
Ensemble: Cooperative Proximity-based Authentication

Andre Kalamandeen
Computer Science

University of Toronto
andrek@cs.toronto.edu

Adin Scannell
Computer Science

University of Toronto
amscanne@cs.toronto.edu

Eyal de Lara
Computer Science

University of Toronto
delara@cs.toronto.edu

Anmol Sheth
Intel Research Seattle

anmol.sheth@intel.com

Anthony LaMarca
Intel Research Seattle

anthony.lamarca@intel.com

ABSTRACT
Ensemble is a system that uses a collection of trusted per-
sonal devices to provide proximity-based authentication in
pervasive environments. Users are able to securely pair their
personal devices with previously unknown devices by sim-
ply placing them close to each other (e.g., users can pair
their phones by just bringing them into proximity). En-
semble leverages a user’s growing collection of trusted de-
vices, such as phones, music players, computers and per-
sonal sensors to observe transmissions made by pairing de-
vices. These devices analyze variations in received signal
strength (RSS) in order to determine whether the pairing
devices are in physical proximity to each other. We show
that, while individual trusted devices can not properly dis-
tinguish proximity in all cases, a collection of trusted devices
can do so reliably. Our Ensemble prototype extends Diffie-
Hellman key exchange with proximity-based authentication.
Our experiments show that an Ensemble-enabled collection
of Nokia N800 Internet Tablets can detect devices in close
proximity and can reliably detect attackers as close as two
meters away.

Categories and Subject Descriptors
C.5.3 [Computer System Implementation]: Microcom-
puters—Portable devices; D.4.7 [Operating Systems]: Or-
ganization and Design—Distributed systems

General Terms
Experimentation, Human Factors, Performance, Security

Keywords
Ensemble, Proximity, Authentication

1. INTRODUCTION
Computer and consumer electronics developers have long

debated the relative merit of carrying a single, all-purpose

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’10, June 15–18, 2010, San Francisco, California, USA.
Copyright 2010 ACM 978-1-60558-985-5/10/06 ...$10.00.

mobile device versus a collection of special purpose devices.
Despite the recent success of some excellent general pur-
pose platforms, the market is clearly trending towards the
latter, with an enormous proliferation of research and com-
mercial devices spanning a wide range of functions including
netbooks, smart phones, digital cameras, music players, im-
plantable medical devices, fitness activity sensors, wearable
(e.g. wrist worn) remote controls, wireless headsets, etc.
With the miniaturization and improved power-efficiency of
radio, these personal devices are increasingly networked, al-
lowing them to provide more integrated services across ap-
plications.

The prospect of networked ensembles of personal devices
creates an opportunity to use the collection of devices to en-
able a capability or service that no single device in the col-
lection could provide alone. In this paper, we show that an
ensemble of devices can be used to determine whether com-
municating devices are within physical proximity of each
other, and that this information can be used to provide
proximity-based authentication when pairing devices that
lack a pre-existing shared secret to secure their communica-
tion – devices that are previously unknown to each other.

Proximity-based authentication offers an attractive way
to bootstrap secure communication channels in pervasive
environments. For example: users may place their laptop
immediately next to the data projector in order to authen-
ticate before presenting slides; or a portable video player
may, when placed directly in front of a large display, show
its output on the bigger screen with the touch of a button.
Proximity-based authentication reduces the uncertainty in-
herent to pairing with a formerly-unknown device by offering
assurances that communication is taking place between de-
vices that are actually in close proximity, as opposed to with
an attacker with a directional antenna some distance away.

We present Ensemble, a system that leverages a user’s
worn or carried trusted devices to enable proximity-based
secure pairing in pervasive environments. Ensemble deter-
mines whether two devices are in close physical proximity by
monitoring their communications and determining whether
the variations in their received signal strength (RSS) are
correlated. Ensemble leverages two key observations: first,
given an environment of sufficient complexity, the nature of
multipath fading implies that the channel between the user’s
trusted collection and the pairing devices will vary haphaz-
ardly over time and be very difficult to predict. Second,
RSS variations of transmitters that are in close proximity
(e.g., 10 cm apart) are highly correlated – paths between
the transmitters and a monitoring device experience sim-

331

ilar changes – whereas RSS variations of devices that are
separated by some distance are not. We show that, while
individual trusted devices can not properly distinguish prox-
imity in all cases, a collection of trusted devices can do so
reliably.

Ensemble has several advantages over existing approaches
to secure pairing. Foremost, it does not require extra hard-
ware beyond the wireless interface already present on the
mobile device. Moreover, because Ensemble only needs to
run on the user’s collection of trusted devices, but not neces-
sarily on the other device that is being paired, it can be easily
deployed by individual users without requiring widespread
adoption to be useful. For example, a user could authenti-
cate a device from another user that is not running Ensem-
ble.

We developed an Ensemble prototype based on a collec-
tion of Nokia N800 devices. Our prototype, which extends
Diffie-Hellman key exchange with proximity-based authen-
tication, can reliably detect attackers as close as two meters
away. Our experimental evaluation shows that the system
works well in different environments without the need for re-
calibration and is also successful when pairing heterogeneous
devices.

In this paper, we first formalize and motivate the prob-
lems of secure pairing and determining whether two devices
are in close physical proximity. Next, we describe the En-
semble system. Following this, we evaluate Ensemble under
different scenarios and conditions. We then discuss possible
use cases and extensions to the system. Finally, we com-
pare Ensemble to related work in the area and present our
conclusions.

2. PROBLEM DEFINITION
We define the problem of secure pairing of devices in close

proximity as follows: two devices that are located close to
each other but do not know each other a priori need to
establish a channel between them that is both secure and
authentic. A secure channel implies that no eavesdropper
may intercept and decrypt messages between the endpoints,
while authenticity requires that both endpoints are able to
confirm the identity of each other. The creation of a secure
channel with another device is currently possible through
well-known protocols such as Diffie-Hellman [5]. However,
such secure channels are effectively anonymous and need to
be authenticated given that an attacker can easily spoof a
name or MAC address.

We define four types of devices in a typical pairing sce-
nario. In the set of trusted devices, one device acts as a
pairing device while the rest of the trusted ensemble act
as witness devices; the other legitimate device with whom
pairing is being attempted is the candidate device; impostor
devices are rogue devices located some distance away trying
to pair with a legitimate device. These devices are shown in
a typical pairing scenario in Figure 1. Ensemble leverages
information from trusted witness devices in order to infer
whether a device is a candidate device or an impostor.

