Caching Documents with Active Properties

Eyal de Lard”, Karin Petersen, Douglas B. Terry, Anthony LaMarca, Jim Thornton, Mike
Salisbury, Paul Dourish, Keith Edwards, and John Lamping

Computer Science Laboratory
Xerox Palo Alto Research Center

Abstract In this paper we focus on how active properties affect

caching of document content in the Placeless Documents
system. Because active properties provide a mechanism to
add new behavior to a document, they can change the
gctual content delivered to the user or an application. For

Caching in the Placdess Documents system poses new
challenges because users can attach active properties to
documents. Active properties can modify the document’s
content as seen by a user. Thus, the caching mechanism w N
must take into account that a document’s content not only $X@MPle, the “translate to French” property can return an
depends on when the document was last modified, but also=""9lish document in- French. Similarly, a “summary
on the set of personal and universal properties attached to property may return a (_:ondensed version of the doc‘ﬂme”t
the document and the information on which these instead of its orlglngl in fu_II length. Furthermore, since
properties depend. Interestingly, active properties can be ui?rs can p_ersonallze .the" document use by a_tttachmg
used to help caches manage their contents by notifying different active properties to a document, caching the

them of events that affect cache consistency, by providingfr? ntenttfortthesg ?Sirs ma?/w n:je?:n that dlffelrent versions of
caches with document-specific verifiers to further check € content need to be cached. -or exampie, oné user may

on a documents consistency, and by returning attach the French translation property to a document.

information that can aid in decisions of which documents Other users may retrieve it in f[he o_rlglnal Iangu_agg or
execute a different transformation, like summarization.

to cache. Active properties therefore affect how much sharing of
. cached content can occur. Active properties also affect
1. Introduction cache consistency. The cached content of a Placeless
The Pacdess Documents project at Xerox has document depends not only on its original content, but
designed and implemented a document management also on the transformations applied by active properties.
system based on personalized document properties. In this Thus changes to the type, number or order of the
system, document properties are statements about the properties attached to a document, changes in the
context of a document or the intended behavior for the information these properties depend on, as well as

document. Sample properties are “keep at home and thechanges to the original content of the document can render
office”, “translate to French”, or “budget related”. the cached content for the document out-of-date.
Properties can be static labels like “budget related”, or The rest of the paper describes the issues and
active objects that implement a desired behavior, like opportunities of active properties for caching in the
replicating a document between a user’s home and his Placeless Documents system. In particular, we show how
office. Document properties are said to be personalized active properties themselves can be used to implement
because they are managed on a per-user basis. The scopsustom per-document caching policies. To ground the
of a property applies to a document within a document discussion we first describe the Placeless Documents
space that can be owned by an individual or a group of design in more detail. To close we report preliminary
people. This scoping rule allows different users to assign results obtained from a prototype implementation.

different meanings or behaviors to the same document.

Furthermore, properties in the Placeless Documents o p|gceless Documents Design

system can be attached to documents originating from))
arbitrary content sources: file systems, the World Wide The Placeless Documents system is designed to

Web (WWW), e-mail servers, document management provide an uniform, individualized, property-based
systems (DM1S) live video feeds. etc. Personalized Nterface to arbitrary sets of documents. The design is

properties can thus be attached to a wide range of based on the philosophy that documents of interest come

documents and be used as a uniform mechanism tofom many different sources and often have many more
interact with all these documents. consumers than authors. The system therefore needs to

“Department of Electrical and Computer Engineering, Rice University

' 1999 |EEE. Personal use of this material is permitted. However, permission
to reprint/republish this material for advertising or promotional purposes

or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works
must be obtained from the |IEEE.

accommodate the individual needs of multiple users. To
this end, the system supports two types of document
objects as illustrated in Figure 1: base documents and
document references.

static (“1999 workshop submission”). Static properties
tend to be statements about the context of a document,
while active properties serve to provide extended
functionality for the document. Active properties are

