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Abstract—As the component count in supercomputing instal-
lations continues to increase, system reliability is becoming one
of the major issues in designing HPC systems. These issues will
become more challenging in future Exascale systems, which are
predicted to include millions of CPU cores. Even with relatively
reliable individual components, the sheer number of components
will increase failure rates to unprecedented levels. Efficiently
running those systems will require a good understanding of how
different factors impact system reliability.

In this paper we use a decade worth of field data made
available by Los Alamos National Lab to study the impact
of a diverse set of factors on the reliability of HPC systems.
We provide insights into the nature of correlations between
failures, and investigate the impact of factors, such as the power
quality, temperature, fan and chiller reliability, system usage and
utilization, and external factors, such as cosmic radiation, on
system reliability.

I. INTRODUCTION

System reliability is one of the major challenges in running
and designing high-performance computing (HPC) systems. As
architectural constraints limit the speed of individual devices,
the component count in HPC systems is continuously growing.
For example, future exascale systems are expected to combine
the compute power of millions of CPU cores. Efficiently run-
ning systems at such scale will require a good understanding
of their failure behavior.

In this paper we conduct an analysis of a decade of field
data made available by Los Alamos National Lab. While
previous work [12] has provided a high-level, general statistical
summary of this data set, in this work we are particularly
interested in identifying factors or circumstances that are pre-
dictive of future failures. Understanding what those factors are
can help operators mitigate them, or take proactive measures
against impending failures in cases where they cannot be
avoided.

While there have been a number of papers analyzing
failures in HPC systems, see for example [4]-[6], [10], [13],
this prior work tends to be concerned with deriving statistical
models that capture the observed failure process. For example,
work that studies correlations between failures (which are
relevant for predicting future failures and hence fall into the
category of events we are interested in, in this work) usually
does so by statistically modeling the empirical distribution
of the inter-arrival time between failures or analyzing the
auto-correlation function of the observed sequence of failures.

While statistical models are very useful, for example in driving
simulations or analyses of HPC systems, they are not all that
helpful for operators in developing a good intuition for how
and why their systems fail.

The goal of our work is to answer a set of specific
questions to improve our understanding of failures in HPC
systems, rather than providing a statistical model of failures.
After providing a summary of the data set we use in our
work in Section II, Section III looks into correlations between
failures, including questions such as which failure types are
most likely to generate follow-up failures. In Section IV we
study whether some nodes are more likely to fail than others
and why. Section V and Section VI address the question of
how usage affects the reliability of a node. Sections VII, VIII,
IX investigate the impact of environmental factors on node
reliability, including the effect of the quality of power, the
effect of temperature, and external factors, such as cosmic
radiation. Finally, in Section X we put different pieces of
our work together by performing a joint regression analysis
including a diverse set of factors.

II. THE DATA

Our study is based on failure data collected at 10 different
high-performance computing (HPC) clusters at Los Alamos
National Lab over a period of 9 years and is publicly available
at [1]. We divided the 10 clusters into two different groups,
based on their hardware architecture. Group-1 includes seven
systems that are based on 4-way SMP (Symmetric Multi-
Processing) nodes with one or two network interfaces (NICs)
and a varying amount of main memory per node. In total
these systems have 2848 nodes and 11392 processors. On the
LANL web page, where the data is available, these systems
correspond to the systems with IDs 3, 4, 5, 6, 18, 19 and 20.
Group-2 includes 3 systems that are based on NUMA (Non-
Uniform Memory Access) technology and contain a smaller
number of nodes, but a larger number (typically 128) of
processors per node. In total the systems in group-2 contain
70 nodes and 8744 processors, and correspond to the systems
with IDs 2, 16, and 23 on the LANL web page.

For each of the systems the data contains records of all
node outages that occurred during the measurement period,
including information on the root cause of the node outage, the
time when the outage happened and the ID of the node that was
affected. The root cause of each failure falls into one of six
high-level categories: environment failures, including power-
outages for instance; hardware failures; failures resulting from
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human-errors; software failures; network failures; and undeter-
mined, whenever the root cause of the failure is unknown. The
process of assigning failures to categories in LANL over the
9 years that the data spans was done by system administrators
according to classification rules developed jointly by hardware
engineers, administrators and operations staff [12]. Besides
the high-level categorization of root causes, for many failures
more detailed information is available, such as the hardware
component responsible for a hardware failure.

In addition to logs of node outages, for some of the systems
there is data on usage and the physical layout of nodes in the
machine room available. In particular, group-1 systems have
“machine layout” files that describe the position of each node
inside a rack, and the location of a rack inside the server room.
Additionally, detailed data on usage is available for two LANL
systems: Systems 8 and 20. The usage records contain for
each job information on the job submission time, job dispatch
time (the time the job got dispatched from the queue to start
running), job end-time, the number of requested processors
and the ID(s) of the node(s) that this job was assigned to.

III. HOW ARE FAILURES IN HPC SYSTEMS CORRELATED?

The first question we are addressing in our work is how
failures in HPC systems are correlated with each other. Dis-
covering correlations between failures in HPC systems serves
two purposes. First, it helps create a deeper understanding of
their underlying root causes. Second, it helps in the prediction
of failures, which is useful, for example, for scheduling appli-
cation checkpoints or for designing job migration strategies.

Rather than building formal statistical models of corre-
lations, we are interested in providing intuitive insights into
correlations by answering questions, such as what types of
failures increase the probability of future failures and by how
much is the failure probability increased after a prior failure.

