
SnowFlock: Rapid Virtual Machine Cloning for Cloud Computing

H. Andrés Lagar-Cavilla, Joseph A. Whitney, Adin Scannell, Philip Patchin, Stephen M. Rumble,
Eyal de Lara, Michael Brudno, M. Satyanarayanan†

University of Toronto and Carnegie Mellon University†
http://sysweb.cs.toronto.edu/snowflock

Abstract
Virtual Machine (VM) fork is a new cloud computing ab-
straction that instantaneously clones a VM into multiple
replicas running on different hosts. All replicas share the
same initial state, matching the intuitive semantics of stateful
worker creation. VM fork thus enables the straightforward
creation and efficient deployment of many tasks demand-
ing swift instantiation of stateful workers in a cloud envi-
ronment, e.g. excess load handling, opportunistic job place-
ment, or parallel computing. Lack of instantaneous stateful
cloning forces users of cloud computing into ad hoc prac-
tices to manage application state and cycle provisioning. We
present SnowFlock, our implementation of the VM fork ab-
straction. To evaluate SnowFlock, we focus on the demand-
ing scenario of services requiring on-the-fly creation of hun-
dreds of parallel workers in order to solve computationally-
intensive queries in seconds. These services are prominent in
fields such as bioinformatics, finance, and rendering. Snow-
Flock provides sub-second VM cloning, scales to hundreds
of workers, consumes few cloud I/O resources, and has neg-
ligible runtime overhead.
Categories and Subject Descriptors D.4.7 [Operating
Systems]: Organization and Design—Distributed Systems;
D.4.1 [Operating Systems]: Process Management—Multi-
processing / Multiprogramming / Multitasking
General Terms Design, Experimentation, Measurement,
Performance
Keywords Virtualization, Cloud Computing

1. Introduction
Cloud computing is transforming the computing landscape
by shifting the hardware and staffing costs of managing
a computational center to third parties such as Yahoo! or
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Amazon [EC2]. Small organizations and individuals are now
able to deploy world-scale services: all they need to pay is
the marginal cost of actual resource usage. Virtual machine
(VM) technology is widely adopted as an enabler of cloud
computing. Virtualization provides many benefits, including
security, performance isolation, ease of management, and
flexibility of running in a user-customized environment.

A major advantage of cloud computing is the ability to
use a variable number of physical machines and VM in-
stances depending on the needs of the problem. For exam-
ple a task may need only a single CPU during some phases
of execution but may be capable of leveraging hundreds of
CPUs at other times. While current cloud APIs allow for
the instantiation of new VMs, their lack of agility fails to
provide users with the full potential of the cloud model.
Instantiating new VMs is a slow operation (typically tak-
ing “minutes” [EC2]), and the new VMs originate either as
fresh boots or replicas of a template VM, unaware of the
current application state. This forces cloud users into em-
ploying ad hoc solutions that require considerable developer
effort to explicitly propagate application state and waste re-
sources by pre-provisioning worker VMs that remain mostly
idle. Moreover, idle VMs are likely to be consolidated and
swapped out [Steinder 2007, Wood 2007], incurring costly
migration delays before they can be used.

We introduce VM fork, a clean abstraction that simplifies
development and deployment of cloud applications that dy-
namically change their execution footprint. VM fork allows
for the rapid (< 1 second) instantiation of stateful computing
elements in a cloud environment. While VM fork is similar
in spirit to the familiar UNIX process fork, in that the child
VMs receive a copy of all of the state generated by the par-
ent VM prior to forking, it is different in three fundamen-
tal ways. First, our VM fork primitive allows for the forked
copies to be instantiated on a set of different physical ma-
chines, enabling the task to take advantage of large compute
clusters. In contrast, previous work [Vrable 2005] is limited
to cloning VMs within the same host. Second, we have made
our primitive parallel, enabling the creation of multiple child
VMs with a single call. Finally, our VM fork replicates all
of the processes and threads of the originating VM. This en-
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(a) Sandboxing (b) Parallel Computation
state = trusted_code()
ID = VM_fork(1)
if ID.isChild():
untrusted_code(state)
VM_exit()

else:
VM_wait(ID)

ID = VM_fork(N)
if ID.isChild():
parallel_work(data[ID])
VM_exit()
else:
VM_wait(ID)

(c) Load Handling (d) Opportunistic Job
while(1):
if load.isHigh():
ID = VM_fork(1)
if ID.isChild():
while(1):
accept_work()

elif load.isLow():
VM_kill(randomID)

while(1):
N = available_slots()
ID = VM_fork(N)
if ID.isChild():
work_a_little(data[ID])
VM_exit()
VM_wait(ID)

Figure 1: Four programming patterns based on fork’s stateful
cloning. Forked VMs use data structures initialized by the parent,
such as data in case (b). Note the implicit fork semantics of
instantaneous clone creation.

ables effective replication of multiple cooperating processes,
e.g. a customized LAMP (Linux/Apache/MySql/Php) stack.

VM fork enables the trivial implementation of several
useful and well-known patterns that are based on stateful
replication, e.g., inheriting initialized data structures when
spawning new workers. Pseudocode for four of these is il-
lustrated in Figure 1 – sandboxing of untrusted code, instan-
tiating new worker nodes to handle increased load (e.g. due
to flash crowds), enabling parallel computation, and oppor-
tunistically utilizing unused cycles with short tasks. All four
patterns exploit fork’s ability to create stateful workers, and
further, they all exploit fork’s ability to instantaneously cre-
ate workers.

SnowFlock, our implementation of the VM fork abstrac-
tion, provides swift parallel stateful VM cloning with lit-
tle runtime overhead and frugal consumption of cloud I/O
resources, leading to good scalability. SnowFlock takes ad-
vantage of several key techniques. First, SnowFlock utilizes
lazy state replication to minimize the amount of state prop-
agated to the child VMs. Lazy replication allows for ex-
tremely fast instantiation of clones by initially copying the
minimal necessary VM data, and transmitting only the frac-
tion of the parent’s state that clones actually need. Second, a
set of avoidance heuristics eliminate substantial superfluous
memory transfers for the common case of clones allocating
new private state. Finally, exploiting the likelihood of child
VMs to execute very similar code paths and access common
data structures, we use a multicast distribution technique for
VM state that provides scalability and prefetching.