Eyal Paul Doug event driven. The properties register for events that can
occur on a document, such as getlnputStream,
N Document . -
ool corree 1099 | Leadby References getOutputStream modify property, set property, timer,

keep copy bmisson e etc. When an event occurs, all registered properties on that
AR document are invoked. In the example, both the spelling
\ / correction and the versioning properties are dispatched
when getOutputStream operations are invoked, whereas

Eyal Base the spelling corrector is also invoked on getlnputStream.
Document The replication property is invoked only as a result of

timer events, assuming that Eyal's replication between

PARC and Rice occurs only once at the end of the day.
Caching of document content is mostly affected by
active properties that transform the input or output
streams. Thus, to further understand how document
content flows between applications and the storage
systems through the Placeless Documents middleware,
consider the previous example which has been expanded
in Figure 2. Imagine that Eyal is editing the paper-draft
from MS-Word. When Word issues the save/write
request, it resulfsin a getOutputStream call on Eyal’s
reference to the paper draft. This call is forwarded from
the reference to the base document, which in turn invokes

tilde/edel ara/hotos.doc

Figure 1. Properties are attached to base
documents and document references

A base document is the link to the actual content of
the document and is generaly owned by either the author
of the content or the person or group that imported the
document into the local environment. A document
reference points to the base document. Each user of the
document owns a separate document reference. Both base
documents and document references can contain
properties, and we dee_m these properties to be “attached he call on the bit-providér The bit-provider, in this case
to documents. Properties attached to the base documen

led universal b thev are seen by all USErs n NFS client, opens the corresponding file for writing
are cafled universal because they y and returns the handle to the base document. At the base
with a reference to it. Properties attached to a reference

led personal properti nd are seen onlv b thedocument all attached active properties interested in the
areé called personal properties, a y by getOutputStream operation get dispatched for execution.
individual owner of the document reference.

. _ There is only one such property, which creates a new
In Figure 1, Eyal owns the base document since he o gjon of the content by generating a copy of the existing
created the draft of the HotOS paper. A special active y,o ment and adding a new static property to the base
property on the base document, called the bit-provider i 5 jink to that copy. The base document then returns
(shown as a disk in the figure), is responsible for o onut-stream handle to the document reference. The
retrieving the actual content from its repository. Eyal also \oference dispatches all its active properties interested in

attached an universal property to the base that saves an,. getoutputStream operation, which in this case means

oIc_I _versllzon lm;)thel pacFl)eDr eacn fime SI_Omet:r(])n_e _Ofenst_'t for that it invokes the spelling corrector. Finally the reference
writing. Eyal, Paul and Doug personalize their interactions o s g output-stream back to the application.

mgi]r t?gfeﬁzgiresthr%i?: gfersEo n;!sprogfsrgﬁzl att?;h:rge? For an active property like the spelling corrector to
maintains a co .of the contentyboth gt PARC ar?d gt Rice intercept and actually modify the content of the write
whereas one Fgf Doud’s properties indicates "Read b ' operations, the property creates a new custom output-
N n?kf 36 Becag o E aﬁ is not a native Enalish Y stream as it processes the event triggered by the
ovek err] I- ttaghse ay er Sonal roperty that ?:orrect etOutputStream operation. This custom stream
Speaxer, ,e also a S a personal property tha implements the transformations required by the property,
the paper’s spelling. Paul is less involved in writing the
paper_ Qnd,, only marks it as a 1999 worl_<sh_op ! The document content I/O model in Placeless is based on Java
submission”. Al three users see the Versioning o andoutput streams
information resulting from the universal property on the 2 Read and write operations from off-the-shelf applications are
base document, but nobody else needs to know that Eyalyangated into Placeless 1/0 operations by a NFS server layer. Newly
keeps two copies of the document, nor do Eyal and Paul developed applicationsinvoke the Placeless API directly.
know that Doug plans to review the paper by November % The API actually does not contain calls directly on document
30 h. references or base documents, but instead on document spaces, which
As demonstrated by the example, properties can be &€ the system components that manage base documents and document

. . L . references on a -user bass. For simplicity of the description,
either active (replication between PARC and Rice) or however,Weglossﬂi’gthesedeta,-,smthet;’d_ Y P

for example, it correctsthe spelling of the document being
written. When a write operation is invoked by the
application the active property can operate on the content
by virtue of the custom output-stream. In fact, the active
property hands the custom stream to the next property in
the calling chain for the getOutputStream event, or if it is
the last to the application. Basicaly, active properties that
modify the document content create a chain of custom
output-streams that will each operate subsequently on the
content that is being written. Similarly, active properties
that modify the content on read operations create chains of
custom input-streams.