In order to quantify these dependencies, we use the data to
determine the probability of a node failure in the time window
following a previous failure and compare this probability to
the probability of a node failure in a random window. We
look at time windows of different lengths, including one day,
one week and one month, and perform the calculations at three
different spatial granularities: node level, rack level and system
level. To test the statistical significance of our results all graphs
include 95% confidence intervals. We also perform two-sample
hypothesis tests to measure the significance of the difference
between probabilities.
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(b) The probability that a failure of type X follows other node-failures.

Correlations between failures in the same node

A. Correlations between failures within a node

In the first part of our correlation study we only focus
on correlations between failures in the same node, i.e. we
are asking the question whether current failure behavior of a
node is predictive of its future failure behavior.

1) How does a failure affect the likelihood of later fail-
ures?: As a starting point, we calculate the daily and weekly
probability of a node failure for group-1 and group-2 systems,
i.e. the probability that a random node will fail in a random
day/week. We then compare those probabilities against the
probability of a node failing during a day or week following
another failure (of any kind).

We find that the unconditional probability of a node failure
on a random day is 0.31% and 4.6% for group-1 and group-
2 systems, respectively. We observe that the daily failure
probability is markedly higher during the 24 hours following
a prior failure: 7.2% and 21.45% for group-1 and group-2
systems, respectively, which corresponds to roughly a 20X
increase and 5X increase for groups 1 and 2, respectively. We
observe similar, albeit somewhat weaker trends, for the entire
week following a failure: the failure probability of a node in
a given week increases from 2.04% to 15.64% in group-1 and
from 22.5% to 60.4% in group-2.

2) Does the type of a failure affect the chance of follow-
up failures?: Since we have information on the root cause
of failures an interesting question is whether some types of
failures increase the probability of follow-up failures more
than others. To answer this question Figure 1-(a) shows the
probability that a given node will fail within the one-week
period following a failure of a particular type. The failure
type is any of the six different categories of root causes that
are distinguished in LANL: Environment, hardware, human
error, network, software or undetermined failures. Each bar
in the figure corresponds to one of those failure types. To
provide a baseline, the right-most bar shows the probability
for a node failing on a random week (not necessarily preceded
by a failure).

Based on Figure 1-(a), we make several interesting ob-
servations. First, all types of failures increase the probability
of failure in the following week, most commonly by factors
of 7-10X in group-1 systems and factors of 2-3X in group-2
systems. For some cases, such as network or environmental
failures in group-1 systems, the increase in failure probability



is more than 10X compared to a random week. We also note
that prior failures increase the likelihood of later failures to
significant levels. For example, while the probability of failure
in a random week is only 2.04% in group-1 systems, chances
are 30-50% that a node will experience a failure in the week
following a network or environmental failure.

The second interesting observation is that the overall trends
are very similar for group-1 and group-2 systems. In both
cases the increase in failure probabilities is highest following
a network or environmental failure. For group-1 systems a
network or environmental failure increases the probability that
a node will fail in a given week by a factor of 14-23X, and for
group-2 systems it increases the failure probability by a factor
of 3-4X.

We note that the factor increases are in general smaller
for group-2 systems, since their baseline probability is higher.
The probability for a node to experience a failure in a given
week is 22.5% for a group-2 node (compared to only 2.04%
for a group-1 node), which means the failure probability can
not increase by more than a factor of 5X. The reason for
the higher failure rates in group-2 systems is that the nodes
in those systems are of a different type: they are NUMA
nodes with 128 processors per node, compared to SMPs with
4 processors per node for group-1 systems, and the larger
component count leads to higher failure rates.

3) Does the type of a failure predict the type of a follow-
up failure?: Often it might be useful to know what type of
failure to expect in the future. For example, are failures of
type X usually followed by failures of type Y? To answer
this question we computed all pairwise probabilities p(x,y),
where p(z,y) is the probability of a failure of type Y in a
week following a failure of type X, and compare this to the
probability of a type Y failure in a random week.

Our first observation is that a failure always significantly
increases the probability of a follow-up failure of the same
type, and more so than a random failure. Figure 1-(b) shows
the probability of a failure of type X in the week following a
failure of type X, compared to the week following any type of
failure, and compared to a random week. We observe that the
increase in the failure likelihood can be dramatic. For example
for group-1 systems, the probability of an environmental or a
network failure in a given week increases by a factor of around
700X (to absolute values above 7%) if a failure of the same
type was observed previously.

Besides correlations between failures of the same type, we
notice significant correlations between network, environmental
and software problems, i.e. each of these three types increases
the follow-up probability of a failure of one of the other two
types. We have been in discussions with operators at LANL
and have not been able to come up with a clear explanation
for these correlations. A closer analysis of the correlations
between these three error types revealed that there are a
few nodes who happen to have a relatively large number of
network, environmental and software problems. It is possible
that the correlation is biased by a few nodes that coincidentally
had a large number of these three types of failures and does
not imply a causal relationship.

4) How are hardware failures correlated?: We pay special
attention to hardware failures since these are the single most
common failure category: 60% of all failures are attributed
to hardware problems. Our data set contains more detailed
information on the root cause of hardware failures. The data
shows that by far the most common types of hardware failures
are due to problems with memory or CPU. 20% of hardware
failures are attributed to memory and 40% are attributed to
CPU.

When repeating a correlation analysis similar to the one
performed for the high-level failure categories, we find that
past failures significantly increase the future probability of
memory and CPU failures. In the week following a memory
failure the probability of experiencing an additional memory
failure is 20.23% for group-1 systems, a factor of nearly 100X
increase over the probability of 0.21% in a random week. For
group-2 systems, the weekly probability of a memory failure
increases from 4.2% to 12.6%. All increases are statistically
significant based on the two-sample hypothesis test.