We evaluated SnowFlock by focusing on a demanding in-
stance of Figure 1 (b): interactive parallel computation, in
which a VM forks multiple workers in order to carry out a
short-lived, computationally-intensive parallel job. We have
conducted experiments with applications from bioinformat-
ics, quantitative finance, rendering, and parallel compilation.
These applications are deployed as Internet services [NCBI,

EBI] that leverage mass parallelism to provide interactive
(tens of seconds) response times to complex queries: find
candidates similar to a gene, predict the outcome of stock
options, render an animation, etc. On experiments conducted
with 128 processors, SnowFlock achieves speedups coming
within 7% or better of optimal execution, and offers sub-
second VM fork irrespective of the number of clones. Snow-
Flock is an order of magnitude faster and sends two orders of
magnitude less state than VM fork based on suspend/resume
or migration.

2. VM Fork
The VM fork abstraction lets an application take advantage
of cloud resources by forking multiple copies of its VM, that
then execute independently on different physical hosts. VM
fork preserves the isolation and ease of software develop-
ment associated with VMs, while greatly reducing the per-
formance overhead of creating a collection of identical VMs
on a number of physical machines.

The semantics of VM fork are similar to those of the fa-
miliar process fork: a parent VM issues a fork call which
creates a number of clones, or child VMs. Each of the forked
VMs proceeds with an identical view of the system, save
for a unique identifier (vmid) which allows them to be dis-
tinguished from one another and from the parent. However,
each forked VM has its own independent copy of the operat-
ing system and virtual disk, and state updates are not propa-
gated between VMs.

A key feature of our usage model is the ephemeral nature
of children. Forked VMs are transient entities whose mem-
ory image and virtual disk are discarded once they exit. Any
application-specific state or values they generate (e.g., a re-
sult of computation on a portion of a large dataset) must be
explicitly communicated to the parent VM, for example by
message passing or via a distributed file system.

VM fork has to be used with care as it replicates all the
processes and threads of the parent VM: conflicts may arise
if multiple processes within the same VM simultaneously
invoke VM forking. We envision that VM fork will be used
in VMs that have been carefully customized to run a single
application or perform a specific task, such as serving a web
page. The application has to be cognizant of the VM fork
semantics, e.g., only the “main” process calls VM fork in a
multi-process application.

The semantics of VM fork include integration with a ded-
icated, isolated virtual network connecting child VMs with
their parent. Upon VM fork, each child is configured with
a new IP address based on its vmid, and it is placed on
the same virtual subnet as the VM from which it was cre-
ated. Child VMs cannot communicate with hosts outside this
virtual network. Two aspects of our design deserve further
comment. First, the user must be conscious of the IP re-
configuration semantics: for instance, network shares must
be (re)mounted after cloning. Second, we provide a NAT
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layer to allow the clones to connect to certain external IP
addresses. Our NAT performs firewalling and throttling, and
only allows external inbound connections to the parent VM.
This is useful to implement for example a web-based fron-
tend, or allow access to a dataset provided by another party.

3. Design Rationale
Performance is the greatest challenge to realizing the full
potential of the VM fork paradigm. VM fork must swiftly
replicate the state of a VM to many hosts simultaneously.
This is a heavyweight operation as VM instances can easily
occupy GBs of RAM. While one could implement VM fork
using existing VM suspend/resume functionality, the whole-
sale copying of a VM to multiple hosts is far too taxing, and
decreases overall system scalability by clogging the network
with gigabytes of data.

Figure 2 illustrates this by plotting the cost of suspend-
ing and resuming a 1GB VM to an increasing number of
hosts over NFS (see Section 5 for details on the testbed).
As expected, there is a direct relationship between I/O in-
volved and fork latency, with latency growing to the order
of hundreds of seconds. Moreover, contention caused by
the simultaneous requests by all children turns the source
host into a hot spot. Despite shorter downtime, live migra-
tion [Clark 2005, VMotion], a popular mechanism for con-
solidating VMs in clouds [Steinder 2007, Wood 2007], is
fundamentally the same algorithm plus extra rounds of copy-
ing, thus taking longer to replicate VMs.

A second approximation to solving the problem of VM
fork latency uses our multicast library (see Section 4.5) to
leverage parallelism in the network hardware. Multicast de-
livers state simultaneously to all hosts. Scalability in Fig-
ure 2 is vastly improved, but overhead is still in the range of
minutes. To move beyond this, we must substantially reduce
the total amount of VM state pushed over the network.
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Figure 2: Latency for forking a 1GB VM by suspending and
distributing the image over NFS and multicast.

Our fast VM fork implementation is based on the follow-
ing four insights: (i) it is possible to start executing a child
VM on a remote site by initially replicating only minimal
state; (ii) children will typically access only a fraction of the
original memory image of the parent; (iii) it is common for
children to allocate memory after forking; and (iv) children
often execute similar code and access common data struc-
tures.

The first two insights led to the design of VM Descriptors,
a lightweight mechanism which instantiates a new forked
VM with only the critical metadata needed to start execu-
tion on a remote site, and Memory-On-Demand, a mecha-
nism whereby clones lazily fetch portions of VM state over
the network as it is accessed. Our experience is that it is pos-
sible to start a child VM by shipping only 0.1% of the state
of the parent, and that children tend to only require a frac-
tion of the original memory image of the parent. Further, it is
common for children to allocate memory after forking, e.g.,
to read portions of a remote dataset or allocate local stor-
age. This leads to fetching of pages from the parent that will
be immediately overwritten. We observe that by augmenting
the guest OS with avoidance heuristics, memory allocation
can be handled locally by avoiding fetching pages that will
be immediately recycled. We show in Section 5 that this op-
timization can reduce communication drastically to a mere
40MBs for application footprints of 1GB (4%!). Whereas
these observations are based on our work with parallel work-
loads, they are likely to hold in other domains where a parent
node spawns children as workers that execute limited tasks,
e.g., load handling in web services.

Compared to ballooning [Waldspurger 2002], memory-
on-demand is a non-intrusive approach that reduces state
transfer without altering the behaviour of the guest OS. Bal-
looning a VM down to the easily manageable footprint that
our design achieves would trigger swapping and lead to
abrupt termination of processes. Another non-intrusive ap-
proach for minimizing memory usage is copy-on-write, used
by Potemkin [Vrable 2005]. However, copy-on-write lim-
its Potemkin to cloning VMs within the same host whereas
we fork VMs across physical hosts. Further, Potemkin does
not provide runtime stateful cloning, since all new VMs are
copies of a frozen template.