For simplicity, we limit the problem of secure pairing to
the perspective of the pairing device. If necessary, each de-
vice (the candidate and the pairing device) may indepen-
dently authenticate the other, but in many circumstances
only one side requires authenticity. For example, a point-
of-sale terminal may not care whose device is paying for a
transaction (as long as they use a valid credit card number),

Figure 1: An example of a pairing scenario, where
a user is authenticating with a vending machine.

but the credit card holder certainly cares about paying the
correct terminal.

We assume that the devices can communicate over com-
patible wireless radios (e.g., WiFi) and that neither ad-
ditional out-of-band communication channels are required
(e.g., ultrasound) nor is additional hardware present on the
devices (e.g., accelerometers). We assume that trusted de-
vices (the pairing device and the witness devices) already
share some pre-existing secret – an SSL certificate or a WPA
key, for example. We also assume that the trusted devices
have not been compromised a priori (e.g., malware).

Figure 2: Different paths radio signals can take to
a receiver. When A and B are close together, they
share similar radio paths to D; conversely when they
are separated, the paths are likely to be different.

2.1 Sensing Proximity
As a radio wave propagates from its source, it is affected

by several factors such as multipath, fading, shadowing, and
interference. These factors are both time and environment
specific and are difficult to predict. Moreover, as move-
ment is introduced into an environment, the unpredictability
of the radio environment increases dramatically. However,
when two devices are in close physical proximity, they often
share a very similar radio path to other wireless devices. As

332

(a) 10cm (b) 1m

(c) 2m (d) 4m

Figure 3: RSS values for transmitters separated by 10cm, 1m, 2m and 4m as observed by a single device on
the wrist. When the transmitters are close, the RSS values are highly correlated.

devices are separated by more space, this path quickly once
again diverges and becomes difficult to predict. Figure 2
demonstrates this idea.

Ensemble is based on the assumption that witness devices
will perceive similar disturbances and fluctuations in the ra-
dio path to the legitimate pairing devices, which are in close
physical proximity. Conversely, if the pairing devices are not
in close physical proximity, the fluctuations observed will not
be similar. It is not required that trusted witness devices are
nearby (only within wireless range), nor that any device is
stationary.

We restrict ourselves to using only simple Received Signal
Strength (RSS) information on a per-packet level to infer
physical proximity. In the future, detailed physical layer
information may be available from commodity wireless net-
working hardware. We imagine that such an enhancement
could also be used to improve any system using channel in-
formation, including localization and proximity detection,
simply because the information available is richer. However,
for practical reasons, we limit ourselves in this paper to the
information available on commodity WiFi networking de-
vices, which is unlikely to change in the foreseeable future.
This consists of a single signal strength estimate for each
packet received, which must be taken during the preamble.

2.2 Attacker Model
We assume the presence of an attacker that will try to

pair with the pairing device. The attacker can eavesdrop,

spoof devices, transmit at varying power levels and may be
equipped with directional antennas. The attacker may try
to jam the channel of the pairing devices, a jamming or
DoS attack; try to pair directly with the device, an impostor
attack; mount a man-in-the-middle attack wherein two (le-
gitimate) devices in close physical proximity are attempting
to pair but in reality both have secure connections to the
attacker; or retransmit the votes of the witnesses, a replay
attack. We assume in all cases that the distance between
the pairing devices is smaller than the distance from the le-
gitimate device to the attacker. A user would easily spot an
attacker lurking centimeters away.

3. ENSEMBLE
Ensemble has two major requirements. The first is to

determine if the transmissions that the witnesses observed
were emitted by proximal devices. Secondly, the system
must be robust enough to ensure secure communication and
be resilient to attacks. We start by describing how Ensem-
ble determines proximity and then discuss a protocol that
allows the witnesses and pairing devices to exchange this
information securely.

3.1 Determining Proximity
Ensemble determines proximity in two stages. First, in-

dividual witnesses make a decision based on observed RSS
variations. Next these decisions are combined to make a
final vote on proximity.

333

3.1.1 Single Witness Algorithm
Given a set of received packets and their RSS values wit-

ness devices must determine whether the pairing devices are
co-located. This is accomplished by examining the variance
of RSS over a short period of time.

For example, Figure 3 shows 20 seconds of RSS values
for five devices (smoothed over 200ms) - the pairing device
(P), the candidate device (C) and three impostor devices
(I1-I3) - as perceived by a single witness device located on a
user’s wrist. The pairing device P serves as a reference from
which devices C, I1, I2, and I3 are separated by distances of
10cm, 1m, 2m and 4m respectively; each diagram shows the
RSS values of P and another device. In Figure 3(a), we see
that both RSS values are tightly correlated, with increases
in P’s RSS being followed by increases in C’s RSS and vice
versa. As the separation between the devices increases, the
correlation falls off. As discussed in Section 2, this tight
correlation holds for pairing devices in proximity because
the path that the signal will take to the receiver will be
similar and subjected to the same environmental factors.

To determine if devices are co-located, we analyze the tem-
poral variation in RSS values of each pairing device as ob-
served by a witness device. This process has three distinct
steps: First, we transform the set of RSS values into work-
able signalprints. Second, the signalprints are then broken
into a number of distinct segments and a correlation value
is computed between pairs of segments. Finally, we apply
a sliding window over a collection of segments to reach a
decision about proximity.

Signalprints
The broadcast nature of WiFi restricts two transmitters in
range of each other from utilizing the medium simultane-
ously. This means that transmitters will only send packets
when the channel is free which results in a constant swapping
between the transmitters and other devices that also share
the channel. As such, the packets collected by the witnesses
will be interspersed with each other. To be meaningful, we
need to analyze the RSS values for the pairing devices in
close succession. First, we define a time line that is com-
mon to both transmitters, any packets before and after this
defined time line are ignored as shown in Figure 4. We re-
fer to this time restricted set of packets as our signalprint.
To reduce the effect of random noise, we apply a smooth-
ing function that averages RSS values over a short period
of time, in our case, 200 milliseconds. The smoothing filters
out random noise and highlights recent fading. Next we ap-
ply interpolation to each signalprint to generate pairs of RSS
values - one value for each signalprint - that correspond to
the same instant. This assists in highlighting the short term
RSS variation. Figure 5 shows this technique being applied
to two signalprints. The blue circle represents RSS values
from the pairing device, while the red square represents RSS
values from the candidate device (as observed from a wit-
ness). The end result is two interpolated signalprints that
contain RSS values for the same instances in time.