The strong correlations between hardware-related failures
allow us to draw some conclusions about the nature of these
failures. Based on discussions with people at LANL, node
failures that are attributed to memory or CPU problems are
usually due to bit corruption events that go beyond what the
built-in ECC can correct. This type of data corruption could
either be due to soft errors, which are caused by random events,
such as cosmic rays or random noise, or it could be due to
hard errors, i.e. problems with the underlying hardware. The
strong correlation between those errors points to hard errors
as the more likely source of the problem, as one would not
expect correlation between random events, such as cosmic
rays. We study the impact of cosmic rays on hardware failures
in Section IX.

B. Correlations between failures within a rack

The data for group-1 systems also includes information on
the machine room layout, including the rack layout, which
allows us to study how failures in different nodes in the same
rack are correlated. We begin with the probability of a node
failing (with a failure of any type) within a week following
a failure (of any type) of another node in the same rack. We
find that this probability is 4.6%, which is more than double
the probability of a node failing in a random week (which is
2.04%). The increase in the daily probability is higher: the
failure probability on a day following the failure of another
node in the rack is 1.2%, which is nearly a factor of 3X higher
than the baseline probability of 0.31%.

As we did in the case of correlations within the same node,
we also looked at which failure types have the biggest effect
on the probability of another node failing later on in the same
rack. The results are shown in Figure 2 (left). We observe
some increase in the failure probability for all types of failures,
although with factors of 1.4-3X these are markedly lower than
the increase of failures in the same node. Statistical testing with
the two-sample hypothesis test allows us to conclude only for
software failures that the probability of follow-up failures is
significantly increased.
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Fig. 2. Correlations between failures in the same rack

When looking at pairwise correlations, i.e. the probability
of a failure of type y within a week of a failure of type x,
we find that a failure of a particular type always increases the
probability of the same type of failure within the following
week. Moreover, this increase is much larger than the increase
for the same type of failure following a random failure (i.e.
not necessarily the same type). Figure 2 (right) summarizes our
results. We observe an increase in failure probability as high as
170X for environmental failures and nearly 10X for software
failures. All increases are statistically significant based on the
two-sample hypothesis test.

Finally, we take a look specifically at hardware failures as
these are the most common type of failure. We find that both
memory and CPU failures experience a significant increase
in probability in the day or week following another failure
of the same type. This observation provides some room for
hypotheses explaining the cause of such errors. One possible
explanation might be that nodes in the same rack share similar
environmental factors, such as the quality of the supplied
power. This observation, combined with the strong effect of
environmental failures on the frequency of follow-up failures
motivates us to study environmental failures in more detail in
Section VII.

C. Correlations between failures in the same system

In this section we ask the question of whether and how
failures between different nodes in the same system (not
necessarily in the same rack) are correlated. We find that
the weekly probability of a node experiencing a failure does
increase after another node in the same system had a failure,
however the increase is significantly smaller than for nodes in
the same rack: in group-1 systems the weekly probability of
a node experiencing a failure increases from 2.04% to 2.68%
and for group-2 systems it increases from 22.5% to 35.3%.
Both increases are not significant enough to allow the rejection
of the hypothesis that a node failure does not increase the
likelihood of follow-up failures in nodes within same system,
based on the two-sample hypothesis test.

The results are more interesting when breaking them down
as a function of the failure type. Figure 3 shows the probability
that a node in a system will fail within a week following
a failure of type X (where X can be: environment, hard-
ware, human-errors, network, software, memory, CPU failures,
or undeterminted). We observe that software, hardware and
human failures in a node in group-1 systems increase the
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Fig. 3. Correlations between failures in the same system. Each bar
corresponds to the probability that a node-failure of type X is followed by
any failure in another node in the same system.

probability that also other nodes in the system will see failures.
The increase following software failures (a factor of 1.27X)
is statistically significant based on the two-sample hypothesis
test. For group-2 systems, all types of failures show an increase
in Figure 3, but by far the biggest increase, with a factor
of 3.69X, is observed following a network failure. The two-
sample hypothesis test allows us to show that all failure types,
except hardware and human, increase the chance of follow-up
failures in other nodes significantly.

IV. DO SOME NODES IN A SYSTEM FAIL DIFFERENTLY
FROM OTHERS?

A. Do some nodes fail more frequently than others?

Figure 4 shows the total number of failures for each node
in systems 18, 19 and 20 (the three largest systems of all
LANL systems in terms of number of nodes: 1024, 1024 and
512 nodes, respectively). The graphs show that in all systems
a single node (the node with ID 0) had significantly more
failures than rest of nodes. For example, for system 20 node 0
reported 19 times more failures than the average node and
for system 19 node O reported more than 30 times higher
failure rates than the average node. To test the significance
of differences between failure rates in nodes, we performed
chi-square tests for differences between proportions: with 99%
confidence level we are able to reject the null hypothesis that
all nodes in each system had equal failure rates (p-value <
2.2e-16). Interestingly, even when repeating the same analysis
after removing node 0 we can still reject the hypothesis that
all nodes in each system had equal failure rates.