To take advantage of high correlation across memory ac-
cesses of the children (insight iv) and prevent the parent from
becoming a hot-spot, we multicast replies to memory page
requests. Multicast provides scalability and prefetching: it
may service a page request from any number of children
with a single response, simultaneously prefetching the page
for all children that did not yet request it. Our design is based
on the observation that the multicast protocol does not need
to provide atomicity, ordering guarantees, or reliable deliv-
ery to prefetching receivers in order to be effective. Chil-
dren operate independently and individually ensure delivery
of needed pages; a single child waiting for a page does not
prevent others from making progress.

Lazy state replication and multicast are implemented
within the Virtual Machine Monitor (VMM) in a manner
transparent to the guest OS. Our avoidance heuristics im-
prove performance by adding VM-fork awareness to the
guest. Uncooperative guests can still use VM fork, with re-
duced efficiency depending on application memory access
patterns.
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4. SnowFlock Implementation
SnowFlock is our implementation of the VM fork primi-
tive. SnowFlock is an open-source project [SnowFlock] built
on the Xen 3.0.3 VMM [Barham 2003]. Xen consists of a
hypervisor running at the highest processor privilege level,
controlling the execution of domains (VMs). The domain
kernels are paravirtualized, i.e. aware of virtualization, and
interact with the hypervisor through a hypercall interface. A
privileged VM (domain0) has control over hardware devices
and manages the state of all other domains.

SnowFlock is implemented as a combination of modifi-
cations to the Xen VMM and daemons that run in domain0.
The SnowFlock daemons form a distributed system that con-
trols the life-cycle of VMs, by orchestrating their cloning
and deallocation. SnowFlock defers policy decisions, such
as resource accounting and the allocation of VMs to phys-
ical hosts, to suitable cluster management software via a
plug-in architecture. SnowFlock currently supports alloca-
tion management with Platform EGO [Platform] and Sun
Grid Engine [Gentzsch 2001]. Throughout this paper we use
a simple internal resource manager which tracks memory
and CPU allocations on each physical host.

SnowFlock’s VM fork implementation is based on lazy
state replication combined with avoidance heuristics to min-
imize state transfer. In addition, SnowFlock leverages mul-
ticast to propagate state in parallel and exploit the substan-
tial temporal locality in memory accesses across forked VMs
to provide prefetching. SnowFlock uses four mechanisms to
fork a VM. First, the parent VM is temporarily suspended
to produce a VM descriptor: a small file that contains VM
metadata and guest kernel memory management data. The
VM descriptor is then distributed to other physical hosts to
spawn new VMs; the entire operation is complete in sub-
second time. Second, our memory-on-demand mechanism,
memtap, lazily fetches additional VM memory state as ex-
ecution proceeds. Third, the avoidance heuristics leverage
the cooperation of the guest kernel to substantially reduce
the amount of memory that needs to be fetched on demand.
Finally, our multicast distribution system mcdist is used to
deliver VM state simultaneously and efficiently, as well as
providing implicit pre-fetching.

The next subsection describes the SnowFlock API. We
then describe in detail each of the four SnowFlock mech-
anisms. For each we present micro-benchmark results that
show their effectiveness (see Section 5 for testbed details).
We finish this section by discussing the specifics of the vir-
tual I/O devices of a SnowFlock VM, namely the virtual disk
and network isolation implementations.

4.1 API
Table 1 describes the SnowFlock API. VM fork in Snow-
Flock consists of two stages. First, the application uses
sf_request_ticket to place a reservation for the desired
number of clones. To optimize for common use cases in

• sf_request_ticket (n, hierarchical): Requests an allocation for
n clones. If hierarchical is true, process fork will follow VM fork, to
occupy the cores of SMP cloned VMs. Returns a ticket describing
an allocation for m ≤ n clones.
• sf_clone(ticket): Clones, using the allocation in the ticket. Re-
turns the clone ID, 0 ≤ ID ≤ m.
• sf_exit(): For children (1 ≤ ID ≤ m), terminates the child.
• sf_join(ticket): For the parent (ID = 0), blocks until all children
in the ticket reach their sf_exit call. At that point all children are
terminated and the ticket is discarded.
• sf_kill(ticket): Parent only, immediately terminates all children
in ticket and discards the ticket.

Table 1: The SnowFlock VM Fork API

SMP hardware, VM fork can be followed by process repli-
cation: the set of cloned VMs span multiple hosts, while
the processes within each VM span the physical underlying
cores. This behaviour is optionally available if the hierar-
chical flag is set. Due to user quotas, current load, and other
policies, the cluster management system may allocate fewer
VMs than requested. In this case the application has the op-
tion to re-balance the computation to account for the smaller
allocation. In the second stage, we fork the VM across the
hosts provided by the cluster management system with the
sf_clone call. When a child VM finishes its part of the com-
putation, it executes an sf_exit operation which terminates
the clone. A parent VM can wait for its children to terminate
with sf_join, or force their termination with sf_kill.

The API calls from Table 1 are available to applications
via a SnowFlock client library, with C and Python bindings.
The client library marshals API calls and communicates
them to the SnowFlock daemon running on domain0 over
a shared memory interface.

While the SnowFlock API is simple and flexible, it
nonetheless demands modification of existing code bases.
A SnowFlock-friendly implementation of the widely used
Message Passing Interface (MPI) library allows a vast cor-
pus of unmodified parallel applications to use SnowFlock’s
capabilities. Based on mpich2 [MPICH], our implementa-
tion replaces the task-launching subsystem of the library by
one which invokes sf_clone to create the desired number
of clones. Appropriately parameterized worker processes
are started on each clone. Each worker uses unmodified
MPI routines from then on, until the point of application
termination, when the VMs are joined. Future work plans
include performing a similar adaptation of the MapReduce
toolkit [Dean 2004].