Segmentation and Correlation
Next, we break up the signalprints into overlapping segments
representing a fixed amount of time. The overlapping fea-
ture of segments acts as a weight for the RSS variations.
For example, in the event that the variations are highly
uncorrelated, this feature would act as a punishment and

Figure 4: Selecting packets with a common time
range. The resulting signalprint is broken down into
segments for analysis.

(a) Before interpolation (b) After interpolation

Figure 5: Applying interpolation to signalprints to
align RSS values.

subsequently make it more difficult for the connection to be
authenticated. The segment must contain enough packets
to highlight recent RSS events, but must be short enough so
as not to prolong the authentication process. In our expe-
rience, segments of 30 seconds taken every 10 seconds work
best. In this approach, the first segment accounts for the
first 30 seconds of the signalprint, the second segment for
seconds 10 through 40, and so on and so forth.

The Pearson Coefficient
We use the Pearson correlation coefficient to determine if
variations in RSS values in two segments (one from each
of the two signalprints) are correlated. This metric returns
a value that indicates the linear relationship between the
two data sets. The range of values are from -1 to 1: a
value of -1 means that the data sets vary inversely, while 1
indicates that the sets are perfectly correlated. While we
do not expect to have a perfect correlation coefficient r = 1,
we do expect to have highly correlated changes for devices
in close proximity. Naturally, with a high r value we would
be able to conclude that pairing devices are in proximity,
while a low r value would lead to the conclusion that the
pairing devices are not. In Section 4 we analyze the effect
of choosing a threshold for r.

We apply the Pearson correlation coefficient as follows:

r =

Pn
i=1(Xi − X̄)(Yi − Ȳ)qPn

i=1(Xi − X̄)2
qPn

i=1(Yi − Ȳ)2

Where :
Xi is the RSS of the ith packet;
X̄ is the mean of the RSS values in the segment;
Yi is the RSS of the ith packet;
Ȳ is the mean of the RSS values in the segment;
and n is the number of packets in the segment.

334

The Pearson Coefficient has the interesting property of
measuring the variations in RSS and not the absolute RSS
values themselves. That is, if we consider two exact sig-
nalprints (in terms of variation) but one is offset by some
fixed number, then the correlation coefficient between these
two signalprints would be r = 1 since the variations match
exactly. Thus, this metric works well even in the presence
of heterogeneous devices that transmit at different signal
strengths.

Figure 6: Cumulative distribution function of the
Pearson correlation coefficient for the RSS values
of a single witness device and several transmitters
separated by different distances.

Figure 6 shows a cumulative distribution function (CDF)
of the Pearson correlation coefficient on a sample experiment
done in our lab. The details of the setup are similar to those
of Figure 3. This CDF shows that in this experiment, there
is a 80% chance that devices located within 10cm have an
r value higher than 0.6. Conversely for devices located 4m
apart, there is only a 4% chance that the r value will be
above 0.6. For 1m, this probability is 52%, while for 2m, it
drops to 23%. This figure clearly shows that Pearson coef-
ficient is a strong indicator of the physical proximity of two
transmitters. Judging from the figure, a sensible threshold
for the r value would be between 0.6 and 0.8. For our pur-
pose we use r = 0.7, although we explore this choice further
in Section 4.

Windowing
Each witness device uses a sliding window on the signalprint
and computes an r value for each segment in the window.
The witness then determines how many of the computed
values are at least 0.7, and if there is a majority, concludes
that the pairing devices are in proximity. Otherwise, the
witness concludes that the pairing devices are not in prox-
imity. Figure 7 shows a simple example with a window size
of 3 segments. In our experience a window size of 5 seg-
ments works well in practice. We explore this choice further
in Section 4.

Figure 7: The process of determining proximity for
each witness device. Correlation coefficients are
computed for the RSS values using sliding windows.
A decision is then reached based on a majority vote.

Detecting Static Environments
The Pearson coefficient represents the co-variation of two
sequences. If RSS values perceived by a witness device are
excessively static or constant, the Pearson coefficient may
not be an accurate indicator of when the pairing devices are
in physical proximity. We define a static environment as one
where the channel between two devices are constant and is
not subjected to multipath and fading. From a witness’s
perspective, the RSS values will only vary within a few dB.
In this case, the witness device does not conclude anything
about a particular signalprint (does not cast a vote), and
the pairing device must rely on other trusted witnesses. In
our experiments, if the variance is less than 5dB, we assume
that the environment is too static to allow for pairing.

3.1.2 Multi-Witness Algorithm
In the final step, the pairing device collects decisions from

its trusted witnesses (or alternatively one of the witness de-
vices can do this on its behalf). In a simple voting scheme
executed by the pairing device, if at least 50% of these de-
vices have concluded that the pairing is legitimate, then the
connection is authenticated. Otherwise, it is rejected.

There may be cases where Ensemble cannot securely de-
termine proximity – when fewer than half of the witnesses
cast a vote due to lack of RSS variability. In such situa-
tions, Ensemble prompts the user to reattempt pairing in
a different location or to introduce some variation into the
environment. Fortunately, such cases do not occur often
in typical dynamic environments, such as those containing
people. However, if an environment happens to be particu-
larly static, it is simple for a user to introduce variation into
the radio channel by moving either the pairing device and
the candidate device or the witnesses (in our evaluation, it
is the witnesses that are moved to vary the channel). The
movement creates entropy in the environment and allows the
witness to determine if the variations are correlated.

3.2 Ensemble Protocol
Suppose a user, Alice, needs to pair her phone with Bob’s

phone. She has a trusted ensemble of devices that includes,

335

for example, her portable music player and her netbook in
her backpack. Similarly, Alice could also use as witnesses
any other trusted devices that are in wireless range, not just
her body-worn devices, such as her colleague’s phone in the
office next door, the access point in her office or her desktop
computer.

The Ensemble pairing process consists of the following
steps:

1. Alice sets up her trusted ensemble (the witnesses and
the pairing device) with shared key KEY. The key is
used to encrypt messages amongst her devices. She
only needs to do this once when she is configuring her
ensemble. We assume that ensemble setup is done in a
reasonable secure environment (e.g., the user’s home)
and is not subject to attack.