B. Are the failure characteristics of failure prone nodes dif-
ferent from other nodes?

We are interested to find out whether the increased number
of failures in some nodes is due to an increased number of
failures of a particular type or due to generally increased failure
rates. To answer this question we compare in Figure 5 the
relative breakdown of the different failure types for failure
prone nodes against the remainder of the system, and we
compare in Figure 6 for each failure type the probabilities
of a node failure of this type in failure prone nodes vs the rest
of the nodes in the systems. In Figure 6 each plot contains
three pairs of bars for each of the three systems, where each
pair corresponds to a timespan: day, week or month. The
numbers on top of the bars indicate the factor increase in
failure probability in a failure prone node compared to an
average node.
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Fig. 6. The probability of different failure types in failure prone nodes compared to the rest of the nodes in a system.

The first observation we make based on Figure 6 is that
node 0 exhibits increased failure probabilities for all types of
failures, so the higher failure rate in those nodes cannot be
attributed to a particular type of failure. However, we observe
that the increase in failure probabilities is particularly high for
environmental and network failures, with factors of increase
in the 2000x and 500x-1000x range, respectively. Software
failure rates are also significantly higher in node O than the
remainder of the system (factors of 36X up to 118X). The
increase in the probability of hardware failures is modest in
comparison, but still significant with factors in the 5-10X
range. To formalize our results we repeat the chi-square test
for differences between proportions separately for each failure
type. The only failure type where we fail to reject the null
hypothesis that nodes fail with equal rates is for failures due
to human errors; for all other failure types the test rejects the
null hypothesis with 99% confidence.

Turning to Figure 5, which shows the relative breakdown of
failures by root cause for the failure prone nodes compared to
the whole system, we observe a higher percentage of software,
environment and network failures in the failure prone nodes.
This observation is in agreement with our findings in Figure 6,
which indicate that those three failure types have a higher
factor increase in the failure prone nodes than other failure
types. It is interesting to note that in the failure prone nodes
the dominant failure mode shifts from hardware failures to
software failures.

C. Why do some nodes fail more frequently than others?

One might wonder what the reason for the high variability
in failure rates between nodes in the same system is, in
particular since all nodes within a system typically use the
same type of hardware. One possible explanation are statistical
effects due to the strong correlations between failures in the
same node (recall Section III). Once a node is “unlucky” and
starts to develop failures, a large number of correlated follow-
up failures might bring the total failure rate of a node way
above the average.

Another hypothesis we investigated is the effect of a node’s
position in the machine room or inside the physical rack. For a
few systems where we had information on the layout of nodes
in the machine room we checked whether the location in the
machine room or the location of a node within a rack played
any role, but we could not find any clear patterns that certain
areas in the machine room were more likely to be correlated
with higher error rates.

One more hypothesis that we tested is whether usage has
an effect on the failure rate of a node and whether the failure
prone nodes were used differently from other nodes. We will
look at our analysis of usage in the following two sections.
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V. WHAT IS THE EFFECT OF USAGE ON A NODE’S
RELIABILITY?

The effect of system workload on system reliability was
studied in a series of papers by Iyer et al. [8], [9] and Castillo
et al. [2]. However, these papers date back to the early 1980’s
and don’t necessarily translate to modern HPC systems.

We therefore used job logs that are available for two of
LANL’s systems, system 8 (where we have a total of 763,293
job records), and system 20 (with a total of 477,206 job
records), to study whether the way a node is used affects
its failure rate. These two systems are representative of two
larger groups of LANL systems, where all systems within the
same group shared a similar hardware architecture and ran very
comparable workloads.

We consider the effect of two simple usage metrics, one
is the average node utilization (where we define a node as
being utilized if at least one job is currently assigned to it, and
idle otherwise) and the other one is the number of jobs that
were scheduled on a node throughout its lifetime. We begin
by plotting the number of failures a node experiences against
the node’s average utilization (see Figure 7-(a)) and against
the number of jobs served by the node (see Figure 7-(b)). We
have marked nodes with particularly high failure rates with
special markers. This includes node 0, which we discussed in
the previous section.

We observe that in both systems where we have usage
information available the failure prone node 0 tends to be
among the nodes with the highest utilization and the largest
number of jobs assigned to it. We formalized our observation
by looking at the Pearson correlation coefficient between the
number of jobs assigned to a node and the number of failures
experienced by the node. For both systems we observe clearly
positive correlation coefficients of 0.465 and 0.12, respectively.
However, repeating our analysis after removing node 0 reduces
the correlation to insignificant levels, which lets us conclude
that the strong linear correlation between usage and failures,
as captured by Pearson’s coefficient, is mostly due to node 0.
In discussions with operators at LANL we have been told that
node 0 in most systems has a special role where it is used as
a login node for users and/or is used to schedule and launch
jobs.
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VI. ARE SOME USERS MORE PRONE TO NODE FAILURES
THAN OTHERS?

As a follow-up question on the relationship between usage
and failures we used the job logs to test whether certain
users are more likely to experience job failures than others.
Here we only include job failures that are caused by failures
in one of the underlying nodes, rather than a failure of a
user’s application software. The two systems that have job
logs available (systems 8 and 20) both have more than 400
different users. For each system, we focus on the 50 heaviest
users in terms of the number of processor-days that they used
on those systems.

The two graphs in Figure 8 show for each of the 50 heaviest
users the average number of failures this user experienced
per processor-day that this user utilized the system. Visual
inspection shows a large discrepancy between the failure rates
experienced by different users. We also formally verified that
the difference in failure rates between users is statistically
significant by using Poisson regression to fit a full (saturated)
model (with users’ actual failure counts and usage periods),
and a common failure rate model (where all users have the
same failure rate). We then applied Analysis of Variance
(ANOVA) test and found with 99% confidence level that the
saturated model is significantly better than the common rate
model.

