
A Performance Comparison of Homeless and Home-based Lazy Release
Consistency Protocols in Software Shared Memory

Alan L. Cox
�

, Eyal de Lara
�

, Charlie Hu
�

, and Willy Zwaenepoel
�

�

Department of Computer Science
�

Department of Electrical and Computer Engineering
Rice University

{ alc, delara, ychu, willy} @cs.rice.edu

Abstract
In this paper, we compare the performance of two
multiple-writer protocols based on lazy release
consistency. In particular, we compare the performance
of Princeton’s home-based protocol and TreadMarks’
protocol on a 32-processor platform. We found that the
performance difference between the two protocols was
less than 4% for four out of seven applications. For the
three applications on which performance differed by more
than 4%, the TreadMarks protocol performed better for
two because most of their data were migratory, while the
home-based protocol performed better for one. For this
one application, the explicit control over the location of
data provided by the home-based protocol resulted in a
better distribution of communication load across the
processors.

These results differ from those of a previous
comparison of the two protocols. We attribute this
difference to (1) a different ratio of memory to network
bandwidth on our platform and (2) lazy diffing and
request overlapping, two optimizations used by
TreadMarks that were not used in the previous study.

1. Introduction

In this paper, we compare two page-based software
distributed shared memory (DSM) protocols based on
lazy release consistency. In particular, we compare the
behavior of the two most popular multiple-writer
protocols, Princeton’s home-based protocol [9] and
TreadMarks’ homeless protocol [6], on a 32-processor
platform. In summary, we found that the difference in
performance between the protocols is small for most
applications. Thus, our results differ from a previous
study in which Princeton’s home-based protocol
significantly outperformed a homeless protocol [9].

We attribute the difference in our findings to two
factors. First, our platform has a different ratio of memory

to network bandwidth. This ratio influences whether it is
cheaper to use diffs, which are run-length encodings of
the modifications to a page, versus full pages to maintain
coherence. On the platform used in the previous study,
applying a large diff was more expensive than sending a
full page over the network, favoring the home-based
protocol. Second, lazy diffing and request overlapping,
two optimizations that are possible in a homeless
protocol, and are used in TreadMarks, were not used in
the previous study. In this paper, we quantify the
importance of these optimizations on TreadMarks’
performance.

We use seven applications: Red-Black SOR, IS,
Gaussian Elimination, 3D FFT, TSP, Barnes-Hut, and
Water. For four of these applications, the difference in
execution time between the two protocols is less than 4%.
For Water, IS and Barnes-Hut the difference is greater
than 4%. The TreadMarks protocol performs better for
Water and IS, two applications with mostly migratory
data. On the other hand, the home-based protocol
performs better for Barnes-Hut. The explicit control over
the location of data provided by the home-based protocol
resulted in a better distribution of communication load
across the processors.

We perform our experiments on a network of 32 PCs
using switched 100Mbps Ethernet. On this platform the
best protocol for each application achieves speedups
ranging from a worst case of 7.59 for Barnes-Hut using
the home-based protocol to a best case of 25.5 for Red-
Black SOR using either protocol. All of the programs
achieve better speedups at 16 processors than at 8
processors. Comparing the speedups at 32 processors to
the speedups at 16 processors, one program, Gaussian
Elimination, slows down on the PCs. In addition, our
results show that without lazy diffing and request
overlapping TreadMarks’ performance declines by as
much as 85%.

The rest of this paper is organized as follows. Section 2
provides the necessary background on Lazy Release
Consistency and the TreadMarks and home-based

multiple-writer protocols. Section 3 describes our
methodology, including the details on the platform that
we used and the applications that we ran. Section 4
presents the results of our comparison. Finally, section 5
summarizes our conclusions.

2. Background

2.1 Lazy Release Consistency

Lazy release consistency (LRC) [6] is an algorithm
that implements the release consistency (RC) [4] memory
model. The LRC algorithm [6] delays the propagation of
modifications to a processor until that processor performs
an acquire. An acquire marks the beginning of a critical
section. Specifically, LRC insures that the memory seen
by the processor after an acquire is consistent with the
happened-before-1 partial order [1].