2. Alice and Bob initiate pairing and their phones estab-
lish a secure channel - though it may not be authentic.
This can be accomplished using a known cryptographic
method (for example, DSA or RSA) to generate a
shared key that will be used to encrypt their commu-
nication. In our prototype, we use the Diffie-Hellman
key exchange (though any other cryptographic algo-
rithm that is available to the pairing devices can be
used). The result is the session key SKEY.

3. Alice’s phone (the pairing device) informs the wit-
nesses about SKEY. It does this by encrypting mes-
sages with KEY. This message includes a nonce that
prevents replay attacks. It also informs them about the
set of packets that it will be sending to Bob’s phone
(the candidate) by relaying the set of nonces it plans
to use.

4. The pairing device and candidate send multiple mes-
sages to each other. That is, the pairing device sends
messages to candidate encrypted with SKEY; the can-
didate sends messages to the pairing device encrypted
with SKEY. The above messages are overheard by the
witnesses.

5. Witnesses inform the pairing device about their vote.

6. The pairing device tallies the votes and determines
whether the connection with the candidate device is
authentic.

Figure 8 illustrates the message exchanges in steps 3 to 5
of the Ensemble protocol. Steps 1 and 2 rely on standard
cryptographic techniques, such as Diffie-Hellman or WPA,
and are therefore not shown.

The pairing device (P) sends a packet to the witness (W)
encrypted with KEY, containing the session key SKEY. The
packet also includes a collection of nonces which are used
to verify packets sent by P and to detect replay attacks.
Witness W decodes the packet and monitors the channel for
packets encrypted with the session key (SKEY). The witness
does not send any acknowledgments (ACKs). This is done
so that it remains unknown to attackers. The only time the
witness transmits data is at the end of the protocol when
the votes are sent.

Device P and candidate C exchange packets encrypted
with SKEY. Each of the packets sent by P also includes a
nonce from the collection that was previously communicated

Figure 8: Steps taken in the Ensemble protocol. P
sends packets to W encrypted with KEY and to
C encrypted with SKEY. The solid lines represent
messages being sent to a device while the broken
lines represent messages overheard by W.

to W. In turn W records the RSS of an overheard packet only
if it is encrypted with SKEY, and for a packet originating
from P if it also contains a non-duplicated nonce from the
sequence that P sent earlier.

At the end of the process, W sends its vote to P encrypted
with KEY, along with the session key (SKEY), and a time
stamp. This helps to prevent against replay attacks.

3.2.1 Attacks
We consider several types of attacks during the different

stages of the Ensemble protocol including: jamming attacks
(or DoS attacks); impostor attacks; man-in-the-middle at-
tacks; and replay attacks.

Session Key Setup Phase
In the initial setup phase when P and C are negotiating on
a session key an attacker can either mount a man-in-the-
middle attack or impersonate C. In a man-in-the-middle at-
tack, a malicious device attempts to pair simultaneously
with two legitimate devices that are in close physical prox-
imity, and leverages this fact to successfully authenticate.
In this scenario, the attacker starts two independent pairing
sessions for P and C. The resulting session key will be com-
promised and the pairing device and candidate device will
each have an unauthenticated channel with the attacker.

In an impostor attack, the attacker successfully disables
one of the pairing devices and tries to pair with the other
legitimate device. In this case the attacker can impersonate
C by jamming its messages and spoofing its identity. In both
attacks described above, the attacker still has to circumvent
the proximity detection stage in order to compromise the
pairing process.

336

Transmission of SKEY and nonce to W
The message that P sends to W that conveys the session
key and the nonce sequence cannot be forged as it requires
knowledge of KEY. The nonce sequence in the message also
prevents a replay attack, in which the attacker saves these
messages and rebroadcasts them at a later time in order to
achieve a successful authentication.

Messages transferred between P and C
At this stage the attackers have already compromised the
session key, have two channels set up with P and C, or are
impersonating C. This is the most complex part of the pro-
tocol to spoof as it requires the attacker to prove their prox-
imity before the channel is authenticated.

The impostor may try to vary her transmission power to
compensate for environmental changes and mimic the RSS
variation that she observes from P. However, the RSS varia-
tion that the attacker observes is the variation of the channel
between herself and P. It is not the variation that each wit-
ness observes from P. In its present configuration, this attack
will not be successful.

To be successful, the impostor must determine the vari-
ation of all of the channels between the witnesses and P,
account for the natural fading that occurs in the environ-
ment, and adjust her transmission power to be in sync with
the RSS variations that each witness perceives. The at-
tacker will need several directional antennas each pointed to
a witness to simulate the RSS variation of that channel and
P. This is further complicated since witnesses only reveal
themselves at the end of the protocol when they cast their
votes.

For the man-in-the-middle attack to be successful the at-
tacker needs to intercept the entire packets that P and C
transmit, jam them before they reach the witnesses, and
rebroadcast them to the witnesses by either using two ra-
dios that are physically close, or one radio that is capable of
simulating the two pairing devices. While theoretically pos-
sible, jamming all the witnesses is in practice an extremely
difficult and complex task that requires multiple directional
antennas, specifically since the attacker may not know where
these devices are located. The environment may complicate
this task even further if it is crowded or if the user is moving.

Finally, the nonces in the messages sent by P prevent a
replay attack.

Message from W to P with Votes
At this stage a replay attack is possible on the message con-
taining the votes. Consider the case where an attacker has
successfully disabled C and is now impersonating it. At the
end of the protocol, the attacker jams the witnesses’ votes to
P and retransmits the votes of an earlier session where two
devices were authenticated. To negate this attack the mes-
sage with the votes contains the session key used by the pair-
ing devices. This ties the votes to a particular session and
makes it difficult to use in a replay attack. If the attacker
manages to spoof the current session key from one that was
reused, the time stamp field comes into effect. Device P
can discard votes that take longer than a fixed threshold to
arrive.

3.2.2 DoS Attack
If the attacker is able to jam messages to W and messages

between P and C, Ensemble will be unable to detect that

an attack is taking place. In response to this, Ensemble can
employ some of the strategies suggested by Xu [23] to detect
when these attacks are taking place. One strategy includes
having the pairing device keep a ratio of messages that are
actually sent to messages that need to be sent. If this ratio
goes above a set threshold, then the pairing device can infer
that it cannot use the channel and that a DoS attack is
taking place.