In conclusion, we find that the way a node is exercised
affects its failure rates. This might for example be because
some users run applications that are more likely to exercise
a buggy code path in some system software or because their
application is more likely to exercise a hardware component in
an access pattern that makes intermittent or hard errors more
likely to manifest themselves.
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Fig. 9. Breakdown of environmental failures in LANL systems

VII. WHAT IS THE IMPACT OF ENVIRONMENTAL
FACTORS, IN PARTICULAR PROBLEMS RELATED TO POWER?

We have observed in Section III that environmental failures
cause a steep increase in the probability of follow-up failures.
A node with an environmental failure has a chance of 47.2%
and 69.4% for group-1 and group-2 systems, respectively, of
experiencing another failure within a week. This observations
warrants a closer look at what environmental failures are and
how they affect other failures.

The LANL data provides a breakdown of the high-level
root cause category of environmental failures into lower-level
sub-categories. Figure 9 presents a breakdown of the observed
environmental failures. We observe that the majority of those
failures are related to problems with power in the datacenter, in
particular either power outages, power spikes or UPS failures.
In the remainder of this section we study how power issues
affect the two most common types of failures, hardware and
software failures. In addition to power outages, spikes and UPS
failures recorded as part of environmental failures, we also take
into account the effect of problems with the power supply
unit of individual servers, which are recorded as hardware
problems.

A. How do power problems affect hardware failures?

Figure 10 (left) shows the probability that a node will
experience a hardware failure within a day (left-most set of
bars), a week (middle set of bars) and a month (right-most set
of bars) after experiencing a power outage, a power spike,
a power supply failure or a UPS failure, compared to the
probability of a hardware failure in a random day, week, month
(i.e. not necessarily preceded by a power issue).

We observe that generally after power issues the probability
of seeing hardware failures in LANL nodes is significantly
increased. Interestingly, while power outages and power
supply failures caused a significant increase in hardware
failures both in the short-term (within a day following
the power problem) and in the long-term (within a month
following the power problem), the effect of power spikes is
more apparent at longer timespans. In the long-term, all four
types of power issues lead to an increase in the hardware
failure probability by factors of 5-10X.

Impact of power problems on hardware failures

1) What types of hardware failures are most affected by
power problems?: Figure 10 (right) shows the probabilities for
different types of hardware failures to occur within a month
of a power outage, power spike, power supply failure or a
UPS failure, compared to the probabilities of those failures in
a random month (not preceded by power issues).

We observe that a large range of hardware components,
including memory DIMMs, node boards, and power supplies,
show markedly increased failure rates following power
problems. The only component that showed no clear signs of
increased failure rates after any of the power problems are
CPUs. For the other components the degree at which failure
rates increase depends on the type of power problem that
preceded. After power outages the node board and power
supply show the biggest increase in their failure rates (factors
of 16-20X). These components also show similar failure rates
following power spikes. Memory DIMMs show a higher
failure rate following power spikes, compared to power
outages, with an increase of 13.7X compared to 5X. For all
components the increase in failure rates is strongest following
a power supply failure, and ranges from more than 40X
for fans and power supplies, to 14X and 28X for memory
DIMMs and node boards. Two components show high failure
rates following UPS failures: node boards (27.3X increase)
and memory DIMMs (8.9 increase).

2) Do power problems cause issues in addition to node
failures?: When analyzing the LANL data to investigate
the consequences of power problems, we also made another
interesting observation. In addition to the clearly increased
number of node outages due to failures following a power
problem, we observe a large increase in the number of non-
scheduled maintenance events related to hardware problems.
Within a month after a power outage or power spike, around
25% of affected nodes need to undergo unscheduled downtime
due maintenance. This is an increase of nearly 90X in the
frequency of unscheduled maintenance compared to a random
month in a node’s lifetime. In the month after a power supply
failure maintenance activity is also markedly increased: a node
has an 8% chance of requiring hardware-related maintenance
work within a month after a power supply failure, which is
lower than after a power outage or spike, but still nearly 30X
higher than in a random month. Failures in the UPS system had
the strongest effect, increasing a node’s chance of undergoing
unscheduled maintenance by a factor of 100X (28% chance).

These results indicate that problems with power not only
lead to hardware problems that cause a node to fail, but
also a significant amount of downtime due to unscheduled
maintenance.
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Fig. 12. Distribution of power-related failures across nodes over time (LANL System 2)

B. How do power problems affect software failures?

Figure 11 (left) shows the probability that a node will
experience a software failure within a day (left-most set of
bars), a week (middle set of bars) and a month (right-most set
of bars) after experiencing a power outage, a power spike,
a power supply failure or a UPS failure, compared to the
probability of a software failure in a random day, week, month
(i.e. not necessarily preceded by a power issue).

As was the case for hardware failures, we observe that
after power issues the probability of seeing software failures
in LANL nodes is significantly increased. We observe the
strongest effect for power outages and UPS failures, which
increase the probability of a software failure within a week by
factors of 45X and 29X, respectively. Power spikes and power
supply failures had a somewhat weaker effect, with factors of
10-20X, but still very strong. All four types of power problems
show longer-term effects, as evidenced when looking at the
software failure rates following the month of power problem,
although the effects are weaker than the weekly ones (except
for UPS failures).

1) What types of software failures are most affected by
power problems?: Figure 11 (right) shows a breakdown of
software failures into their more detailed underlying root
causes and for each of these underlying root causes the
associated probability within a month after a power outage,
power spike, power supply failure and UPS failure. We observe
that the majority of the software-related outages following
power issues are related to the system’s distributed storage
system (DST). Some additional issues are related to Parallel
File System (PFS) and the Cluster File System (CFS).