2.2 Multiple-Writer Protocols

With a multiple-writer protocol, two or more
processors can simultaneously modify their copy of a
(shared) page. The two most popular multiple-writer
protocols that are compatible with LRC are the
TreadMarks protocol (Tmk) [6] and the Princeton home-
based protocol (HLRC) [9].

In both protocols modifications to (shared) pages are
detected by virtual memory faults (twinning) and captured
by comparing the page to its twin (diffing) [5]. The
protocols differ, however, in the location where
modifications are kept and in the method by which they
get propagated. These differences are described in detail
below.

2.2.1 Tmk. In Tmk, a diff is not created for a modified
(shared) page until a processor requests that diff in order
to update its copy of the page. This lazy creation of diffs
results in greater aggregation of changes, less diffing
overhead and a reduced amount of consistency
information.

When a processor faults, accessing an invalid page, it
examines the write notices for that page. The write notices
specify which processors have modified the page. Each
write notice contains a vector timestamp that specifies the
time of the modification. If one write notice’s vector
timestamp dominates the others, then the processor that
created that write notice has all of the diffs required by the
faulting processor to update its copy of the page. Thus,
the faulting processor can obtain those diffs with a single
request message. If, however, a page doesn’t have a
dominant write notice, that is, two or more write notices
have concurrent vector timestamps, then the faulting
processor has to send a request message to each of the

corresponding processors. These request messages are
overlapped to reduce the time that the faulting processor
will wait.

2.2.2 HLRC. In HLRC, every shared page is statically
assigned a home processor by the program. At a release,
which marks the end of a critical section, a processor
immediately generates the diffs for the pages that it has
modified since its last release. It then sends these diffs to
their home processor(s), where they are immediately
applied to the home’s copy of the page. The home’s copy
of a page is never invalid, but it may be write protected.

When a processor faults, accessing an invalid page, it
sends a request to the page’s home processor. In current
implementations, the home processor always responds
with a complete copy of the page, instead of one or more
diffs. Thus, a diff can be discarded by the creating and
home processors as soon as it is applied to the home
processor’s copy of the page.

2.3 Comparing the Multiple-Writer Protocols

Both protocols have strengths and weaknesses when
compared to each other. For migratory data, Tmk uses
half as many messages, because it transfers the diff(s)
directly from the last writer to next writer. (The current
implementation of Tmk avoids the problem of diff
accumulation through the methods described by Amza et
al. [2].) For producer/consumer data, the two protocols
use roughly the same number of messages. Any
difference in favor of HLRC is a result of data
aggregation. Any difference in favor of Tmk is typically
a result of the producer and/or consumer changing. For
data in a falsely shared page, that is written by multiple
processors and then read by multiple processors, the
difference between the protocols is the greatest. HLRC
uses significantly fewer messages as the number of
readers and writers increases. Specifically, for r readers
and w writers, HLRC uses at most 2w+2r messages and
Tmk uses at most 2wr messages.

Regardless of the sharing pattern, the assignment of
pages to homes is extremely important to the performance
of HLRC. A poor assignment can increase the number of
diffs created, messages passed, and bytes transferred by
an order of magnitude. On the other hand, a good
assignment can have benefits that are not possible with
Tmk. For example, in the case of producer/consumer
sharing, assigning the page’s home to the consumer
eliminates any read access faults at the consumer, because
the page is always valid. On the other hand, Tmk has its
share of advantages: it typically (1) transfers less data
because it uses diffs to update faulting processors and (2)
creates fewer diffs because their creation is delayed until
they are requested by a reader.

Applications Size /
Iterations

Sequential
Times (in sec.)

Barnes-Hut 65536, 3 121.6
Water 1331, 10 235.6
IS 26 X 16, 10 150.5
RB SOR 8K x 4K, 20 73.3
Gauss 4096 1547.4
3D FFT 7x7x7, 10 99.2
TSP 19 cities 227.3

Table 1: Applications, input sizes, and sequential
execution times.