4.2 VM Descriptors
A VM Descriptor is a condensed VM image that allows swift
VM replication to a separate physical host. Construction of
a VM descriptor starts by spawning a thread in the VM
kernel that quiesces its I/O devices, deactivates all but one
of the virtual processors (VCPUs), and issues a hypercall
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suspending the VM’s execution. When the hypercall suc-
ceeds, a privileged process in domain0 maps the suspended
VM memory to populate the descriptor. The descriptor con-
tains: (1) metadata describing the VM and its virtual devices,
(2) a few memory pages shared between the VM and the
Xen hypervisor, (3) the registers of the main VCPU, (4) the
Global Descriptor Tables (GDT) used by the x86 segmenta-
tion hardware for memory protection, and (5) the page tables
of the VM.

The page tables make up the bulk of a VM descriptor.
In addition to those used by the guest kernel, each process
in the VM generally needs a small number of additional
page tables. The cumulative size of a VM descriptor is thus
loosely dependent on the number of processes the VM is
executing. Entries in a page table are “canonicalized” before
saving. They are translated from references to host-specific
pages to frame numbers within the VM’s private contiguous
physical space (“machine” and “physical” addresses in Xen
parlance, respectively). A few other values included in the
descriptor, e.g. the cr3 register of the saved VCPU, are also
canonicalized.

The resulting descriptor is multicast to multiple physical
hosts using the mcdist library we describe in Section 4.5,
and used to spawn a clone VM on each host. The metadata
is used to allocate a VM with the appropriate virtual devices
and memory footprint. All state saved in the descriptor is
loaded: pages shared with Xen, segment descriptors, page
tables, and VCPU registers. Physical addresses in page table
entries are translated to use the new mapping between VM-
specific physical addresses and host machine addresses. The
VM replica resumes execution, enables the extra VCPUs,
and reconnects its virtual I/O devices to the new frontends.
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Figure 3: Fast Clone Creation. Legend order matches bar stacking
from top to bottom.

Evaluation Figure 3 presents our evaluation of the VM
descriptor mechanism, showing the time spent replicating
a single-processor VM with 1 GB of RAM to n clones in
n physical hosts. The average size of a VM descriptor for

these experiments was 1051 ± 7 KB. The time to create a
descriptor is “Save Time” (our code) plus “Xend Save” (re-
cycled and unmodified Xen code). “Starting Clones” is the
time spent distributing the order to spawn a clone to each
host. Clone creation in each host is composed by “Fetch De-
scriptor” (wait for the descriptor to arrive), “Restore Time”
(our code) and “Xend Restore” (recycled Xen code). At this
point, all clones have begun execution.

Overall, VM replication is a fast operation, ranging in
general from 600 to 800 milliseconds. Further, VM replica-
tion time is largely independent of the number of clones cre-
ated. Larger numbers of clones introduce, however, a wider
variance in the total cloning time. The variance is typically
seen in the time to multicast the VM descriptor, and is due in
part to a higher likelihood that on some host a scheduling or
I/O hiccup might delay the VM resume for longer than the
average. Despite this small variance, the net result is sub-
second VM cloning time irrespective of the size of the VM.

4.3 Memory-On-Demand
Immediately after being instantiated from a descriptor, the
VM will find it is missing state needed to proceed. In fact,
the code page containing the very first instruction the VM
tries to execute upon resume will be missing. SnowFlock’s
memory-on-demand subsystem, memtap, handles this situa-
tion by lazily populating the clone VM’s memory with state
fetched from the parent, where an immutable copy of the
VM’s memory from the time of cloning is kept.

Memtap is a combination of hypervisor logic and a user-
space domain0 process associated with the clone VM. Mem-
tap implements a copy-on-access policy for the clone VM’s
memory. The hypervisor detects when a missing page will
be accessed for the first time by a VCPU, pauses that VCPU
and notifies the memtap process. The memtap process maps
the missing page, fetches its contents from the parent, and
notifies the hypervisor that the VCPU may be unpaused.

To allow the hypervisor to trap memory accesses to pages
that have not yet been fetched, we use Xen shadow page ta-
bles. In shadow page table mode, the x86 register indicat-
ing the page table currently in use (cr3) is replaced by a
pointer to an initially empty page table. The shadow page
table is filled on demand as faults on its empty entries occur,
by copying entries from the real page table. Shadow page ta-
ble faults thus indicate that a page of memory is about to be
accessed. If this is the first access to a page of memory that
has not yet been fetched, the hypervisor notifies memtap.
Fetches are also triggered by trapping modifications to page
table entries, and accesses by domain0 of the VM’s memory
for the purpose of virtual device DMA.

On the parent VM, memtap implements a copy-on-write
policy to serve the memory image to clone VMs. To preserve
a copy of the memory image at the time of cloning, while
still allowing the parent VM to execute, we use shadow
page tables in “log-dirty” mode. All parent VM memory
write attempts are trapped by disabling the writable bit on
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shadow page table entries. Upon a write fault, the hypervisor
duplicates the page and patches the mapping of the memtap
server process to point to the duplicate. The parent VM is
then allowed to continue execution.

Our implementation of memory-on-demand is SMP-safe.
A shared bitmap is used by Xen and memtap to indicate the
presence of VM memory pages. The bitmap is initialized
when the VM is built from a descriptor, and is accessed
in a lock-free manner with atomic (test_and_set, etc)
operations. When trapping a shadow page table on-demand
fill, Xen checks the present bit of the faulting page, notifies
memtap, and buffers the write of the shadow entry. Another
VCPU using the same page table entry will fault on the still
empty shadow entry. Another VCPU using a different page
table entry but pointing to the same VM-physical address
will also fault on the not-yet-set bitmap entry. In both cases
the additional VCPUs are paused and then queued, waiting
for the first successful fetch of the missing page. When
memtap notifies completion of the fetch, the present bit is
set, pending shadow page table writes are applied, and all
queued VCPUs are unpaused.

Evaluation To understand the overhead involved in our
memory-on-demand subsystem, we devised a microbench-
mark in which a VM allocates and fills in a number of mem-
ory pages, invokes SnowFlock to have itself replicated, and
then touches each page in the allocated set. The results for
multiple microbenchmark runs totaling ten thousand page
fetches are displayed in Figure 4(a).

