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Abstract

Applications running on a mobile and wireless devices
must be able to adapt gracefully to limited and fluctuating
network resources. The variety of applications, platforms
upon which they run, and desires of their users, require
a variety of adaptation policies to be implemented and
maintained. Therefore, it becomes important for adap-
tation policies to be easy to develop, to debug, and to
compose together to form complex policies that satisfy
the needs of mobile users.

This paper presents the design, implementation, and
evaluation of a simple programming language for express-
ing scheduling policies for transmission of multiple ob-
jects across a shared network connection. A key design
component of our language is the ability to express con-
straints among the objects to be transmitted. A policy
can make ordering constraints such as “all text objects are
transmitted before any image objects” or a policy might
express rules on the the relative bandwidth allocations
across objects of different types. Because it is possible to
express contradictory constraints, our system finds suit-
able approximate solutions when no precise solution is
available.

1 Introduction

The ability to adapt to limited and varying resources has
long been considered a fundamental requirement for mo-
bile computing [3, 13, 17]. The advent of pervasive com-
puting [22, 18] will only increase the need for adaptation
as the services available to a pervasive client depend on
the resources that are carried by the client and those that
are provided by the smart space the client happens to be
in.

In the last 10 years, researchers have devised several
mechanisms for adapting to variation in network connec-
tivity [7, 12, 14, 15], energy supply [10], and device het-
erogeneity [6, 20]. While these mechanisms have proven
powerful, there has been little work on how to specify ef-
fective policies for using these mechanisms. Policy defi-

nition is a particularly hard problem, as users may require
different behavior based on a variety of criteria, such as re-
source availability, physical location, cost, time of day, the
mix of application running on the device or smart space,
the presence or absence of other users in the smart space,
etc. Moreover, the space of possible adaptations is com-
binatorial in the number of services provided by the smart
space, the number of applications concurrently running,
and the number of possible configuration options of the
applications and their data.

The large size of the adaptation space precludes the im-
plementation of all-encompassing adaptation policies that
cover all possible scenarios. Instead, we believe that users
will have to be active participants in the adaptation pro-
cess, teaching the pervasive system how to adapt when it
encounters a new situation, or when the user is unhappy
with the system’s current behavior.

For ordinary users to become policy designers, the pro-
cess of defining policies most be simple and scalable. Un-
fortunately, there is a mismatch between the way users
think about the tasks they want the pervasive system to
perform and the inputs current adaptation mechanisms
expect. Whereas the user may think in terms of behav-
ior or desirable results (e.g., get the text of a document
fast, I care most about my MP3 player), current adapta-
tion mechanisms function in terms low level configuration
parameters (e.g., fidelity levels, scheduling shares, priori-
ties).

This paper presents Extensible Adaptation via Con-
straint Solving (EACS), a novel approach that simplifies
policy design by distancing users from the intricacies of
the adaptation mechanisms. In EACS, users specify adap-
tation policies by defining subsets of the objects and defin-
ing constraints among these subsets.

The initial EACS prototype is limited to transmission
policies, which define the order in which a series of ob-
jects are transmitted to a bandwidth-limited device. Users
specify transmission policies by grouping data in transit to
or from the mobile device into user-defined subsets based
on the data’s type, size, or any other attribute. Users can
specify dependencies between the sets (e.g., all elements
of set A should be transferred before any elements of set
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B) and set proportional bandwidth allocations for the sets
(e.g., elements of set C should get 3 times as much band-
width as elements of set D).

We first developed an EACS simulator, allowing us to
run real EACS policies without actually transmitting data
across a network. This allows a policy designer to quickly
see how a policy might behave on real data without wait-
ing for the data to traverse a low-speed network. EACS
proved effective at expressing complex transmission poli-
cies with very few lines of code, a significant improve-
ment over our earlier HATS system [8], where policies
were written in Java and were generally constrained to
follow the hierarchical structure built into existing doc-
uments. We integrated EACS with the Puppeteer adapta-
tion system [7] and we then measured the overhead of run-
ning EACS transmission policies verus Puppeteer’s hand-
tuned transmission policy implementations, showing per-
formance comparable, despite EACS policies being dra-
matically shorter and more abstract.