3 Methodology

3.1 Platform

Our platform was a switched, full-duplex 100Mbps
Ethernet of thirty-two 300 MHz Pentium II-based
computers. Each computer has a 512K byte secondary
cache and 256M bytes of memory. All of the computers
were running FreeBSD 2.2.6 and communicating through
UDP sockets. The round-trip latency for a 1-byte
message is 126 microseconds. The time to acquire a lock
varies from 178 to 272 microseconds. The time for a 32-
processor barrier is 1,333 microseconds. The time to
obtain a diff varies from 313 to 1,544 microseconds,
depending on the size of the diff. The time to obtain a full
page is 1,308 microseconds.

3.2 Applications

We used seven applications: Red-Black SOR,
Gaussian Elimination, and TSP are distributed with
TreadMarks; 3D FFT and IS are NAS benchmarks [3];
Barnes-Hut and Water are SPLASH benchmarks [7, 8].
Table 1 displays the input size and sequential execution
time for each of the applications.

4 Results

This section has two parts. First, we compare Tmk and
HLRC. Second, we quantify the effects of lazy diff
creation and request overlapping on Tmk’s performance.

4.1 Tmk vs. HLRC

Table 2 presents speedups for all of the applications
under Tmk and HLRC. In the rest of this section, we
focus on Barnes-Hut, IS, and Water, the only three
applications for which the difference in execution time
between the two protocols is greater than 4%.

Figures 1, 2 and 3 present the speedups, message
counts, and data transferred for Barnes-Hut, IS, and Water
on 8, 16, and 32 processors.

Tmk HLRCApplication
8 16 32 8 16 32

Barnes-Hut 4.84 5.83 4.84 4.85 6.51 7.59
Water 5.63 9.18 11.4 5.36 8.09 9.45
IS 7.1 12.7 17.9 6.99 12.3 16.6
RB SOR 7.62 14.8 25.5 7.65 14.5 25.4
Gauss 6.43 8.98 8.32 6.35 8.80 7.98
3D FFT 4.37 8.29 15.1 4.40 8.28 15
TSP 7.41 13.2 21.2 7.36 13.3 21.1

Table 2: Speedups on 8, 16, and 32 processors for Tmk
and HLRC.

4.1.1 Barnes-Hut [7] performs an N-body simulation
using the hierarchical Barnes-Hut method. There are two
shared data structures: a tree used to represent the
recursively decomposed subdomain (cells) of the three-
dimensional physical domain containing all of the
particles; and an array of particles corresponding to the
leaves of the tree. Every iteration rebuilds the tree on a
single processor followed by a parallel force evaluation
on the particles, during which most of the tree is read by
all nodes. Updates to the particle array cause a high
degree of false sharing. Hence, Barnes-Hut exhibits two
different access patterns: the tree is written by a single
processor but read by all; while the particle array is
written and read by all.

In order to explain the difference in performance
between the protocols, we present results for two home
assignments: HLRC/all and HLRC/particle. In HLRC/all,
the home assignment for the pages containing the tree and
the particle array is based on a block distribution. In
HLRC/particle only the particle array is distributed in
block fashion, while pages containing the tree are
assigned to processor 0, the processor that rebuilds the
tree.

The purpose of HLRC/particle is to limit the
differences between the two protocols’ behavior to the
multiple-writer pages. By making processor 0 the home
for the tree it becomes the source for all tree updates,
mimicking the behavior of Tmk, in which updates are
kept by the last writer. Hence, Tmk’s and
HLRC/particle’s handling of the producer/consumer tree
data is identical, except for the difference of diffs vs. full
pages. Thus, any difference in performance must result
from the treatment of the falsely shared pages of the
particle array.

Our results show that while HLRC/all significantly
outperforms Tmk, the speedups for Tmk and
HLRC/particle are nearly identical, in spite of the vast
difference in message count (1.4 million vs. 130
thousand).