4. EVALUATION
In this section, we first present our experimental setup,

followed by the results of our evaluation.

4.1 Experimental Setup
We collected data for our experiments using ten Nokia

N800 Internet Tablets. The tablets were running a modi-
fied 2.6.29-omap Linux kernel with the open source stlc45xx
WLAN driver. We configured five of these devices as wit-
nesses, one as the pairing device, one as the candidate device
and three as impostors (see Figure 9). The witness devices
were placed on the body of the experimenter, W1 on the
upper arm, W2 on his wrist, W3 in his back pocket, W4
in his front pocket, and W5 by his ankle. Witnesses W1 -
W5 are used as representations of where we expect mobile
devices to be found. For example, a WiFi/GPS watch, an
iPod on the shoulder, a phone (in either right or back pock-
ets) and Nike+ shoes. We note that in our evaluation all of
the witness devices are homogeneous, and in reality a user
will have different witnesses. However, since each witness
is responsible for providing its own vote based on its obser-
vation of RSS values, we believe that differences amongst
witnesses will not be an issue. The two pairing devices (P
and C) were positioned within 10 cm of each other. Finally,
the three impostor devices (I1, I2 and I3) were positioned 1,
2 and 4 meters away from P.

Figure 9: Sample setup used for experiments. De-
vices W1 - W5 are the trusted devices that act as
witnesses, P is the pairing device, C is the candidate
device and I1 - I3 are impostors. The experimenter
is about 20cm from the pairing device P.

We configured the pairing devices (P and C) and the im-
postor devices (I1-I3) to broadcast at a rate of 40 packets
per second. Simultaneously, the witness devices (W1-W5)
were put in promiscuous mode so that they could monitor
the transmissions of the other devices.

All of the transmitting devices were in the same orienta-
tion (facing the experimenter) and had a clear line of sight
to him. For Ensemble, this actually represents the worst
scenario as the lack of obstacles limits the degree of multi
path and reduces channel variability.

337

We took samples in three different configurations: static,
in which the experimenter was standing still facing the par-
ing devices and trying to remain motionless; back, in which
the motionless experimenter faced away from the transmit-
ting devices; and moving, in which the pairing and impostor
devices remain fixed, but the experimenter was moving.

We collected measurements in four different locations: our
Lab, in the Lounge and Atrium of our University building,
and in a basement of a house. The Lab consisted of a confer-
ence room with a large conference table and several chairs.
The devices used for transmitting were placed on the con-
ference table. The lab represents an area with high network
traffic, with an average of 23 access points (APs) being dis-
covered. The basement represents a location with minimal
interference from WiFi APs and on average has 2 APs. It is
a small space, with a lot of furniture and many other small
obstacles. The lounge is a large open room with several
chairs and desks, the devices were placed on the chairs. The
Atrium is an open area on the ground floor of our University
building and generally has people walking nearby. This is
the only experiment where other persons were present during
sampling, for all other experiments, only the experimenter
was present.

In each of the above four locations and for each of the
three configurations, we collected samples for ten minutes.
We then divided each of the ten minute traces into 50 runs
of continuous RSS measurements. In our evaluation, we
treat each run as an independent opportunity to determine
proximity. Unless otherwise indicated, the results we present
use runs of 70 seconds in length; this corresponds to a 30
second segment size, and a decision window of size five.

4.2 Results
We answer the following questions:

1. How does Ensemble perform?

2. What is the effect of the ensemble size on system per-
formance?

3. How does Ensemble perform when the two pairing de-
vices are different?

4. What is the effect of varying the Pearson’s threshold
on system performance?

5. How sensitive is performance to the segment size and
the decision window size?

6. Does access to a directional antenna give any benefits
to an attacker?

4.2.1 Performance
We characterize the performance of Ensemble in terms

of its acceptance rate, the fraction of time that the system
identifies devices as being in proximity. Ideally, the accep-
tance rate for pairing P with C, which we will refer to as
acceptancep, would be 100%, while the acceptance rate for
pairing P with any of the impostor devices, which we will
refer to as acceptancei, would be 0%.

Ensemble determined that the traces collected for the
static and back experiments lacked sufficient variation in the
environment to allow secure proximity detection (i.e., both
acceptancep and acceptancei were 0%). Thus, for these envi-
ronments, Ensemble would prompt the user to induce some

variation in the channel (e.g., by moving) before making a
decision. We believe that this represents a minor inconve-
nience to the user that is more than offset by Ensemble’s
success in preventing pairing with impostor devices under
these conditions. In the rest of this section we focus our
discussion on experiment traces collected from the moving
configuration.

Figure 10: Acceptance rate of Ensemble across all
environments.

Figure 10 shows how Ensemble performs in different en-
vironments when the channels are being varied.

On average, Ensemble correctly identifies the two pairing
devices as being in close proximity in 81% of cases. The
system’s average acceptance rate for impostor devices lo-
cated 1, 2 and 4 meters away is 7.5%, 2.4% and 0.5%. The
acceptance rate for devices located 5 meters away or more
(not shown) was 0%. From the above, we note that Ensem-
ble is incapable of correctly rejecting devices located within
1m; however, realistically, we do not expect that an attacker
would be within this range. In contrast, Ensemble is reliable
at detecting impostors that are 2 or more meters away.

4.2.2 Ensemble Size
Figure 11 shows the average acceptance rate with varying

number of devices across all environments that we sampled.
The bars in the figure show the distribution of the data;
the horizontal line on each bar represents the median value.
The part of the bar above the median value shows the 75th
percentile of the data, while the part below shows the 25th
percentile of the data, and the white circle shows the mean
of the distribution. We found that on average, a single de-
vice is incapable of making a reliable decision of proximity.
This is reflected in the height of the bars for single devices
for all locations. However, as devices combine their observa-
tions, we see that they become more accurate in determining
proximity. From this figure we can see that on average, three
devices are capable of achieving close to the performance of
the five devices, and seems to be the optimal point for bal-
ancing number of devices and performance achieved.

4.2.3 Device Heterogeneity
The devices used for the previous experiments were iden-

tical and had similar configurations. In a real setting, this is

338

Figure 11: Acceptance rate across all environments with different number of devices.