The rest of this paper is organized as follows. Section 2
presents the design of the EACS policy language. Sec-
tion 3 describes the process for synthesizing high-level
EACS descriptions into low-level bandwidth shares that
can be feed to an adaptation system. Section 4 presents
results from simulations and runs on the Puppeteer adap-
tion system that evaluate the correctness and performance
of several EACS policies. Section 5 discusses prior work
and how EACS differs from these earlier efforts. Finally,
Section 6 discusses our conclusions and directions for fu-
ture work.

2 Policy Language Design

This section presents the design criteria behind EACS. We
present a method for expressing transmission policies in a
high-level, compact fashion.

2.1 Language Requirements

The goal of a bandwidth adaptation system is to improve
latency for network operations by transmitting less data.
To accomplish this, an adaptation system has three things
it can do: it can chose to send a subset of the desired data
(e.g., removing images from a document), it can transform
the desired data (e.g., using lossy compression), or it can
change the order in which data items are transferred (e.g.,
sending textual data before sending multimedia data). The
EACS policy language is focused on data ordering, as-
suming that other portions of the adaptation system deal
with subsetting and transformations. As such, the pur-
pose of our language is to specify how a series of objects,
stored on the server and labeled with various attributes,
should be transmitted across the network.

Our goal, in designing the language, is to present a
high-level abstraction that hides as much detail as pos-
sible, while still making it possible to express interesting
transmission policies. To solve this, we introduce two ba-
sic concepts: set operations and constraints on these sets.
A transmission policy, then, first defines various subsets
of the objects to be transmitted based on those objects’
attributes. Then, constraints are made saying which sets
must go before others and which must be interleaved. The
system to evaluate these policies must be cheap enough
to evaluate that it can be reevaluated often, allow for dy-
namic changes in the set of objects to be transmitted.

In order to express transmission policies, we need to be
able to select groups of the available objects based on their
attributes. Constraints might be expressed on an object’s
size, its type (text, image, sound, ...), or it’s context. An
object’s context will have some elements that are static,
such as what kind of application is reading the object, and
other elements that are dynamic, such as whether the ap-
plication requesting the object happens to be the user’s
foreground application.

By selecting on the attributes, our language must also
define sets as a first-class type, providing all the usual
first-order logic predicates, such as set union, intersection,
and difference.

To express transmission policies, constraints can take
many forms.

Priority constraints express how some objects must be
transmitted before other objects can begin transmis-
sion (e.g., send text objects first, then image objects).

Proportional constraints express how bandwidth
should be shared among objects being transmitted
concurrently (e.g., Web browsers get 80% of the
bandwidth and other types get 20%).

Hierarchical constraints express precedence ordering
for other constraints (e.g., within Web browsers, text
goes images, but in other documents the bandwidth
is shared).

In-order constraints allow for objects in a given set to
be transmitted in a sequential order (versus concur-
rent, interleaved transmission).

Deadlines express how certain objects must arrive before
a certain specific time.

In our current implementation, we do not yet have sup-
port for deadlines and in-order constraints, although we
plan to add them in the future. This paper currently dis-
cusses only the operators we have implemented.
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2.2 Language Syntax

The EACS policy language borrows its syntax from the C
language, although it’s a much simpler language to eval-
uate. The operators supported include: variables and con-
stants; if-then-else operators; function declaration and in-
vocation; and arithmetic with integer, floating point, and
boolean operators. Other supported primitive types are
sets, object attributes (as discussed above), and constraints
(which can be arguments to other constraints).

In addition, a number of other useful primitives are de-
fined:

� Set result = select(set, expr);
The function selects all the components of set for
which expr evaluates to true.

� Set result = min(set, expr);
The function select the component of set for which
expr has minimum value. Likewise, there is a max
function.