The overhead of page fetching is modest, averaging
275 µs with unicast (standard TCP). We split a page fetch
operation into six components. “Page Fault” indicates the
hardware page fault overheads caused by using shadow page
tables. “Xen” is the cost of the Xen hypervisor shadow page
table logic. “HV Logic” is the time consumed by our hy-
pervisor logic: bitmap checking and SMP safety. “Dom0
Switch” is the time to context switch to the domain0 mem-
tap process, while “Memtap Logic” is the time spent by the
memtap internals, consisting mainly of mapping the fault-
ing VM page. The bulk of the page-fetching time is spent in
the sixth component, “Network”, which depicts the software
(libc and Linux kernel TCP stack) and hardware overheads
of remotely fetching the page contents over gigabit Ethernet.
Our implementation is frugal and efficient, and the bulk of
the overhead (82%) comes from the network stack.

4.4 Avoidance Heuristics
The previous section shows that memory-on-demand guar-
antees correct VM execution and is able to fetch pages of
memory with speed close to bare TCP/IP. However, fetching
pages from the parent still incurs an overhead that may prove
excessive for many workloads. We thus augmented the VM
kernel with two fetch-avoidance heuristics that allow us to
bypass large numbers of unnecessary memory fetches, while
retaining correctness.

The first heuristic optimizes the general case in which a
clone VM allocates new state. The heuristic intercepts pages
selected by the kernel’s page allocator. The kernel page al-
locator is invoked when more memory is needed by a kernel
subsystem, or by a user-space process, typically requested
indirectly via a malloc call. The semantics of these opera-
tions imply that the recipient of the selected pages does not
care about the pages’ previous contents. If the pages have
not yet been fetched, there is no reason to do so.

The second heuristic addresses the case where a virtual
I/O device writes to the guest memory. Consider the case of
block I/O: the target page is typically a kernel buffer that is
being recycled and whose previous contents do not need to
be preserved. Again, there is no need to fetch this page.

The fetch-avoidance heuristics are implemented by map-
ping the memtap bitmap in the guest kernel’s address space.
When the kernel decides a page should not be fetched, it
“fakes” the page’s presence by setting the corresponding bit,
and thus prevents Xen or memtap from fetching it.

Evaluation We evaluate the effect of the guest avoidance
heuristics using SHRiMP, one of the applications described
in Section 5.1. Our SHRiMP macrobenchmark spawns n
uniprocessor VM clones and runs on each a task that de-
mands 1 GB of RAM. Figure 4(b) illustrates the results for
32 clones. While we also vary the choice of networking sub-
strate between unicast and multicast, we study here the effect
of the heuristics; we will revisit Figure 4(b) in the next sub-
section. Experiments with smaller memory footprints and
different numbers of clones show similar results and are
therefore not shown.

The avoidance heuristics result in substantial benefits,
in terms of both runtime and data transfer. Nearly all of
SHRiMP’s memory footprint is allocated from scratch when
the inputs are loaded. The absence of heuristics forces the
VMs to request pages they do not really need, inflating
the number of requests from all VMs by two orders of
magnitude. With the heuristics, state transmissions to clones
are reduced to 40 MBs, a tiny fraction (3.5%) of the VM’s
footprint.

4.5 Multicast Distribution
Mcdist is our multicast distribution system that efficiently
provides data to all cloned VMs simultaneously. It accom-
plishes two goals that are not served by point-to-point com-
munication. First, data needed by clones is often prefetched.
Once a single clone requests a page, the response also
reaches all other clones. Second, the load on the network
is greatly reduced by sending a piece of data to all VM
clones with a single operation. This improves scalability of
the system, as well as better allowing multiple sets of clones
to co-exist in the cloud.

The mcdist server design is minimalistic, containing only
switch programming and flow control logic. No atomicity
or ordering guarantees are given by the server and requests
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Figure 4: Evaluation of SnowFlock Design Principles

are processed on a first-come, first-served basis. Ensuring
reliability thus falls to receivers, through a timeout mech-
anism. We use IP-multicast in order to send data to multi-
ple hosts simultaneously. IP-multicast is supported by most
off-the-shelf commercial Ethernet hardware. Switches and
routers maintain group membership information and simul-
taneously send a frame destined for a multicast group to all
subscribed hosts. We believe this approach scales to large
clusters; IP-multicast hardware is capable of scaling to thou-
sands of hosts and multicast groups, automatically relaying
multicast frames across multiple hops.

The mcdist clients are memtap processes, which will re-
ceive pages asynchronously and unpredictably in response
to requests by fellow VM clones. For efficiency, memtap
clients batch received pages until a threshold is hit, or a page
that has been explicitly requested arrives. A single hypercall
is invoked to map the pages in a batch. A threshold of 1024
pages has proven to work well in practice.

To maximize total goodput, the server uses flow control
logic to limit its sending rate and avoid overwhelming busy
clients. Both the server and clients estimate their send and
receive rate using a weighted average of the number of bytes
transmitted or received every ten milliseconds. Clients pro-
vide explicit feedback about their current rate to the server
in request messages. The server increases its rate limit lin-
early and, when a loss is detected through a client request for
data that has already been sent, the server scales its rate limit
back. We found that scaling the rate back to three quarters of
the estimated mean client receive rate works effectively.

Another server flow control mechanism is lockstep detec-
tion, which aims to leverage the similarity in memory access
patterns across clones. For example, shortly after cloning,
VM clones share the same code paths due to a determinis-
tic sequence of kernel functions called during resumption of
the suspended VM. Large numbers of identical page requests
are generated at ostensibly the same time, i.e. in “lockstep”.
Thus, when multiple requests for the same page are received

in succession the server ignores duplicate requests immedi-
ately following the first. If the identical requests are due to
lost packets as opposed to lockstep, they will eventually be
serviced when the request is retransmitted by the client.

Evaluation We evaluate the effects of multicast, revisiting
the results obtained with SHRiMP. Recall that in Figure 4(b)
we spawn 32 uniprocessor VM clones and run on each a
SHRiMP task that demands 1 GB of RAM. Figure 4(b)
shows that our multicast distribution’s lockstep avoidance
works effectively: lockstep-executing VMs issue simultane-
ous requests that are satisfied by a single response from the
server. Hence the difference between the “Requests” and
“Served” bars in the multicast experiments. Further, even
under the extreme pressure of an uncooperative guest with
disabled heuristics, the number of pages served is reduced
dramatically, and extra overhead reduced to a minute.