MS Word
write | read

Applications

Eyal Paul Doug
Spelling \\ _ _ _
Corrector —
Property IE'
N\
AN \\
SO\ \ /
N\
V ersioning _ Eyal
property \| ﬁ
Bit provider @
i
""""""""" J\' N\ T N TTTTTTTTTTTTTTTTTT
\\\\\
N
File System ~»| /tilde/edelara/hotos.doc

Figure 2. Read and write path through the
active property mechanism.

Properties are on the read path of a document when
they express interest in the getinputStream operation and
interpose their own custom input-stream to intercept all
read operations. Similarly, properties are on the write path
if they interpose a custom output-stream to intercept all
write operations for a document. The execution of custom
input stream functionality on the read path occurs first at
the base document and then at the document reference.
Inversaly, custom output-streams on the write path are
first executed at the document reference and then at the
base document. Remember that the read and write paths
for different users have different document reference
components, but share the base document. With this
background on the Placeless system architecture, we now
discuss how active properties affect document content
caching.

3. Document Content Caching

Caching document content in the Placeess
Documents system is important for several reasons.

Document access latencies are affected by the
interposition of active property execution. Document
accesses also require content to be sent from the storage
repository to at least one, possibly two, Placeless servers —
one for the base and possibly another one for the
reference, which increases network traffic and execution
time at each of the servers. Finally, properties may be
used to state Quality-of-Service (QOS) requirements such
as “access time < .25 seconds”, which in turn can benefit
from caching.

The novel features of Placeless Documents that affect
the design of its caching architecture are:

1. Custom active properties can modify the content of a
document on a per-user basis, which may require
multiple versions of the same document to be cached.

2. The properties attached to a document and the order
in which they execute can change the resulting
document content. Cache consistency hence depends
not only on update operations on the content, but also
on transformations by properties attached to the
document.

3. Documents originate from any number of
repositories, many of which provide different
mechanisms to handle cache consistency.

The next subsections describe each of these issues in
more detail. First we focus on the issues related to cache
consistency. Second we address the issues of how to
determine which document content can be cached, how to
manage the cached content, and how to handle cache
replacement.

Cache Consistency

The content of a Placeless document seen by an
application depends on the original content stored at a
repository (WWW, file system, e-mail server, video
camera, etc.) and the transformations applied by the active
properties on the read path for a particular user. Content
cached after the transformations applied by active
properties can therefore become invalid in four ways:

1. The original source is modified. Source
modifications occur either through the Placeless system or
by changes that are not within Placeless control. When an
application, like MS-Word, updates content through the
Placeless system, as in the example above, the system can
snoop on all update operations. On the other hand, source
modifications at the original site, like updates to pages at a
web-site or applications interacting with files directly
through a file system, do not allow the Placeless system to
track these changes. This dual update model can already
be found in the WWW, where an HTTP PUT qi@n

can modify a page, but pages can also be updated without
involvement of the HTTP server that services them to
clients. Because web-servers so far manage consistency
only based on a time-to-live (TTL) invalidation scheme,
they do no need to handle these two cases differently. The

Placeless system, however, would like to support a cache
management mechanism that accommodates both update
models. Managing consstency with respect to origina
sources is further complicated in the Placeless system,
because the consistency mechanisms used by the original
repositories can vary dramatically.

2. Active properties are added, deleted or modified.
For example, when a language trandation property is
added to a document, the cached content in a different
languageisno longer valid.

3. The order of the active properties changes. For
example, the result of applying a spell checking property
to a document varies whether it is applied before or after a
language trand ation property.