� Set result = get1(set);
The function selects one element from set.

All the usual set operations are defined, including in-
tersection (AND), union (OR), and difference (SUB). In
addition, we define Ω as the universe of all objects and we
write /0 as the empty set.

In the context of an expression that selects elements
from a set, some ephemeral variables are defined while
evaluating the predicate expr that refer to the attributes of
each object:

type describes what kind of object this might be

application describes the application requesting the ob-
ject

sizeDone bytes of the object that have been transmitted

sizeOriginal total bytes for the object

2.2.1 Priority Constraints

Next, we have the operators that express various con-
straints. Given two sets of components s1 and s2, we
might express priority constraints:

� After(s1, s2);
all components of s2 must be completely transmitted
before any elements in s1 can begin transmission.

� Before(s1, s2);
equivalent to After(s2, s1).

2.2.2 Proportional Constraints

We can also express proportional constraints to describe
how bandwidth must be shared between objects. We note
that these rules are only evaluated against objects that are
ready to send (i.e., an object with a priority constraint that
prevents its current transmission will not be allocated any
bandwidth by a proportional constraint operation).

� BandwidthRatio(s1, s2, r);
means that the ratio between the total bandwidth the
components in set s1 and the total bandwidth of the
components in set s2 is equal to r. Elements within
the same set would have the same bandwidth, assum-
ing there are no other constraints.

� BandwidthPerElementRatio(s1, s2, r);
means that each element of set s1 has a bandwidth
share that is r times more than the bandwidth share
of each element of set s2. Elements within the same
set would have the same bandwidth, assuming there
are no other constraints.

To explain the difference between BandwidthRatio
and BandwidthPerElementRatio, consider the follow-
ing example:

Ω � �
A � B � C � the universe has three objects

s1 � �
A � B �

s2 � �
C �

Also, let a, b, and c denote bandwidth shares of the com-
ponents in Ω.

The statement BandwidthRatio(s1, s2, 2) means that
all the following equations hold:

a � b � 2c
a � b

a � b � c � 1

The first equation expresses that the bandwidth allo-
cated to a and b together (the members of s1) must be
twice what is given to c (the sole member of s2). The sec-
ond equation expresses that a and b must have the same
bandwidth, as they’re in an equivalence class (s1) with
each other. The final equation, a � b � c � 1, says that
all the available bandwidth must go somewhere, avoiding
a degenerate solution, such as a � b � c � 0. The solution
a � b � c � 1 � 3 shows the desired bandwidth distribution.

For the same Ω, and sets as in the example above, con-
sider the statement: BandwidthPerElementRatio(s1, s2,
2)

This yields a different set of equations:

a � 2c

b � 2c

a � b

a � b � c � 1
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The first two equations express the rule that, for every
pairs of components from s1 and s2, the bandwidth ratio
should be 2. The third and fourth rules are the same as
above. The solution, a � b � 2 � 5 and c � 1 � 5, shows the
desired bandwidth distribution.

One can notice that BandwidthRatio and Bandwidth-
PerElementRatio are related. For the same non-empty
sets s1 and s2:

BandwidthPerElementRatio � s1 � s2 � r ���
BandwidthRatio � s1 � s2 � r � s1 �� s2 ��� (1)

One should use the BandwidthRatio operator to spec-
ify, for example, the bandwidth shares of two different ap-
plications using the network at the same time. Regardless
of how many or how few objects are being requested by
each application, the total bandwidth will be shared fairly
across the two applications. The operator Bandwidth-
PerElementRatio is useful when, for example, text and
image components are downloaded concurrently. Con-
sider a case when there are 100 small text objects and
one large image object. BandwidthRatio(stext , simg, 4)
will result in each text component getting 0 � 8% of the
available bandwidth while the image gets 20%. Whereas,
BandwidthPerElementRatio(stext , simg, 4) would result
in each text component getting roughly 1% and the im-
age getting roughly � 25%. Since either operator may be
preferable in any given situation, we provide both.