Figure 12: Acceptance rate of Ensemble with USB
dongles and N800s.

not likely to be the case. To test Ensemble’s robustness to
device heterogeneity, we replaced the candidate device (C)
and the three impostors (I1-I3) with Belkin USB WiFi don-
gles that were connected to a laptop. We set the dongles to
transmit at 40 packets per second, and collected data for 10
minutes.

Figure 12 shows that Ensemble is robust to hardware vari-
ations and performs acceptably across different hardware.
We choose two environments for this experiment, the lab,
which so far gave us the best results, and the basement,
which has given us the worst results from the set. Our cri-
teria for best and worst results are based on the false ac-
ceptance rates for the different environments. For example,
the Lab had the least amount of false positives while the
basement had the most number of false positives. A user
can easily re-pair in the case of a false negative, but pairing
with an attacker has serious implications. The figure shows
that while the acceptance rate for devices in proximity goes
down somewhat, Ensemble actually improves in its ability
to detect impostors located 2 or more meters away.

Figure 13: Performance of Ensemble with a varying
r threshold.

4.2.4 Pearson’s Coefficient Threshold Sensitivity
Figure 13 shows the effect of varying the Pearson’s Coeffi-

cient threshold r on Ensemble’s mean acceptance rate across
all environments. A high r value results in the system not
accepting any devices, while a low r value will accept most
devices in spite of proximity. We found that a value of r =
0.7 (this is the value of r that we use throughout this paper
unless otherwise stated) gives us a good balance in all envi-
ronments accepting the majority of instances where devices
are within 1m and rejecting most instances when devices are
further apart.

4.2.5 Segment Size Sensitivity
In our configuration, we use a segment size of 30 seconds

to calculate an r value. Recall that a segment is a part of
the signalprint consisting of consecutive RSS values within a
specific time range. That is, all RSS values received within
a 30 second period. In figure 14 we show the average effect
of varying the segment size on the performance of Ensem-

339

Figure 14: The effect of varying segment size (in
seconds) on the performance of Ensemble. As the
segment size increases, performance of Ensemble im-
proves up to a threshold.

ble across all tested environments. As the segment size in-
creases, the acceptance rate of Ensemble improves, until a
size of about 30 - 35 seconds. After this threshold, there is
no considerable increase in performance and the acceptance
rate for devices in proximity begins to level off. Beyond this
point Ensemble’s performance actually decreases as the sys-
tem begins to accept more devices located further apart. We
believe this to be the correlation of large scale fading coming
into effect.

4.2.6 Decision Window Size Sensitivity
Recall that the decision window is the number of overlap-

ping segments a witness device uses in order to make a deci-
sion, and that we use a decision window of five to determine
proximity. In this Section we evaluate the effect of vary-
ing the decision window on the performance of Ensemble.
With more windows available to make a decision, Ensem-
ble’s performance should improve. The drawback of using
more windows is the user will have to wait a longer period
for a decision. Figure 15 shows the performance of Ensem-
ble in all environments as the decision window is varied. As
the window is increased across all environments, Ensemble is
able to detect almost all attackers within 1m. In our worst
environment, the basement, increasing the window size to 10
(this represents 120 seconds) improves the performance of
Ensemble significantly, as only pairing devices within prox-
imity are accepted, and a fraction of impostors at 2m away.

4.2.7 Directional Attackers
We evaluate whether an attacker gains an advantage by

using a directional antenna by adding a new impostor to
the setup shown in Figure 9. The new impostor is a laptop
positioned 5m away from P and equipped with an Orinoco
Gold WiFi card with an external directional antenna. The
directional attacker also has clear line of sight to the exper-
imenter and the trusted devices.

We test two scenarios: the first in which the attacker is
just pointing the directional antenna at the trusted devices
(while the experimenter is moving); and the second where

Figure 16: RSS of P and impostor with directional
antenna.

Figure 17: RSS of P and impostor with directional
antenna and hand waving.

the attacker creates random variation in the channel be-
tween the directional antenna and the receivers by moving
her hand in front of the antenna in an attempt to dupe the
system. This randomly varies the signal strength between
the receivers and the attacker.

Figures 16 and 17 show the RSS for packets sent by P
and the directional impostor (shown as I4). The differences
between the two pairs of signals are clear even to the naked
eye. Thus, it is not surprising that Ensemble’s acceptance
rate for the directional impostor in both configurations is
0% as Ensemble can easily detect that the random variation
does not correlate with the pairing device.

It would be difficult for an attacker to infiltrate Ensemble
if trying to impersonate a trusted device. To be successful,
the attacker would either need to be in proximity of the
pairing device, or be able to predict how the wireless channel
will vary over the period and compensate by adjusting her
signal strength accordingly. The former is clearly easier to
accomplish.

340

(a) Atrium (b) Basement

(c) Lab (d) Lounge

Figure 15: The acceptance rate of Ensemble in different environments as the decision window is varied. As
the decision window increases, Ensemble is able to detect impostors within 1m.

5. DISCUSSION AND EXTENSIONS
We see promise in the use of channel variations as a means

for detecting proximity. The simple classifier used for En-
semble worked effectively in different environments. We
envision that with richer information from the PHY layer,
groups of devices could predict with a higher degree of con-
fidence whether two transmitters are in close physical prox-
imity.

The high-level techniques employed by Ensemble suggest
several interesting extensions and applications of secure prox-
imity detection. In this section, we briefly touch on two such
extensions.

Activity Recognition
The proximity information inferred by Ensemble can be used
for purposes other than secure pairing. A smart-home or
smart-office could monitor the proximity relationships of an
occupant’s personal devices and those in the smart-space.
As personal devices are observed in proximity to successive
non-mobile devices, coarse location, occupancy and paths
can be inferred. Proximity to sequences of semantically sim-
ilar devices (e.g. stove, refrigerator, dishwasher) can be used
to infer high-level activity (e.g. preparing food). While the
observations offered by Ensemble are coarse, they have the
advantage that they require no additional software or hard-
ware for wirelessly networked devices to be detected as prox-
imal.

Human-based Authentication
Throughout this paper, Ensemble has been evaluated from
the context of a device. In reality however, a mobile de-
vice often acts only as an agent of a user; we would ideally
like to provide authentication of users themselves. By au-
tomatically attempting to pair with each different on-body
device, we could allow users to authenticate whenever any
of their devices are in close physical proximity with a pre-
viously unknown device, aligning more naturally the idea
of authenticating a user. The authentication of Alice and
Bob’s phones for example, by a chain-of-trust authenticates
all of Alice and Bob’s respective ensembles. Another ex-
ample is transparently authenticating the point-of-service
terminal that Alice is using without concern for the specific
devices involved.