HLRC/particle demonstrates that HLRC’s better
performance does not result from a reduction in message
count. Hence, the performance advantage of HLRC/all
derives from its treatment of producer/consumer data
(tree). The block assignment of tree pages lets HLRC/all
distribute the responsibility for servicing update requests
for the tree. Specifically, if the tree covers n pages and
every processor reads the whole tree, then Tmk requires
the producer of the tree to service (p-1)*n page requests.
HLRC/all instead distributes the tree in n*(p-1)/p
messages. After that the load of servicing the tree
requests is evenly distributed.

4.1.2 IS [3] ranks a sequence of keys using a counting
sort. First, processors count their keys in their private
buckets. In the next phase, the values in the buckets are
summed.

The sharing pattern in IS is migratory. There is no
write-write false sharing, and the pages containing the
shared buckets are completely overwritten by each
processor. Home assignment in HLRC was done in a
block fashion.

HLRC sends more messages and data than Tmk due to
the migratory access pattern to the data. In HLRC, after a
bucket is written, it is immediately flushed to its home
processor. Since in most cases the home is not the next
writer, the bucket has to be transferred a second time. In
Tmk, the bucket is transferred once from the last writer to
the new writer. The diff accumulation problem in Tmk is
avoided through the method described by Amza et al. [2].

4.1.3 Water [8] is a molecular dynamics simulation. The
main data structure in Water is a one-dimensional array of
molecules. During each time step inter-molecular
potentials are computed for each molecule. The parallel
algorithm statically divides the array of molecules into
equally large, contiguous blocks, assigning each block to
a processor.

Water exhibits false sharing only for boundary pages
between processors. Most of the data is shared in a
migratory fashion. In HLRC, we assigned the shared
molecule arrays in a block fashion.

HLRC sends more messages and data than Tmk. The
reason is that it pushes diffs to their home immediately
upon lock release, after a molecule is updated; whereas
Tmk waits until a processor actually requests the diff.
Consequently, a single diff under Tmk usually contains
updates to several molecules by the time it is created.
HLRC also suffers from sending whole pages, while
updates of a molecule only modify about 100 bytes.

4.2 Lazy Diffing and Request Overlapping

We quantified the impact of lazy diffing and request
overlapping on Tmk’s performance by running the
application suite on two modified versions of Tmk. In
Tmk/eager, diffs are created as soon as the processor
performs a release. In Tmk/sequential request overlapping
is disabled. Table 3 presents the results.

Tmk/eager affected RB SOR the most. The factor of
seven increase in execution time is a result of the creation
of diffs for the inner rows of the band assigned to each

0

3

6

9

8 16 32

Sp
ee

du
p

0

500

1000

1500

8 16 32

M
es

sa
ge

s
(t

ho
us

an
ds

)

0

200

400

600

8 16 32

D
at

a
(M

by
te

s)

Tmk

HLRC/all

HLRC/particle

0
2
4
6
8

10
12

8 16 32

Sp
ee

du
p

0

500

1000

1500

8 16 32

M
es

sa
ge

s
(t

ho
us

an
ds

)

0

200

400

600

800

8 16 32

D
at

a
(M

by
te

s)

Tmk

HLRC

0

6

12

18

8 16 32

Sp
ee

du
p

0

50

100

150

8 16 32
M

es
sa

ge
s

(t
ho

us
an

ds
)

0

60

120

180

240

300

8 16 32

D
at

a
(M

by
te

s)

Tmk

HLRC

Figure 3: Speedup, messages, and data comparison among HLRC and Tmk for Water.

Figure 1: Speedup, messages, and data comparison among HLRC/all, HLRC/particle, and
Tmk for Barnes-Hut.

Figure 2: Speedup, messages, and data comparison among HLRC and Tmk for IS.

processor. These pages are effectively private so the diffs
are not used. Diff creation increased by a factor of 150.
Furthermore, the amount of consistency data increased by
a factor of 60.