2.2.3 Hierarchical Constraints

If the user is working with several applications using the
network concurrently, perhaps a Web browser and a word
processor, we might wish to separately allocate band-
width across applications, and then allocate the band-
width within each application across different types of
objects. Such a structure mimics the hierarchy already
present in documents. We introduce a new operator: 	 .
Following the above example, imagine we wish to give
four times the bandwidth to the Web browser over the
word processor, and then within each application give
three times the bandwidth to text over images. The EACS
policy would be written:

rule1 � BandwidthRatio �
select � Ω � type � � ”html” � �
select � Ω � type � � ”doc” � � 4 � ;

rule2 � BandwidthPerElementRatio �
select � Ω � type � � ”text” � �
select � Ω � type � � ”image” � � 3 � ;

rule1 	 rule2;
(2)

Thus, rule precedence and partitioning allow construct-
ing hierarchical policies, and these policies need not

strictly follow the hierarchy of the application’s own com-
ponent hierarchy. It is equally easy to build, for example,
a hierarchy that first splits texts and images, and then splits
based on application type, simply by changing the last line
of the policy in equation 2 to say:

rule2 	 rule1 (3)

2.2.4 Composition

The language described thus far allows for a wide range
of policies to be expressed. One of our design goals is
to support policy composition, when a user might wish
to, somehow, mix policies together resulting in some ag-
gregate policy that combines the effects of the original
policies. Our system supports two mechanism for pol-
icy composition: concatenation and hierarchy. Both are
quite simple. First, we add new language syntax to name
policies and give them separate name spaces:

Policy P1
�

BandwidthRatio �
����� � ;�����
�
Policy P2

�
BandwidthRatio �
����� � ;�����

�

(4)

Next, we only need two operators:

Policy Pconcatenation � P1 � P2;
Policy Phierarchy � P1 	 P2;

(5)

Composition via concatenation simply computes the
union of the constraints from each policy. This might
yield an over-constrained system, but we already have
mechanisms to resolve such policies. Composition via hi-
erarchy applies hierarchical constraints, piecewise, across
the constraints from P1 to P2. The aggregate policy can
likewise be evaluated using mechanisms we already have.
As a result of these two simple operators, EACS supports
an easy and comprehensible mechanism to compose arbi-
trary bandwidth policies.

3 Policy Resolution

We show how EACS resolves policies, including cases
where a given policy might be over- or under-constraining
on the solution space. We also discuss CPU efficiency is-
sues with policy resolution.

3.1 Constraint Resolution

The ultimate goal of the EACS constraint resolver is to
assign every object in the system a number, between zero
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and one, that represents the share of network bandwidth
to be allocated to that object. These shares would then
be used as input to a low-level packet scheduling system
that can multiplex the objects together with the requested
proportional shares of the total network bandwidth. In the
EACS language, where arbitrary subsets of the objects to
be transmitted can be chosen and then have their band-
width constrained to other arbitrary subsets of objects, we
need a robust methodology for resolving the constraints
and deriving these bandwidth shares.

First, we must resolve the priority constraints to deter-
mine the set of objects that might be transmitted. If a pol-
icy specified After(s1, s2), then the members of s1 will be
guaranteed to have no bandwidth allocated to them unless
s2 � /0. We can view the priority constraints as specifying
a dependency graph on the the objects to transmit. The set
of objects allowed ready to be transmitted is equal to the
set of objects with no other objects depending on them.
This can be derived by making a linear pass over all the
objects in the system and checking for adjacent nodes in
the dependency graph.