Figure 4(c) shows the benefit of mcdist for a case where
an important portion of memory state is needed after cloning
and thus the avoidance heuristics cannot help. The figure
shows results from an experiment conducted with NCBI
BLAST (described in Section 5.1), which executes queries
against a 256 MB portion of the NCBI genome database
that the parent caches into memory before cloning. The fig-
ure shows speedup results for SnowFlock using unicast and
multicast, and an idealized zero-cost fork configuration in
which VMs have been previously allocated, with no cloning
or state-fetching overhead. Mcdist achieves almost linear
speedup, closely tracking the speedup exhibited with ideal
execution, while unicast does not scale beyond 16 clones.

4.6 Virtual I/O Devices in SnowFlock
Outside of the four techniques addressing fast and scalable
VM replication, SnowFlock provides a virtual disk for each
clone VM and guarantees secure network isolation.
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4.6.1 Virtual Disk
The virtual disks of SnowFlock VMs are implemented with
a blocktap [Warfield 2005] driver. Multiple views of the
virtual disk are supported by a hierarchy of copy-on-write
(COW) slices located at the site where the parent VM runs.
Each fork operation adds a new COW slice, rendering the
previous state of the disk immutable, and launches a disk
server process that exports the view of the disk up to the
point of cloning. Children access a sparse local version of
the disk, with the state from the time of cloning fetched on
demand from the disk server. The virtual disk exploits the
same optimizations as the memory subsystem: unnecessary
fetches during writes are avoided using heuristics, and the
original disk state is provided to all clients simultaneously
via multicast.

In our usage model, the virtual disk is used as the base
root partition for the VMs. For data-intensive tasks, we en-
vision serving data volumes to the clones through network
file systems such as NFS, or suitable big-data filesystems
such as Hadoop [Hadoop] or Lustre [Braam 2002]. The sep-
aration of responsibilities results in our virtual disk not being
heavily exercised. Most work done by clones is processor in-
tensive, writes do not result in fetches, and the little remain-
ing disk activity mostly hits kernel caches. Our implementa-
tion largely exceeds the demands of many realistic tasks and
did not cause any noticeable overhead for the experiments in
Section 5.

4.6.2 Network Isolation
In order to prevent interference or eavesdropping between
unrelated VMs on the shared network, either malicious or
accidental, we employ a mechanism to isolate the network.
Isolation is performed at the level of Ethernet packets, the
primitive exposed by Xen virtual network devices. Before
being sent on the shared network, the source MAC addresses
of packets sent by a SnowFlock VM are rewritten as a spe-
cial address which is a function of both the parent and child
identifiers. Simple filtering rules are used by all hosts to en-
sure that no packets delivered to a VM come from VMs that
are not its parent or a sibling. Conversely, when a packet is
delivered to a SnowFlock VM, the destination MAC address
is rewritten to be as expected, rendering the entire process
transparent. Additionally, a small number of special rewrit-
ing rules are required for protocols with payloads contain-
ing MAC addresses, such as ARP. Despite this, filtering and
rewriting impose an imperceptible overhead while maintain-
ing full IP compatibility.

5. Application Evaluation
Our evaluation of SnowFlock focuses on a particularly de-
manding scenario: the ability to deliver interactive paral-
lel computation, in which a VM forks multiple workers to
participate in a short-lived computationally-intensive paral-
lel job. This scenario matches existing bioinformatics web

services like BLAST [NCBI] or ClustalW [EBI], and other
Internet services like render or compile-farms. Users interact
with a web frontend and submit queries that are serviced by
an embarrassingly parallel algorithm run on a compute clus-
ter. These services are thus capable of providing interactive
responses in the range of tens of seconds to computationally-
demanding queries.

All of our experiments were carried out on a cluster of 32
Dell PowerEdge 1950 blade servers. Each host had 4 GB of
RAM, 4 Intel Xeon 3.2 GHz cores, and a Broadcom NetX-
treme II BCM5708 gigabit NIC. All machines were running
the SnowFlock prototype based on Xen 3.0.3, with paravir-
tualized Linux 2.6.16.29 running as the OS for both host and
guest VMs. The VMs were configured with 1124 MB of
RAM. All machines were connected to two daisy-chained
Dell PowerConnect 5324 gigabit switches. All results re-
ported are the means of five or more runs, and error bars
depict standard deviations.

5.1 Applications
We tested SnowFlock with 3 typical applications from bioin-
formatics and 3 applications representative of the fields of
graphics rendering, parallel compilation, and financial ser-
vices. We devised workloads for these applications with run-
times ranging above an hour on a uniprocessor machine, but
which can be reduced to interactive response times if over
a hundred processors are available. Application experiments
are driven by a workflow shell script that clones the VM and
launches an application process properly parameterized ac-
cording to the clone ID. The exception to this technique is
ClustalW, where we modify the application code directly.
NCBI BLAST [Altschul 1997] is perhaps the most popu-
lar computational tool used by biologists. BLAST searches
a database of biological sequences – strings of characters
representing DNA or proteins – to find sequences similar
to a query. We experimented with a BLAST search using
1200 short protein fragments from the sea squirt Ciona sav-
ignyi to query a 1.5GB portion of NCBI’s non-redundant
protein database. VM clones access the database files via an
NFS share. Database access is parallelized across VMs, each
reading a different segment, while query processing is paral-
lelized across process-level clones within each VM.
SHRiMP [SHRiMP] is a tool for aligning large collections
of very short DNA sequences (“reads”) against a known
genome. This time-consuming task can be easily parallelized
by dividing the collection of reads among many processors.
While similar overall to BLAST, SHRiMP is designed for
dealing with very short queries and very long sequences, and
is more memory intensive. In our experiments we attempted
to align 1.9 million 25 letter-long reads, extracted from a
Ciona savignyi, to a 5.2 million letter segment of the known
C. savignyi genome.
ClustalW [EBI] is a popular program for generating a mul-
tiple alignment of a collection of protein or DNA sequences.
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Like BLAST, ClustalW is offered as a web service by or-
ganizations owning large computational resources [EBI].
ClustalW builds a guide tree using progressive alignment,
a greedy heuristic requiring precomputation of comparisons
between all pairs of sequences. The pairwise comparison is
computationally intensive and embarrassingly parallel, since
each pair of sequences can be aligned independently. After
cloning, each child computes the alignment of a set of pairs
statically assigned according to the clone ID. The result of
each alignment is a similarity score. Simple socket code al-
lows these scores to be relayed to the parent, before joining
the forked VMs. Using this implementation we conducted
experiments performing guide-tree generation by pairwise
alignment of 200 synthetic protein sequences of 1000 amino
acids (characters) each.
QuantLib [Quantlib] is an open source toolkit widely used
in quantitative finance. It provides models for stock trading,
equity option pricing, risk analysis, etc. A typical quantita-
tive finance program using QuantLib runs a model over a
large array of parameters (e.g. stock prices,) and is thus eas-
ily parallelizable by splitting the input. In our experiments
we processed 1024 equity options using a set of Monte
Carlo, binomial and Black-Scholes models while varying the
initial and striking prices, and the volatility. The result is the
set of probabilities yielded by each model to obtain the de-
sired striking price for each option.
Aqsis – Renderman [Aqsis] is an open source implemen-
tation of Pixar’s RenderMan interface [Pixar], an industry
standard widely used in films and television visual effects.
Aqsis accepts scene descriptions produced by a modeler and
specified in the RenderMan Interface Bitstream (RIB) lan-
guage. Rendering is easy to parallelize: multiple instances
can each perform the same task on different frames of an an-
imation. For our experiments we fed Aqsis a sample RIB
script from the book “Advanced RenderMan” [Apodaka
2000].
Distcc [distcc] is software which distributes builds of
C/C++ programs over the network for parallel compilation.
Distcc is not embarrassingly parallel: actions are tightly co-
ordinated by a parent farming out preprocessed files for com-
pilation by children. Resulting object files are retrieved from
the children for linking. Preprocessed code includes all rel-
evant headers, thus simplifying requirements on children to
just having the same version of the compiler. In our experi-
ments we compile the Linux kernel version 2.6.16.29.