In summary, we observe that a large fraction of software
issues created by power problems are related to data storage
(either the distributed storage system or the file system), rather
than general operating system issues or other software issues.
While the data does not provide details on the nature of those

storage and file system failures, the loss of power likely led to
some inconsistency in the storage or file system state. All file
and storage systems for HPC installations provide mechanisms
to protect against loss of consistency or persistence in the case
of crashes or power outages, so it’s interesting to observe that
despite those efforts power problems still remain a high risk
factor for those systems.

C. How are power problems laid out in time and space?

Figure 12 illustrates how the four different types of power
problems (outages, spikes, UPS and power supply failures) are
layed out in time and space using the data for all System 2
nodes. We chose System 2 as it provides the largest data set
on power issues. We observe that the different power problems
vary in how they are correlated in time and space. While power
outages and UPS failures show clear correlations between
nodes and also over time within the same node, power spikes
tend to happen in more random unpredictable ways. Power
supply failures are the most common type of power-related
failure and show only correlations within the same node.

VIII. HOW DOES TEMPERATURE AFFECT FAILURES?

Understanding the effect of temperature on system reliabil-
ity is important as a large fraction of a datacenter’s energy bill
goes into cooling. Recent work [3] indicates that the impact of
temperature on hardware components might be much weaker
than often assumed and reports for some types of errors, such
as DRAM errors no correlation at all.

A. How does average temperature affect failures?

LANL has provided event logs for some of their systems,
in addition to the logs of failure outages. For one of LANL’s
systems (system 20) periodic temperature measurements from
a motherboard sensor are available. It is worth noting that the
cooling mechanism used in the facilities hosting the rest of
LANL’s systems was similar to system 20’s: hot-aisle cold-
aisle air cooling through perforated floors.



Wl Average Timespan| 5.99x 7.09x

s 0-6|| I Atter Chillers Fail 0.25 11.5x Il n a random month
& o.5|[LHAfter Fan Failures [After chiller fails
§ 02 &5 23:9% [JAiter fan fails
504 = 120.3x
£ §0.15 10.8x
=03 8 17.8x
202 a 01 —_ 105.7x
go.
[3
g0, 0.05 0.2
a oL—DA NA A T NA NA

0 PowerSupply  Memory NodeBoard Fan CPU MSC Board MidPlane

Day Month

Fig. 13.

The work in [3] uses this data for system 20 to study
how node outages, either due to hardware failures in general
or DRAM failures in particular, change with temperature.
Their results show no correlation between a node’s average
temperature and node outages, within the temperature range
that the data comprises.

We have formalized the work in [3] by using regression
analysis to model the occurrence of node outages due to
hardware failures as a function of a node’s average tempera-
ture. We used two commonly used regression models, Poisson
regression and negative binomial regression. In agreement
with [3], we find that average temperature is not correlated
significantly with the occurrence of hardware failures. When
repeating our analysis for CPU and DRAM failures separately,
we also find that average temperature is not significant to either
type of failure.

B. How do temperature excursions affect failures?

Previous work [3] has only considered the effect of av-
erage temperature, but not looked at the effect of temporary
excursions to very high temperatures. Therefore, rather than
looking at average temperature, we repeat the same regression
analysis as above for the maximum temperature observed for
a node and the variance in temperature across all temperature
recordings for a node. We find that the maximum temperature
and temperature variance are insignificant to the occurrences
of hardware failures in general and CPU and memory failures
in particular.

Temperature recordings are only available for one system
and since they consist of periodic samples, they might miss
brief periods of very high temperatures. For a broader study
of the effects of brief periods of high temperature we look
at the impact that a fan failure or a failure in the chiller
system has on the nodes. Fan and chiller failures will lead to
temporarily increased temperatures at a node, and depending
on whether it’s a complete or partial failure can lead to to
extreme temperatures inside a node, making a node shutdown
necessary.

Figure 13 (left) shows the impact of fan failures and chiller
failures on hardware failures. The graph shows the probability
that a node will experience a hardware failure within a day,
week and month following a fan or a chiller failure, compared
to the probability of a hardware failure in an average day, week
and month. We observe clearly increased hardware failure rates
following fan and chiller failures for all timespans. Fan failures
have a stronger effect for all timespans, with a factor of 40X
increase in hardware failure rates on the day following a fan

Impact of temperature related problems on hardware failures

failure (compared to a random day). Chiller failures had a
weaker effect across the different timespans, with factors of
6-9X increase in hardware failure rates.

We also ask what type of hardware failures are likely to
follow fan and chiller failures. Figure 13 (right) shows for each
of the hardware components with corresponding records in the
data the probability of failure within a month after a fan or a
chiller failure, compared to a failure of that component in a
random month. We find that all hardware components, except
for CPUs, show an increase in the failure rate following a
fan failure. We find that for memory, node boards, and power
supplies the order of magnitude of the increase is similar to the
one observed after power problems, with factors of 10-20X.
In addition, we observe significant increases in failure rates
for two types of boards, MSC boards and midplanes, which
we did not observe in the case of power problems. One of
the largest increases in failure rates, a factor of 120X, occurs
for fans, which is maybe not surprising given that we have
observed previously that most failure types have the strongest
correlation with events of the same type. Chillers failures seem
to only affect two components: memory DIMMs and node
boards, with 5.3X and 10.8X increases in their probabilities,
respectively.