4. Information used by active properties changes
Active properties may rely on information that is
completely external to the Placeless system, for example
current time, data stored in databases and other on-line
sources, or internd to the system, such as values of other

hand, verifiers are pieces of code returned to the cache
along with the document’s content. They are executed
each time an entry is retrieved from the cache and can
determine whether the entry is still valid at that time. In
particular, verifiers can check for conditions that may
change outside of Placeless control. Verifiers are returned
by active properties. For instance the bit-provider will
most likely return a verifier for the original source of the
document. Verifiers are similar to the idea of cache-
applets proposed in the active caching architecture of [2].
To illustrate the use of notifiers and verifiers
consider the HotOS paper draft example we used before,
but assuming a cache that is interposed between the
application (MS-Word) and the Placeless system. When
Eyal first opens the paper from MS-Word, a notifier
property is attached to the base document to invalidate the
cache if the file is opened for writing by another user.
Another notifier at the base tracks any additions or
deletions of active properties that could modify the

document properties like “preferredLanguage=Spanish”. content. At Eyal's document reference, a third notifier is
Again, some of these issues appear in existing systems.attached to watch for active property additions, deletions
On-line, web-based, active information services, like and for changes in the “spelling corrector” property. If
financial portfolio tracking and travel status, update their Eyal were to upgrade his spelling corrector to a new
web-pages when the underlying sources for the release, this would trigger an invalidation of the cached
information change: stock market, SABRE database, etc. content. Similarly, if Doug were to update the document,
In the WWW, the most common solution to this problem one of the notifiers at the base document would invalidate
is to make these pages uncacheable. In PlacelessEyal's cached version. The bit-provider for the file
Documents, all documents can be customized through corresponding to the paper draft returns a verifier that
active properties and hence the issue exists at a muchpolls the last-modification time of the file. The verifier
|arger scale and needs a better solution. can thus detect that the file has Changed in the file system
and invalidate its cached entry.

The power of notifiers and verifiers is that they can
be specific to both document types and active properties
applied to a document. For example, if the cached
Ydocument were a WWW document, the verifier could
implement the TTL timeout as specified in the HTTP
response. Verifiers can also serve documents that are
composed of multiple sources, like news summaries
constructed from several web sites; in that case, verifiers
can check the consistency of each of the sources. For a
document with heavy customization, like a financial
portfolio page, the verifier may invalidate the cached
entry only if there has been significant change in the stock
gauotes or even modify these values as needed.

Similarly, more sophisticated notifiers can be
constructed as needed. Furthermore, invalidation policies
could either be placed in a notifier or a verifier. For

In summary, the validity of cached content depends
on operations under the Placeless system control and
operations outside its control. Under Placeless control are
content updates through the Placeless system, propert
modifications, and changes to the ordering of properties.
Outside of Placeless control are content modifications at
the source repository of the document and changes to
external information that the active properties depend on.

Notifiersand Verifiers

To handle these different causes of cached content
invalidation, we have experimented with two
mechanismsnoatifiers and verifiers. Notifiers are active
properties themselves that are used to invalidate cach
entries resulting from changes through the Placeless
system. Notifiers send a notification to each of the

affected caches to invalidate the corresponding entries. . : . .
example, tracking external information that an active

Notifiers are similar in nature to file-system update r
callbacks [4], although, as described next, they can be ProPerty depends on could be handled by a notifier

extended by active properties to provide property-specific installed by that property or a verifier fe_t%‘med by t_he
notifications. Notifiers are more closely related to property to the cache_. In gem_eral, verifier execution
semantic validators and callbacks [5], in that semantic rades-off cache consistency with cache access time
callbacks are triggered only if some predicate is satisfied. latencies, while notifier execution adds load to the_
Notifiers, in fact, integrate the notion of semantic Placeless system. The evaluation of these tradeoffs is

validators and callbacks into one mechanism. On the other future work.