6. RELATED WORK
The research that is closest to Ensemble is the Amigo

project [22]. Amigo also authenticates co-located devices
by using knowledge of their common radio environment as
proof of physical proximity, but uses a dramatically different
approach. In Amigo, devices interested in pairing determine
their relative proximity by passively monitoring the trans-
missions of ambient radio sources (e.g., available WiFi access
points). Based on their observations, the pairing devices in-
dependently derive a signature, which they then securely
compare to determine whether there is enough similarity to
conclude that they are in close proximity. Ensemble takes

341

the opposite approach, with the pairing devices doing the
transmission and the trusted body-worn collection of per-
sonal devices acting as infrastructure that determines prox-
imity by monitoring these transmissions.

Ensemble has several advantages over Amigo. Foremost,
Ensemble can be used to authenticate non-participating de-
vices. That is, Ensemble requires that only one of the de-
vices involved in the pairing has a trust relationship set up
with the witnesses. One can verify that a device is in close
proximity without requiring any involvement from the de-
vice beyond transmitting packets and generating a shared
key (via a known protocol). In contrast, Amigo requires
both devices involved in the pairing process to run special
purpose software. In addition, Ensemble renders the task
of faking proximity much more difficult. In Amigo an at-
tacker in control of the ambient radio sources needs to pre-
dict the channel variations between these sources and the
victim device. In contrast, in Ensemble, the attacker has
to predict the channel between the victim device and the
user’s trusted collection of devices; arguably a much harder
challenge. Furthermore, the Ensemble system is designed to
use generic cryptographic methods and is not tied to any
specific algorithm (such as WPA, SSL, Diffie-Hellman etc.).

Upon initial examination, fingerprint based localization
systems seem to offer a promising way of inferring proximity.
These systems generally provide a location estimate within
a global co-ordinate system [2, 13, 16, 12]. Most of these
approaches are however not secure as an attacker can easily
obtain an RSS signature associated with a given position.
Moreover, whereas Ensemble only needs to be calibrated
once to operate in different environments, fingerprint based
localization systems require expensive and tedious training
in every target location. This is possible because Ensem-
ble simplifies the problem. Instead of the more complex
question“Where am I?”, Ensemble aims to answer only“Are
we close?”.

Similarly, approaches such as location proofs [18], designed
to prove presence at a location at a particular time by trans-
mitting cryptographically signed timestamped location aware
hashes, are susceptible to attacks by remote devices with
sensitive directional antennas – with the appropriate hard-
ware a remote attacker can boost their transmission range
and obtain a location proof from far away.

6.1 Leveraging Radio Information
Manufacturing differences in the radio hardware have been

used to identify individual devices [4]. Patwari [17] and
Faria [6] leverage PHY information in order to distinguish
between devices in different physical locations. These tech-
niques apply when communicating with a previously known
device, i.e., the device’s hardware profile is known in ad-
vance, or when communication takes place between devices
located at well known positions, i.e., the channel between
the two devices is known ahead of time. Unfortunately, this
information (which in effect is equivalent to a shared secret
between the two devices) is not available in pervasive en-
vironments where users spontaneously pair with previously
unknown devices.

Techniques exist for deriving a secret directly from varia-
tions in the radio channel [14, 9]. These techniques are com-
plementary, as they are often focused on the task of securing
a channel between two communicating devices as opposed
to authenticating a previously unknown device. Both En-

semble and the techniques deriving a secret from the radio
channel benefit from a dynamic environment. Their com-
bination could be applied to establish a channel between
devices in close physical proximity which is both secure and
authentic without the need for any heavy-weight public key
cryptography.

6.2 Other Device Pairing Approaches
The most common pairing mechanism in-use, Bluetooth

pairing, has users provide a secret PIN number to two de-
vices. This approach is simple, but requires user involvement
and a keypad. As a result, many devices without a key-
pad use a default PIN of 0000 or 1234, completely defeating
the purpose of the PIN. Additionally, Bluetooth pairing has
been shown to be susceptible to eavesdroppers [19], who may
be equipped with sensitive directional antennas. In contrast,
Ensemble does not require users to type a PIN and is not
susceptible to eavesdropping.

Using common readings from accelerometers to establish
an association between devices shaken at the same time has
been proposed by [8] and [15]. While accelerometers are
becoming more common on mobile devices, some scenarios
may not be appropriate for shaking. For example, authenti-
cating with a public display, a vending machine or a laptop
computer would demand a different approach.

The use of physically-constrained channels have also been
explored as a means of establishing authentic connections
between devices. Examples include the use of a direct elec-
tric contact [21], infrared beacons [3, 20], ultrasound [10],
and near field communication (NFC) [1]. Unfortunately,
physically constrained channels often require extra hardware
(e.g., a special cable), and can be susceptible to attacks by
sensitive receivers that can detect dim signal refractions and
reflections.

The NearMe Wireless Proximity Server [11] gave coarse
notions of proximity using signal strength estimates. The
granularity of the proximity information in this case was
limited to rooms, which was application-appropriate. Gen-
erally, specialized hardware is needed to provide relative dis-
tance information at a finer granularity. A good example of
such a system is Relate [7], which could provide accurate
distance and orientation information within centimeters.

A public key infrastructure can side-step the problem of
authentication. However in this case, every mobile device
must have a well-known name and certificate a priori; simply
shifting the authentication problem to one of naming.

7. CONCLUSION
We introduced Ensemble, a system that determines if two

devices are in close physical proximity by taking advantage
of the similarity of the channel between these devices and
a third, observing device. This system leverages the many
devices that users already possess to aid in this process.
We showed that while it may be difficult for one device to
determine proximity, an ensemble of devices is able to do so
reliably.

Our system is not environment specific, does not require
any recalibration, works for different hardware and is ro-
bust against several types of attacks, including impostor and
man-in-the-middle attacks. We showed that Ensemble is ca-
pable of detecting attackers located at least 2m away. We
found that it is difficult to determine proximity in static
environments, but we can reliably detect these cases and

342

prompt the user accordingly. We evaluated Ensemble with
WiFi enabled mobile devices and showed that we can accu-
rately determine when devices are in close proximity.