Overall, our analysis shows that hardware components are
well able to tolerate higher average temperatures within the
ranges that are typically observed in a datacenter. The harmful
effects of temperature mostly stem from short periods of
extremely high temperatures, for example due to the failure
of a fan in the system.

IX. EXTERNAL FACTORS: COSMIC RADIATION

It is known that high rates of cosmic radiation can lead to
soft errors due to bit flips in DRAM or on system buses. If the
built-in error correcting codes (ECC) are not strong enough to
correct the corrupted bits, those errors will lead to a machine
crash or shutdown. Cosmic rays and their effect on system
reliability are a major concern, and, for example in the case of
DRAM errors, most of the existing work on DRAM reliability
focuses on the effects of cosmic radiation.

Since the LANL data spans a very long time period (nearly
a decade), it covers almost an entire solar cycle (typically 11
years long), including several solar flares. Records of high-
energy neutron counts that are produced by cosmic rays in
the atmosphere are collected at many neutron monitor (NM)
stations around the world. We use data of 1-minute resolution
neutron counts collected at a NM station in Climax, Colorado
(geographically close to Los Alamos National Lab) [11].
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TABLE I
SUMMARY OF REGRESSION VARIABLES

[ Variable [ Category | Description

fails_count Failures This is the response variable; the total occur-

(response rences of node outages in a node’s lifetime.

variable)

Input Variables

avg_temp Temperature | The average ambient temperature of a node

max_temp Temperature | The maximum temperature reported by a node

temp_var Temperature | The variance of all temperatures reported by
a node

num_hightemp | Temperature | The number of severe temperature warning
messages reported by a node (i.e. when its
ambient temperature exceeds 40C)

num_jobs Usage The number of jobs that were assigned to the
node in the observation period

util Usage The utilization of a node during the observa-
tion period

PIR Layout Position in Rack: the position of a node inside
the physical rack (1=most bottom, 5=top)

We use this data to analyze whether periods of increased
cosmic rays are correlated with a higher rate of hardware
errors, in particular failures related to DRAM and the CPU.

We begin by studying whether the likelihood of a node
outage due to DRAM failure changes with neutron flux levels.
Figure 14 (left) shows the monthly probability of a DRAM
failure as a function of the monthly average neutron counts-
per-minute, for LANL Systems 2, 18, 19 and 20. We focus
our analysis on the LANL systems that span the longest
lifetimes, or consist of the largest numbers of nodes, across
all systems. We find that months with higher neutron rates
are not associated with higher rates of DRAM failures. These
results might be unexpected, since cosmic rays are known to
increase soft error rates in DRAM. One possible explanation
is that while increased rates of cosmic rays might lead to a
higher number of corrupted bits, the types of corruption caused
by those events might usually be correctable with the built-
in ECC. This explanation agrees with recent findings in [7],
which provide evidence that most node outages that are due to
errors in DRAM are likely caused by hard errors, i.e. problems
with the underlying hardware, rather than random events, such
as cosmic rays.

Cosmic ray-induced neutrons can also cause CPU faults,
possibly leading to a machine crash or shutdown. We repeat
our correlation analysis using data on node outages that were
attributed to CPU failures, rather than outages due to DRAM
problems (see Figure 14 (right)). We observe that in three
systems (2, 18 and 19), CPU failures were slightly more likely
to occur in months with relatively higher neutron rates.

TABLE 1T
POISSON REGRESSION COEFFICIENTS

Estimate  Std. Error ~ z value  Pr(> |z])
(Intercept) 2.0232 0.8288 2.44 0.0146
avg_temp 0.0546 0.0337 1.62 0.1046
max_temp -0.0705 0.0339 -2.08 0.0373
temp_var 0.0253 0.0333 0.76 0.4479
num_hightemp 0.0210 0.0698 0.30 0.7639
num_jobs 0.0004 0.0001 7.17 0.0000
util -0.0268 0.0050 -5.34 0.0000
PIR -0.0262 0.0358 -0.73 0.4654

TABLE III
NB REGRESSION COEFFICIENTS

Estimate  Std. Error ~ z value  Pr(> |z )
(Intercept) 1.5478 1.1930 1.30 0.1945
avg_temp 0.0499 0.0462 1.08 0.2802
max_temp -0.0510 0.0475 -1.07 0.2828
temp_var 0.0252 0.0449 0.56 0.5744
num_hightemp 0.0021 0.0937 0.02 0.9820
num_jobs 0.0004 0.0001 3.86 0.0001
util -0.0248 0.0073 -3.42 0.0006
PIR -0.0345 0.0488 -0.71 0.4794

X. PUTTING IT ALL TOGETHER

In the previous sections we have looked at a number of
factors and their impact on node outages in HPC systems in
isolation. Our goal in this section is to put all the different
pieces together. Rather than studying the individual effect of
these factors separately, we now ask the question of what the
collective effect of these different factors, combined, is on
long-term HPC node reliability. The only LANL system that
allows us to explore this question is system 20 where we have
data on node outages, node usage, physical layout and ambient
temperature.

We use regression analysis to model occurrences of node
outages in system 20 as a function of node usage, physical
location and temperature. More precisely, we use the total
number of outages a node experiences during the data collec-
tion period (due to any type of failure) as our response variable,
which we try to express by the set of predictor (explanatory)
variables summarized in Table I. We use two commonly used
regression models, Poisson regression and negative binomial
regression.