Cache M anagement The next issue to be addressed is how entries are

In addition to determining how to handle cache identified in the cache. Since the content returned by
consistency, active properties can influence whether users’ references to the same document can vary, the
documents ,are cached at all. how cached content should cache manager must be able to distinguish among these

entries in the cache. Our current implementation tags
content with both a document identifier and the user to

The type of functionality an active property . .
implements may determine how a document's content WNOM the version of the document belongs. Using both
the document identifier and user enables cache

should be cached. For example, properties that change theIm lementations to be shared between users. vet
content of the document or the bit provider may deem a di peme hes bet e ¢ : f th Y

document uncacheable if the retrieved content changes®/Singuishes between different versions of the same
each time it is accessed, e.g., its source is live video. document. However, this approach enables no sharing of
Other active properties may need to intercept operations cached entries even when the cached content for dlﬁergnt
only to invoke a service but will do nothing with the USErs actually s the same, such as when no active
content itself. As an example, an active property that properties _transform the content or when all the

creates a read-audit-trail for a document only needs to transformations requested by the users are the same.

know when read operations occur, but does not need toWhEn ?ndr(:cun}ent Asnf'rfteggﬁesjsge rtr)nyinae Q\]/:/\éeerj[h:fei? égﬁ
receive the actual content being read. Placeless lets actjvecdcne manager can no y

properties inform the cache of whether and how content return the cached content that is maintained for some
should be cached througltacheability indicator. other user. However, for subsequent accesses, content

Currently, we provide three cacheability options: entries could be shared if the cache maps a pair of

; ment an r identifiers to a content signature (e.g.,
uncacheable, cacheable but operation events need to bdocu ent and user identifie g (e.g

i 4 and wicted hing. The th heabilit D5 hash) and in turn these signatures map to the actual
riggered, and unrestricted caching. 1hetnree cacheabliity -,;ont on a cache miss for an already cached version of
options are set by all active properties on the read-path

. the same content, only the document and user identifier
?napping to the content signature needs to be established.

Finally, cache replacement policies are also affected
by active properties. Among other things, the latency of
reading a document's content can vary drastically
depending on the number and execution times of the
nactive properties attached to a document. A cache may
wish to tailor its replacement policy to favor documents
with numerous or complicated active properties to
increase the benefit that caching provides.

The mechanism we are exploring to handle cache
replacement policies with input from the properties is as

be managed, and how to handle cache replacement.

aggregate to the most restrictive value. Thus, when all
properties on the read path have executed, in addition to
the document’s content and the consistency verifiers, the
cache receives the cacheability indicator that specifies
how the content should be handled. When a property
enables caching but requests the cache to trigger operatio
events, the cache will forward the operation, but the
Placeless system will not execute them fully, instead just
use them to trigger active properties that have registered
for these events. Assuming a write-through cache, it is

sufficient for just the properties on the read-path to set the :
cacheability Jindicatof. V?/ith a write-back c%che active follows: as document content is returned through the read

properties on the write-path may need to register their path to the cache, pr(_Jperties def_in_e_ mle_uaiacerr_\ent cost
cacheability requirements as well. Although for most fOr this document. This value is initialized with the cost
properties it is likely to be sufficient if they execute on the detérmined by the bit-provider to retrieve the original
write-back operation and hence do not need write content fr_om the storage repository and with that covers
operations to be forwarded at all times, some may want to tN€ varying access latencies of different document
know exactly when each write-operation occurs. In that 'SPOSitories. Then as properties execute along the read
case these properties should set the cacheability indicatorPath. they add their costs to this initial value. Currently,

so that getOutputStream operations get forwarded to theN€ €OSt values used in the implementation are the
Placeless system. execution times of each of the active properties.

The issue of caches hiding operations that need to be4. Current mplementation
tracked has been discussed extensively in the context of \yo pave implemented a prototype of the

the WWWI2], however there the solution generally is 0 machanisms for cache consistency and cache management
make those pages for which operations are tracked yoscribed above in the Placeless system. Cache

unca_ch_eable. For_ Placeless that seemed an unreasonabl@onsistency was implemented using per document
restriction. In particular, because the number of caches

. ; o notifiers (at the base document and/or the reference) and
storing any particular document for a user is likely 10 be \qrifiers that execute at the cache to verify validity on

small, it is reasonable to assume that the caches cang,qhe pits. Properties also define whether documents can
collaborate with the Placeless system.