Tmk/eager Tmk/sequentialApplication
8 16 32 8 16 32

Barnes-Hut 4.48 5.27 4.25 4.27 4.67 3.56
Water 5.36 fail fail 5.6 9.09 11.1
IS 7.1 12.7 17.9 7.1 12.7 17.9
RB SOR 1.24 2.60 3.73 7.6 14.6 25.6
Gauss 1.01 1.82 2.35 6.43 8.98 8.3
3D FFT 4.37 8.29 15.1 4.15 8.08 14.8
TSP 7.41 13.1 21.4 7.36 13.2 21.1

Table 3: Effects of eager diff creation and sequential
request on Tmk performance

Water would not complete on 16 and 32 processors for
Tmk/eager. In both cases, eager diff creation led to a
consistency message larger than the 64K byte maximum
supported by UDP.

Tmk/sequential affected Barnes-Hut the most. It is the
only application with significant false sharing. The
disabling of request overlapping caused a 26% drop in
performance.

5 Conclusions

Overall, the applications achieved speedups ranging
from a worst case of 7.59 for Barnes-Hut using HLRC to
a best case of 25.5 for Red-Black SOR using either
protocol. All of the programs achieve better speedups at
16 processors than at 8 processors. Comparing the
speedups at 32 processors to the speedups at 16
processors, one program, Gaussian Elimination, slows
down. Overall, HLRC achieves from 1.6 times better
speedup for Barnes-Hut to 1.2 times worse speedup for
Water compared to TreadMarks.

We found the performance of the two protocols for
four out of seven applications to be within 4% of each
other. These results differ from a previous study where
HLRC significantly outperformed a homeless protocol,
like TreadMarks. We attribute the difference in our
findings to two factors: a different ratio of memory to
network bandwidth on our platform and lazy diffing and
request overlapping, two optimizations used by
TreadMarks that were not implemented in the previous
study. Our results show that these optimizations are
important: Without lazy diffing, RB SOR’s execution

time increases by a factor of seven; and without request
overlapping, Barnes-Hut’s execution time increases by
26%.

Barnes-Hut, IS, and Water, were the only three
applications for which the difference in execution time
between the two protocols is greater than 4%.
TreadMarks performed better for Water and IS; two
applications with migratory access patterns. HLRC
performed better for Barnes-Hut. Our results show,
however, that the performance advantage of HLRC does
not result from its lower message count (1.4 million vs.
130 thousand). It is, instead, a result of HLRC’s ability to
evenly distribute, among the processors, the responsibility
for providing the updates for large data structures that are
produced by a single processor and consumed by multiple
processors. In effect, HLRC’s home assignment striped
these pages across the processors, thereby spreading the
load of servicing updates.

References

[1] S.V. Adve and M.D. Hill. A united formalization of four shared-
memory models. IEEE Transactions on Parallel and
Distributed Systems, 4(6):613-624, June 1993.

[2] C. Amza, A.L. Cox, S. Dwarkadas, and W. Zwaenepoel.
Software DSM protocols that adapt between single writer and
multiple writer. In Proceedings of the Third International
Symposium on High Performance Computer Architecture, pages
261-271, February 1997.

[3] D. Bailey, J. Barton, T. Lasinski, and H. Simon. The NAS
parallel benchmarks. Technical Report 103863, NASA, July
1993.

[4] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta,
and J. Hennessy. Memory consistency and event ordering in
scalable shared-memory multiprocessors. In Proceedings of the
17th Annual International Symposium on Computer
Architecture, pages 15-26, May 1990.

[5] P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel. An
evaluation of software-based release consistent protocols.
Journal of Parallel and Distributed Computing, 29:126-141,
October 1995.

[6] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy release
consistency for software distributed shared memory. In
Proceedings of the 19th Annual International Symposium on
Computer Architecture, pages 13-21, May 1992.

[7] J.P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford
parallel applications for shared-memory. Technical Report CSL-
TR-91-469, Stanford University, April 1991.

[8] J.P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford
parallel applications for shared-memory. Computer Architecture
News, 20(1):2-12, March 1992.

[9] Y. Zhou, L. Iftode, and K. Li. Performance evaluation of two
home-based lazy release consistency protocols for shared virtual
memory systems. In Proceedings of the Second USENIX
Symposium on Operating System Design and Implementation,
pages 75-88, November 1996.