8. REFERENCES
[1] Near field communication (nfc).

http://www.nfc-forum.org/resources/faqs.

[2] P. Bahl and V. N. Padmanabhan. RADAR: An
in-building RF-based user location and tracking
system. In INFOCOM: Proceedings of IEEE
Conference on Computer Communications, volume 2,
pages 775–784, Tel-Aviv, Isreal, March 2000.

[3] D. Balfanz, D. Smetters, P. Stewart, and H. Wong.
Talking to strangers: Authentication in ad-hoc
wireless networks. In Proc. Network and Distributed
Systems Security Symposium, San Diego, CA, 2002.

[4] V. Brik, S. Banerjee, M. Gruteser, and S. Oh. Wireless
device identification with radiometric signatures. In
MobiCom ’08: Proceedings of the 14th ACM
international conference on Mobile computing and
networking, pages 116–127, New York, NY, USA,
2008. ACM.

[5] W. Diffie and M. Hellman. New directions in
cryptography. IEEE Transactions on Information
Theory, pages 644–654, November 1976.

[6] D. B. Faria and D. R. Cheriton. Detecting
identity-based attacks in wireless networks using
signalprints. In WiSe ’06: Proceedings of the 5th ACM
workshop on Wireless security, pages 43–52, New
York, NY, USA, 2006. ACM.

[7] M. Hazas, C. Kray, H. Gellersen, H. Agbota,
G. Kortuem, and A. Krohn. A relative positioning
system for co-located mobile devices. In MobiSys ’05:
Proceedings of the 3rd international conference on
Mobile systems, applications, and services, pages
177–190, New York, NY, USA, 2005. ACM.

[8] L. E. Holmquist, F. Mattern, B. Schiele, P. Alahuhta,
M. Beigl, and H.-W. Gellersen. Smart-its friends: A
technique for users to easily establish connections
between smart artefacts. In UbiComp ’01: Proceedings
of the 3rd International Conference on Ubiquitous
Computing, September 2001.

[9] S. Jana, S. N. Premnath, M. Clark, S. K. Kasera,
N. Patwari, and S. V. Krishnamurthy. On the
effectiveness of secret key extraction from wireless
signal strength in real environments. In MobiCom ’09:
Proceedings of the 15th ACM international conference
on Mobile computing and networking, pages 321–332,
New York, NY, USA, 2009. ACM.

[10] T. Kindberg and K. Zhang. Validating and securing
spontaneous associations between wireless devices. In
ISC ’03: Proceedings of the 6th Information Security
Conference, Bristol, UK, 2003.

[11] J. Krumm and K. Hinckley. The nearme wireless
proximity server. In UbiComp ’04: Proceedings of the
8th International Conference on Ubiquitous
Computing, pages 283–300, Notthinham, UK,
September 2004. Springer.

[12] A. Ladd, K. Bekris, G. Marceau, A. Rudys,
L. Kavraki, and D. Wallach. Robotics-based location
sensing using wireless ethernet. In MobiCom ’02:
Proceedings of the 8th ACM International Conference

on Mobile Computing and Networking, Atlanta, GA,
USA, 2002.

[13] A. LaMarca, Y. Chawathe, S. Consolvo, J. Hightower,
I. Smith, J. Scott, T. Sohn, J. Howard, J. Hughes,
F. Potter, J. Tabert, P. Powledge, G. Borriello, and
B. Schilit. Place lab: Device positioning using radio
beacons in the wild. In Proceedings of the Third
International Conference on Pervasive Computing,
Lecture Notes in Computer Science. Springer-Verlag,
May 2005.

[14] S. Mathur, W. Trappe, N. Mandayam, C. Ye, and
A. Reznik. Radio-telepathy: extracting a secret key
from an unauthenticated wireless channel. In
MobiCom ’08: Proceedings of the 14th ACM
international conference on Mobile computing and
networking, pages 128–139, New York, NY, USA,
2008. ACM.

[15] R. Mayrhofer and H. Gellersen. Shake well before use:
Authentication based on accelerometer data. In
Proceedings of the 5th International Conference on
Pervasive Computing. Springer, 2007.

[16] V. Otsason, A. Varshavsky, A. LaMarca, and
E. de Lara. Accurate gsm indoor localization. In
UbiComp ’05: Proceedings of the 7th International
Conference on Ubiquitous Computing, Tokyo, Japan,
September 2005.

[17] N. Patwari and S. K. Kasera. Robust location
distinction using temporal link signatures. In
MobiCom ’07: Proceedings of the 13th annual ACM
international conference on Mobile computing and
networking, pages 111–122, New York, NY, USA,
2007. ACM.

[18] S. Saroiu and A. Wolman. Enabling new mobile
applications with location proofs. In HotMobile ’09:
Proceedings of the 10th workshop on Mobile
Computing Systems and Applications, February 2009.

[19] Y. Shaked and A. Wool. Cracking the bluetooth pin.
In MobiSys ’05: Proceedings of the 3rd International
Conference on Mobile Systems, Applications and
Services, Seattle, WA, June 2005.

[20] D. Smetters, D. Balfanz, G. Durfee, T. Smith, and
K. Lee. Instant matchmaking: Simple, secure virtual
extensions to ubiquitous computing environments. In
UbiComp ’06: Proceedings of the 8th International
Conference on Ubiquitous Computing, Irvine, CA,
September 2006.

[21] F. Stajano and R. J. Anderson. The resurrecting
duckling: Security issues for ad-hoc wireless networks.
In Proceedings of the 7th Security Protocols Workshop,
Cambridge, UK, 1999.

[22] A. Varshavsky, A. Scannell, A. LaMarca, and
E. de Lara. Amigo: Proximity-based authentication of
mobile devices. In J. Krumm, G. D. Abowd,
A. Seneviratne, and T. Strang, editors, Ubicomp,
volume 4717 of Lecture Notes in Computer Science,
pages 253–270. Springer, 2007.

[23] W. Xu, W. Trappe, Y. Zhang, and T. Wood. The
feasibility of launching and detecting jamming attacks
in wireless networks. In MobiHoc ’05: Proceedings of
the 6th International Symposium on Mobile Ad-hoc
Networking and Computing, New York, NY, USA,
2005. ACM.

343

