worse for reads. Finally, Single Replication-One read

and write performance varies widely between rows based on

their random allocation across the various data-centers. In

comparison, SessionStore provides low latency for writes and

reads, particularly in cases where the row are already available

on e1 or c1, and uses much less bandwidth.

Fig. 6: Comparing session reconciliation(solid lines) and full

application data reconciliation that consists of 10000 rows

(dashed lines). Both axes are in logarithmic scale

4) Size of Command Cache: We evaluate the benefits of

session-aware reconciliation as a function of the fraction of

data in the replica that is relevant to a session and the number

of queries used to track this data.

Figure 6 plots the latency to reconcile 10000 rows when a

session moves from ns = e1 to nd = e3. We consider two

reconciliation strategies: Full reconciliation, depicted by the

dashed lines, that does not keep track of data accessed by

individual sessions, and as a result all 10000 application rows

have to be copied when the client moves between replicas.

This becomes specially expensive when the amount of data

stored in each row increases (1KB, 10KB, 100KB). Session-

aware, displayed as solid lines, uses the CommandCache to

keep track of rows accessed by the client that need to be

moved between the replicas. We vary the number of commands

executed by the client between 1, 8192 and we assume each

command only effects a single row. When the mobile client

accesses only a fraction of the total data used by the service

it is more beneficial to track session data. However, as the

number of queries for a session increases, the overhead also

increase because each query in the CommandCache has to be

fetched and executed. As expected, the benefits of session-

aware reconciliation is more distinguishable as the as the

amount of data in each row increases. As shown in the

Figure, when the rows are 1KB, after around 1200 commands

executed at ns, it takes less time to transfer the full application

data (orange lines). But when each row contains 100KBs,

even by executing 8192 commands for the session at ns, it is

still faster to use session-aware reconciliation (blue lines).

VII. CONCLUSIONS

A key tenet of fog computing is the ability for clients

and application functions to be redirected seamlessly across

the different edge data centers hosting the data replicas of a

service or application. In this paper, we present SessionStore,

a novel storage system that provides session consistency

even when the client switches between replicas in different

edge locations. Our session-aware reconciliation algorithms

enforces session consistency at minimal costs, by tracking

the accessed or effected keys by a session and then per-

forming fine-grain reconciliation on the destination replica

with minimum overhead. Our results show that our approach

provides session consistency at a fraction of the latency and
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bandwidth costs of a system with eager replication or strong

consistency, with minimal transfer costs. As future work, while

our reconciliation algorithms ensure that only data pertaining

to a session is migrated, we wish to explore other optimizations

that reduce the data transfer.
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