Original Source (size)
parcweb www.rice.edu WWW.Xerox.co.uk
(1915 bytes) (10,883 bytes) (1104 bytes)
no cache 822 1462 2284
cache miss 861 1582 2303
cache hit 10 10 10

Table 1. Document content access times in milliseconds for an application-level cache.

be cached and for what operations they can be cached.
The replacement policy used in the implementation is a
version of the Greedy-Dual-Size algorithm [1], based on
the replacement cost supplied by the properties and hit-
provider, as well as on the size of the document and the
access frequency of the document at that cache. We aso
experimented with caches co-located with the Placeless
server and on the machine where applications arerun.
Vey prdiminary results show that caching can
effectively hide the latency of a property-based system
like Placeless. Table 1 shows the type of document access
times that the system can achieve when hitting in an
application-level cache (running on the same machine as
the application). It also shows the raw overhead of filling
the cache on amiss. No active properties were associated
with the documents at either the base or the reference in
this experiment. Thus, the results show that the overhead
to create a minimum set of notifiers (to track additions
and deletions of active properties) and the returning of one
TTL-based verifier is amal when servicing a cache miss.

5. FutureWork

Understanding the tradeoffs between notifier and
verifier usage for various types of documents and
document repositories, and how best to allow active
properties to influence cache replacement policies are
aress for future work. For example, Quality of Service
(QoS) properties, like “always available” orctaess time
< .25 seconds”, may need to specify caching requirements
to tailor cache replacement policies. One possibility for
QoS properties to influence cache replacement is to inflate
replacement costs. However, we have yet to evaluate how
programmers can best set the cost values for QoS
requirements, and it may be necessary to add a more
flexible mechanism for these types of properties.
Similarly, mechanisms that tailor caching for related
documents (e.g., contained in a collection) have not been
investigated.

6. Conclusons

Document customization has been an emerging trend
in the WWW. However, in the WWW most of the
customization occurs at the original servers, like
my.yahoo.com, or by designated servers for network or
client adaptation [3]. The Placeless Documents system

allows individual users to customize their documents

through active properties. This generalization introduces

interesting new issues to the problem of document

caching: (1) per-user versions of the same document need
to be cached, (2) cache consistency depends both on
content operations and on operations that manipulate
properties, and (3) the system needs to support the
diversity of cache consistency mechanisms supported by
the documents’ source repositories.

The Placeless Documents system allows properties to
implement custom, per-document caching policies. Cache
consistency is supported through notifier and verifier
mechanisms. In particular, notifiers and verifiers can be
used to interact with the cache consistency mechanisms of
the original document sources. Properties can also expose
information used to tune replacement policies by setting
replacement costs and decide how the cache should
manage cached content by supplying cacheability
information. Evaluation of the tradeoffs in these
mechanisms is future work. However, the implementation
shows potential to achieve good performance without
sacrificing functionality or flexibility.

7. References

[1] Pe Cao and Sandy Irani. Cost-Aware WWW Proxy
Caching Algorithms. In Proceedings of the 1997 USENIX
Symposium on Internet Technology and Systems, pp. 193-
206, Dec. 1997, Monterrey, California

Pei Cao, Jn Zhang and Kevin Beach. Active Cache:
Caching Dynamic Contents on the Web. Proceedings of
IFIP International Conference on Digributed Systems
Platforms and Open Distributed Processing (Middleware
'98), pp. 373-388, September 1998, Lake Digtrict, England.

A. Fox, S. D. Gribble, E. Brewer, and E. Amir. Adapting to
Network and Client Variation via On-Demand Dynamic
Distillation. In Proceedings of the ACM 7" International
Conference on Architectural Support for Programming
Languages and Operating Systems, Boston, Oct. 1996

J. Howard, M. Kazar, S. Menees, D. Nichols, M.
Satyanarayanan, R. Sidebotham, and M. West. Scale and
Performance in a Didributed File System. ACM
Transactions on Computer Systems, 6(1):51-81, Feb. 1988.

M. Satyanarayanan. Fundamental Challenges
Mobile Computing. In Proceedings of the 15"
Symposium on Principles of Distributed Computing,
pp. 1-7, Philadelphia, PA, 1996.

(2]

(3]

(4]

in

(5]