Subsequent to this, we must resolve the proportional
constraints and hierarchy constraints. Both of these
specify linear equations on the bandwidth allocations.
BandwidthRatio(s1, s2, r) adds one rule: the sum
of the bandwidth to the members of s1 is equal to r
times the sum of the bandwidth of the members of s2.
BandwidthPerElementRatio(s1, s2, r) generates a sim-
ilar rule, based on the relationship in equation 1. Lastly,
we must add some equations that serve as sanity checks.
We must specify that “equivalent” objects will have the
same bandwidth. We wish to solve the above constraints
subject to the sum of the bandwidth shares being equal to
1 � 0. If there exists a unique solution to this problem, we
can find it in O � N2 � time, in the number of variables, us-
ing a simple substitution technique; we set the bandwidth
of the first object to 1 � 0, then start looping over all N2

possible constraints, solving for the other variables, one
at a time. This algorithm will also detect if the policy is
over- or under-constrained by returning inconclusive re-
sults, requiring the use of more expensive techniques, as
discussed below.

3.2 Over- and Under-Constrained Policies

Constraints may specify contradictions in priority (e.g., a
before b and b before a) or in proportions (e.g., a � b � 2
and a � 2b). It’s also possible for a system to be under-
constrained, occurring when objects of some type are sim-
ply not mentioned in a transmission policy, or do not have
relationships to all other objects that can be solved (e.g., in
the policy a � 2b � c � 2d, there is no relationship between
a and c).

In either case, we must use more expensive techniques

to solve for the bandwidth shares because there is no
longer a single, correct answer.

Priority contradictions If the priorities cannot be re-
solved, that implies there must be a cycle in the priority
graph. Our solution is to collapse nodes in the cycle until
the cycle no longer exists. When we collapse two nodes
together, this implies that the two original sets will now
be merged together, in terms of their priorities. Any pro-
portional constraints on the original sets would still hold.

Hierarchical contradictions As with priority con-
straints, we must define how to evaluate hierarchical con-
straints over arbitrary graphs. First, we must remove cy-
cles, as we did with priority contradictions. After this, we
loop, searching for all nodes in the hierarchical constraint
graph that have no incoming arrows. These constraints are
resolved together and are removed from the graph. Then,
the loop repeats. After the first group of constraints is re-
solved, the result is a partitioning of Ω into sets, each of
which has its own bandwidth share. This set of subsets
of Ω is the input to the next round of the loop. The sub-
sequent constraints are then evaluated independently on
each subset.

Proportional contradictions These are the most diffi-
cult over-constrained problems to solve. Our solution to
this problem also works well for under-constrained prob-
lems. Assume there are N objects in the system. That
means that there are N2 possible proportional relation-
ships among objects. In an over-constrained situation, we
can have cycles, much as is the case with priority con-
tradictions, e.g.,

�
a � 2b � b � 3c � c � 4a � . However, un-

like the priority constraints, which can be represented as
a directed, unweighted graph, the proportional constraints
would be a directed, weighted graph. Merging nodes to-
gether would not necessarily give desirable results.

Instead, we consider the constraints to be goals which
must be achieved. For the above example, we now wish
to minimize the following equation:

Error � � a � 2b � 2 � � b � 3c � 2 � � c � 4a � 2 (6)

subject to the constraints:

a � b � c � 1 (allocate all available bandwidth)
a � b � c � 0 (avoid degenerate solutions)

(7)
In the case that, for some of the N2 possible relation-

ships, we have no proportional constraints, then the sys-
tem is under-constrained. For example, consider the sys-
tem

�
a � 2b � c � 3d � . What should the relationship be

between a and c or between b and d? Since there is no
correct answer, we synthesize new constraints that, bar-
ring anything else, should make them equal. We don’t
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want the synthetic constraints to interact poorly with the
original constraints, so we must scale down their effect,
minimizing the following constrained equation:

Error � � a � 2b � 2 � � c � 3d � 2 � K � a � c � 2 � K � b � d � 2
(8)

where K is a tunable parameter between zero and one.
The solution of these quadratic minimization methods

is straightforward. Gaussian elimination can derive the
global minimum error for these function in O � N3 � time
where N ���Ω � . If this proved to be too expensive, we
could use more sophisticated methods, such as the O � N2 �
Jacobi iteration method. Performance issues are discussed
more in section 3.4.