5.2 Results
We executed the above applications in SnowFlock, enabling
the combination of VM fork and process fork to take advan-
tage of our SMP hardware. For each application we spawn
128 threads of execution: 32 4-core SMP VMs on 32 physi-
cal hosts. We aim to answer the following questions:

• How does SnowFlock compare to other methods for in-
stantiating VMs?

• How close does SnowFlock come to achieving optimal
application speedup?

• How scalable is SnowFlock? How does it perform in
cloud environments with multiple applications simulta-
neously and repeatedly forking VMs, even under adverse
VM allocation patterns?

Comparison Table 2 illustrates the substantial gains Snow-
Flock provides in terms of efficient VM cloning and applica-
tion performance. The table shows results for SHRiMP us-
ing 128 processors under three configurations: SnowFlock
with all the mechanisms described in Section 4, and two ver-
sions of Xen’s standard suspend/resume that use NFS and
multicast to distribute the suspended VM image. The results
show that SnowFlock significantly improves execution time
with respect to traditional VM management techniques, with
gains ranging between a factor of two and an order of mag-
nitude. Further, Snowflock is two orders of magnitude better
than traditional VM management techniques in terms of the
amount of VM state transmitted. Despite the large memory
footprint of the application (1GB), SnowFlock is capable of
transmitting in parallel little VM state. Experiments with our
other benchmarks show similar results and are therefore not
shown.

Time (s) State (MB)
SnowFlock 70.63±0.68 41.79±0.7

S/R over multicast 157.29±0.97 1124
S/R over NFS 412.29±11.51 1124

Table 2: SnowFlock vs. VM Suspend/Resume. SHRiMP, 128
threads. Benchmark time and VM state sent.
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Figure 5: Application Benchmarks. Applications run with 128
threads: 32 VMs × 4 cores. Bars show speedup vs. a single thread
zero-cost baseline. Labels show time to completion in seconds.

Application Performance Figure 5 compares SnowFlock
to an optimal “zero-cost fork” baseline. We compare against
a baseline with 128 threads to measure overhead, and against
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a baseline with one thread to measure speedup. Zero-cost re-
sults are obtained with VMs previously allocated, with no
cloning or state-fetching overhead, and in an idle state, ready
to process the jobs allotted to them. As the name implies,
zero-cost results are overly optimistic and not representative
of cloud computing environments, in which aggressive con-
solidation of VMs is the norm and instantiation times are
far from instantaneous. The zero-cost VMs are vanilla Xen
3.0.3 domains configured identically to SnowFlock VMs in
terms of kernel version, disk contents, RAM, and number of
processors.

SnowFlock performs extremely well and succeeds in re-
ducing execution time from hours to tens of seconds for all
the benchmarks. Moreover, SnowFlock achieves speedups
that are very close to the zero-cost optimal, and comes within
7% of the optimal runtime. The overhead of VM replication
and on-demand state fetching are small. ClustalW, in par-
ticular, yields the best results with less than two seconds of
overhead for a 25 second task. This shows that tighter cou-
pling of SnowFlock into application logic is beneficial.
Scale and Agility We address SnowFlock’s capability to
support multiple concurrent forking VMs. We launch four
VMs that each simultaneously forks 32 uniprocessor VMs.
To stress the system, after completing a parallel task, each
parent VM joins and terminates its children and immedi-
ately launches another parallel task, repeating this cycle
five times. Each parent VM runs a different application;
we selected the four applications that exhibited the high-
est degree of parallelism (and child occupancy): SHRiMP,
BLAST, QuantLib, and Aqsis. To further stress the system,
we abridged the length of the cyclic parallel task so that each
cycle would finish in between 20 and 35 seconds. We em-
ployed an “adversarial allocation” in which each task uses
32 processors, one per physical host, so that 128 SnowFlock
VMs are active at most times, and each physical host needs
to fetch state from four parent VMs. The zero-cost results
were obtained with an identical distribution of VMs; since
there is no state-fetching performed in the zero-cost case,
the actual allocation of VMs does not affect those results.
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Figure 6: Concurrent Execution of Multiple Forking VMs. For
each task we allocate 32 threads (32 VMs × 1 core), and cycle
cloning, processing and joining repeatedly.