The results of applying Poisson regression and negative
binomial regression are shown in Tables II and III, respec-
tively. The two right most columns show the test statistic
and the p-value, respectively, that the null hypothesis that
each predictor’s coefficient is zero given that the rest of the
predictors are in the model. Interestingly, we observe similar
results for both models: The predictors num_jobs (i.e. the
number of jobs assigned to a node during the observation
period) and util (i.e. the node’s average utilization) are each
statistically significant in both models; with 99% confidence,
we can reject our null hypothesis and conclude that each one
of them is statistically different from zero given that the rest
of the coefficients are in the model. Since we know from
Section V that node O in this system exhibited a strong linear
correlation between usage variables and number of failures,
we reran our regression models after removing node 0 from
the data and found that utilization remains significant to the
model, although the significance level drops slightly.



In addition to usage variables, we observe that for the
Poisson model max_temp is statistically significant to the
frequency of node outages (recall that maximum temperature
was found insignificant to hardware failures in particular, in
Section VIII). However, when rerunning the model with only
the significant predictors, the significance level of max_temp
in the Poisson model drops.

We find these results to be a strong indicator that a node’s
usage and utilization levels have a stronger impact on a node’s
failure rates than other factors, such as its ambient temperature
or physical location inside a rack.

XI. LESSONS LEARNED

Below we highlight some of the key findings of our work
and derive some lessons we learned from our analysis.

e In agreement with prior work, we observe strong cor-
relations between failures in HPC systems. During the day
following a failure, a node is 5-20X more likely to experience
an additional failure, when compared to a random day. Similar,
albeit weaker trends exist across the nodes in the same rack:
a node’s failure probability is increased by a factor of 3X
during the day following another node failure in the same
rack. The trends were significantly weaker when looking at
other nodes in the same system (not in the same rack). We
found that software and network failures in one node increase
the probability of subsequent failures of other nodes in the
same system by factors of 1-3X.

o Interestingly, we observe that some types of failures
increase the likelihood of follow-up failures more than others.
In particular, environmental failures (such as power outages)
and network failures have a very strong effect on subsequent
failures: 30-50% of nodes experience at least one failure in the
week following a network or environmental failure, compared
to only 2% in an average week. These observations are critical
for creating effective failure prediction models, as they imply
that such models should not only account for correlations
between failures in time and space, but also consider the root-
causes of failures.

e The strong chance of follow-up failures after environmen-
tal failures, which in our data are mostly due to power outages,
motivated us to study the effects of power problems more
broadly. We considered four different events: power outages,
power spikes, UPS failures, and failures of a node’s power sup-
ply units, and found that they all lead to significantly increased
hardware failure rates, as well as unscheduled maintenance
events.

e Our observations on increased failure rates in memory
DIMMs and node boards following power spikes, UPS failures
and power supply problems suggest that after such events one
might want to thoroughly inspect these hardware components
for problems. Suspected fans should also be properly inspected
in the case of a power supply failure since they were 40X more
likely to fail in the following month, than in an average month.
In general, we find that a bad or failing power supply can lead
to many auto-correlated node outages and therefore should be
quickly fixed or replaced.

e Power outages have another interesting effect: signifi-
cantly increased rates of software issues. A large fraction of

the software failures following within a month of a power
outage were either related to the distributed storage system
or the file system. This observation might hold evidence that
stronger mechanisms are required to protect storage and file
system consistency in the face of power outages.

e The large cost of datacenter cooling motivated us to study
the effect of temperature on node reliability. We do not observe
a significant correlation between the average temperature at a
node and its likelihood of failure. However, when studying
the effect of node outages due to fan or chiller failures, which
likely cause a brief period of very high temperatures inside
a node, we do observe a strong increase in the subsequent
rate of failures. Hardware components most strongly affected
were MSC boards and midplanes (>100X increase in failure
probabilities), but memory DIMMs, power supplies and node
boards also experienced increased failure probabilities (>10X
increase). This shows that hardware components are well able
to tolerate higher average temperatures within the ranges that
are typically observed in a datacenter. The harmful effects of
temperature mostly stem from short periods of extremely high
temperatures, for example due to a fan failure.

e Another environmental factor we studied is cosmic ray-
induced neutron flux, which can lead to increased soft error
rates. Interestingly, we observe no effect on failures due
to DRAM errors, which might indicate that built-in error
correcting codes are generally sufficient to mask bit flips in
DRAM due to soft errors (and that those DRAM errors that
lead to node outages are more likely due to hard errors).
On the other hand, CPU failure rates, which did not show a
strong correlation with other types of failures or environmental
factors, such as power or temperature, are positively correlated
with cosmic rays-induced neutron flux.

e When studying the effect of a node’s usage on its failure
rate, we find that nodes with higher utilization and a higher
number of jobs assigned to them experience higher failure
rates. Moreover, when studying the number of failures experi-
enced by different users of the system, we find that some users
experience a significantly higher failure rate per processor-day
of usage of the system. Since we exclude problems caused by
the users’ application software, this skew is not due to users’
varying abilities to write stable code. Instead, we conclude that
the way a node is exercised affects its failure behaviour.

e We observe that some nodes fail significantly more
frequently than others, even in systems where all nodes are
identical in terms of their hardware. When we looked more
closely at the most failure prone nodes in LANL’s systems,
we found that they encountered higher-than-average rates of all
types of failures, but the increase was strongest for software,
network and environment failures. One of the possible reasons
that we investigated is the location of a node within the
machine room, but we find no indication that certain areas
in the machine room are more failure prone than others.
Instead, we find that the failure prone nodes were typically
used differently from the rest of nodes.

e When performing a joint regression analysis, where we
model node reliability as a function of different aspects of
physical location, temperature and usage, we found that usage
related variables were the most significant.
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