3.3 Policy Reevaluation

As the system is transmitting objects, various events can
occur which require the policy to be reevaluated. An ob-
ject may have finished being transmitted, a new object
may have been dynamically added to Ω on the server,
or some external event may have occurred that the policy
cares about (e.g., the user moved a different application
to the foreground). All of these events would require the
transmission policy to be reevaluated.

Some transmission policies can be written such that
they change continuously as packets are transmitted. For
example, consider a policy that selects set of images
which have had at most 1 � 7th of their data transmitted:

Set s � select � Ω �
type � � ”image”&&� sizeDone � 1 � 7 � sizeOriginal� �
3 � ;

(9)
As objects in this set were transmitted across the net-

work, the data transmitted (sizeDone) would eventually
get large enough that the object should be removed from
the set.

Solving this problem would require detecting that a set
has a dynamic expression as above and statically solving
for the point when any given object ceases to be a member
of the set. However, with arbitrary mathematical expres-
sions, it will not generally be possible to derive such solu-
tions. An alternate approach is to periodically reevaluate
the transmission policy, perhaps once every few seconds,
to discover, at run-time, when set membership changes.
Such periodic reevaluations can potentially waste CPU
time to only discover that nothing has changed.

3.4 CPU Efficiency

To make our system sufficiently general purpose, we must
also be concerned that the CPU costs of policy reevalua-
tion, even when the costs can be perfectly overlapped with

data transmission, can have a potentially serious impact
on overall system performance, particularly as transmis-
sion policies become increasingly complex. This leads
us to favor designs where policy reevaluation still occurs
when requested, but is delayed for a pre-specified amount
of time. During this delay, other requests to reevaluate
the policy are dropped. This way, if a large number of
events occur in a small amount of time, there will be only
one policy reevaluation. Policy writers should be aware
of this, expecting that, for short periods of time, the sys-
tem will not necessarily respect their policies precisely.
One result of this is that policies which tend to select only
small numbers of objects for transmission at any given
time will experience more volatile behavior than policies
which select large numbers of objects for transmission;
the large number of objects helps insulate the system from
the effect of any one object completing its transmission.

Furthermore, the growth in the number of objects in
Ω could lead to a significant growth in the runtime for
evaluating the bandwidth shares, particularly with over-
constrained policies that might require O ���Ω � 3 � runtime.
We observe that, for many common policies, there exist
a large class of equivalent objects. If two objects in Ω
have exactly the same attributes, they will have the same
bandwidth shares allocated to them. This leads to an im-
portant optimization: we can treat all the objects in a given
equivalence-class as a single object when solving the con-
straints. Of course, we must scale the coefficients appro-
priately. As a result of this optimization, common poli-
cies which tend to allocate bandwidth among only a small
number of sets (perhaps text vs. non-text data) can now
run in time proportional to the number of sets rather than
the number of individual objects. This makes policy res-
olution runtime proportional really to complexity of the
policy itself, rather than to the number of objects being
scheduled by the policy.

We can further take advantage of these equivalence
classes by putting all the objects in a given equivalence
class into the same queue for the low-level packet sched-
uler, using the bandwidth for the shared queue in a round-
robbin fashion. This simplifies the number of queues the
packet scheduler must manage, which can potentially re-
sult in efficiency gains there, as well.

4 Evaluation

In this section we first use simulation to evaluate the cor-
rectness of the EACS policy resolver. We then present
performance measurements for a sample EACS policy
running on the Puppeteer adaptation system.

6



Name Type Size bg/fg
doc1.text1 text 5Kb fg
doc1.img1 image 60Kb fg
doc1.img2 image 110Kb fg
doc2.text1 text 26Kb bg
doc2.img1 image 30Kb bg
doc2.img2 image 240Kb bg

Figure 1: Set of components to transfer. The table shows
for each component, the component’s name, type, and
size, and whether the document is in the background or
foreground.

4.1 Correctness

We evaluate the correctness of our implementation with
two EACS policies that set different strategies for the
transmission of a small sets of components from two dif-
ferent documents. Table 1 shows, for each component, its
name, type, and size, and whether the document to which
the component belongs is currently in the background or
foreground. The results we present in the following sec-
tions assume a bottleneck bandwidth of 128 Kb/sec.