The results, shown in Figure 6, demonstrate that Snow-
Flock is capable of withstanding the increased demands of
multiple concurrent forking VMs. As shown in section 4.5,

this is mainly due to the small overall number of memory
pages sent by the combined efforts of the guest heuristics and
multicast distribution. The introduction of multiple forking
VMs causes no significant increase in overhead, although
outliers with higher time to completion are seen, resulting
in wider error bars. These outliers are caused by occasional
congestion when receiving simultaneous bursts of VM state
for more than one VM; we believe optimizing mcdist will
yield more consistent running times. To summarize, Snow-
Flock is capable of forking VMs to perform a 32-host 40-
seconds or less parallel computation, with five seconds or
less of overhead, in spite of the pressure of adversarial allo-
cations and repeated concurrent forking activity.

6. Related Work
To the best of our knowledge, we are the first group to ad-
dress the problem of low-latency stateful replication of VMs
to facilitate application deployment in cluster or cloud com-
puting environments, including the ability to deliver instan-
taneous parallelism. A number of projects have explored the
area of VM replication. The Potemkin project [Vrable 2005]
implements a honeypot spanning a large IP address range.
Honeypot machines are short-lived lightweight VMs cloned
from a static template in the same machine with memory
copy-on-write techniques. Potemkin does not address paral-
lel applications and does not fork multiple VMs to different
hosts. Remus [Cully 2008] provides instantaneous failover
by keeping an up-to-date replica of a VM in a separate host.

Copy on reference, first used for process migration [The-
imer 1985] in Accent [Zayas 1987], is a precursor to our
memory-on-demand technique. Wide-area VM migration
projects [Lagar-Cavilla 2007, Sapuntzakis 2002, Kozuch
2002] have used lazy copy-on reference for VM disk state.
The low frequency and coarse granularity of access of sec-
ondary storage allows copying large batches of state over
low-bandwidth high-latency links.

One objective of SnowFlock is to complement the ca-
pabilities of a shared computing platform. The Amazon
Elastic Compute Cloud [EC2] is the foremost utility com-
puting platform in operation today. While the details are
not publicly known, we believe it follows industry standard
techniques for the provisioning of VMs on the fly [Stein-
der 2007]: consolidation via memory sharing [Waldspurger
2002] or ballooning, resuming from disk, live migration [Clark
2005, VMotion], etc. Amazon’s EC2 claims to instantiate
multiple VMs in “minutes” – insufficient performance for
the agility objectives of SnowFlock.

Similarly, work focusing on multiplexing a set of VMs
on a physical cluster has typically resorted to standard tech-
niques, without addressing issues studied here, such as pro-
gramming primitives and performance capabilities. The term
“virtual cluster” is used by many projects [Emeneker 2007,
Foster 2006, Chase 2003] focusing on resource provision-
ing and management. We highlight Usher [McNett 2007],
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a manager of clusters of VMs that could be plugged in as
a SnowFlock resource manager. Emulab [Hibler 2008] uses
virtualization to instantiate dozens of nodes for a network
emulation experiment. Experiments are long-lived, statically
sized, and instantiation of the nodes takes tens to hundreds
of seconds.

Emulab uses Frisbee [Hibler 2003] as a multicast distri-
bution tool to apply disk images to nodes during experiment
setup. Frisbee and mcdist differ in their domain-specific as-
pects: e.g. Frisbee uses filesystem-specific compression, not
applicable to memory state; conversely, mcdist’s lockstep
detection does not apply to Frisbee’s disk distribution. We
view the use of high-speed interconnects such as RDMA or
Infiniband [Huang 2007], if available, as a viable alternative
to multicasting.

7. Conclusion and Future Directions
In this work we introduced the primitive of VM fork and
SnowFlock, our Xen-based implementation. Matching the
well-understood semantics of stateful worker creation, VM
fork provides cloud users and programmers the capacity to
instantiate dozens of VMs in different hosts in sub-second
time, with little runtime overhead, and frugal use of cloud
IO resources. VM fork thus enables the simple implementa-
tion and deployment of services based on familiar program-
ming patterns that rely on fork’s ability to quickly instantiate
stateful workers. While our evaluation focuses on interactive
parallel Internet services, SnowFlock has broad applicability
to other applications: flash crowd handling, execution of un-
trusted code components, instantaneous testing, etc.

SnowFlock makes use of two key observations. First, it
is possible to drastically reduce the time it takes to clone
a VM by copying only the critical state, and fetching the
VM’s memory image efficiently on-demand. Moreover, sim-
ple modifications to the guest kernel significantly reduce net-
work traffic by eliminating the transfer of pages that will
be overwritten. For our application these optimizations can
drastically reduce the communication cost for forking a VM
to a mere 40 MBs for application footprints of 1GB. Second,
the locality of memory accesses across cloned VMs makes it
beneficial to distribute VM state using multicast. This allows
for the instantiation of a large number of VMs at a (low) cost
similar to that of forking a single copy.

SnowFlock is an active open-source project [SnowFlock].
Our future work plans involve adapting SnowFlock to big-
data applications. We believe there is fertile research ground
studying the interactions of VM fork with data parallel
APIs such as MapReduce [Dean 2004]. For example, Snow-
Flock’s transient clones cannot be entrusted with replicating
and caching data due to their ephemeral natures. Allowing
data replication to be handled by hosts enables benefits such
as big-data file system agnosticism for the cloned VMs.

SnowFlock’s objective is performance rather than relia-
bility. While memory-on-demand provides significant per-

formance gains, it imposes a long-lived dependency on a
single source of VM state. Another aspect of our future work
involves studying how to push VM state in the background
to achieve a stronger failure model, without sacrificing our
speed of cloning or low runtime overhead.

Finally, we wish to explore applying the SnowFlock tech-
niques to wide-area VM migration. This would allow, for
example, “just-in-time” cloning of VMs over geographical
distances to opportunistically exploit cloud resources. We
foresee modifications to memory-on-demand to batch mul-
tiple pages on each update, replacement of IP-multicast, and
use of content-addressable storage at the destination sites to
obtain local copies of frequently used state (e.g. libc).

In closing, SnowFlock lowers the barrier of entry to cloud
computing and opens the door for new cloud applications.
VM fork provides a well-understood programming inter-
face with substantial performance improvements; it removes
the obstacle of long VM instantiation latencies, and greatly
simplifies management of application state. SnowFlock thus
places in the hands of users the full potential of the cloud
model by simplifying the programming of applications that
dynamically change their execution footprint. In particular,
SnowFlock is of immediate relevance to users wishing to test
and deploy parallel applications in the cloud.
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