4.1.1 Text First

This policy exploits the fact that in many documents, text
accounts for a small proportion of document’s content.
This strategy enables the application to return control to
the user faster. The images are then downloaded in the
background, while the user browses the text.

Figure 2 shows the EACS code that implements the Text
First policy. The first statement defines a set s1, consisting
of the text with the minimum size. The second statement
creates a second set s2, containing all other component.
Finally, the last statement ensures that all elements of s1

are transferred before any elements of s2.
Figure 3 shows the simulator’s output for the Text First

policy. The figures shows the bandwidth allocations for
the various components over several time steps. The num-
ber below each vertical bar shows the time at which the
transmission policy is reconfigured. For the policies we
discuss in this section, EACS reconfigures the transmis-
sion policy, starting a new time step, only after some com-
ponent finishes transmission.

Figure 3 shows that in the first time step, all the band-
width is allocated to the doc1.text1 component, as it is the
smallest of the two text components. This allocation lasts
for 0.31 seconds — the time that it take to transfer the
5 KB of text over the simulated 128 Kb/sec link. When
EACS detects that doc1.text1 has finish transmission, it
reconfigures the transmission policy and starts transmit-
ting doc2.text1 — the only remaining text component.
After doc2.text1 is transmitted, EACS reconfigures the

// define the minimum-size text component
Set s1 � min � select � Ω � type � � ”text” � �

sizeOriginal � ;
// define other components
Set s2 � Ω SUB s1;
// transmit the minimum-size text first
rule1 � Before � s1 � s2 � ;

Figure 2: Text First EACS code.
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Figure 3: Simulation results for Text First policy.

transmission policy and starts transmitting all remaining
images in parallel. In subsequent time steps, as smaller
images finish transmission, EACS reconfigures the trans-
mission policy to evenly distribute available bandwidth
among the remaining images.

4.1.2 Focus

This policy gives twice as much bandwidth to components
that belong to the document that happens to be on the fore-
ground than the bandwidth given to components that the
belong to the background document. Within the previous
bounds, the policy then gives four times more bandwidth
to each text component than to each image components.

Figure 4 shows the EACS code that implements the Fo-
cus policy. The first four statements create four sets di-
viding the components according to whether the belong
to the foreground or background document, and whether
they are text or image. The next two statements set the rel-
ative bandwidth proportions for the sets. Finally, the last
statement specifies that bandwidth should be split based
first on the document to which the component belongs,
and second on the component’s type.

Figure 5 shows the simulator’s output for the Focus
policy. An the simulation’s beginning, Document1 is on
the foreground and its components get 2/3 of the avail-
able bandwidth. This bandwidth is further split between
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Set s1 = select(Ω, fg);
Set s2 = select(Ω, ! fg);
Set s3 = select(Ω, type==”text”);
Set s4 = select(Ω, type==”image”);
rule1 = BandwidthRatio(s1, s2, 2);
rule2 = BandwidthPerElementRatio(s3, s4, 5);
rule1 	 rule2;

Figure 4: Focus EACS code.
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Figure 5: Simulation results for Focus policy.

Document1’s text and image components, giving Docu-
ment1’s text component 4 � 9 of the system-wide available
bandwidth (2 � 3 � 4 � 6 � 4 � 9) and 1 � 9 of the system-wide
available bandwidth to each of the two images. After 10
seconds, Document2 moves to the foreground and EACS
reconfigures the transmission policy shifting 2 � 3 of the
bandwidth to Document2.

4.2 Performance

We measured the performance of EACS with a proof-
of-concept implementation on top of the Puppeteer
component-based adaptation system [7]. In the rest of this
section, we first describe how our EACS prototype fits in
the Puppeteer architecture. We then present experimental
results for a sample transmission scheduling policy.

4.2.1 Puppeteer

Puppeteer adapts component-base applications running
on bandwidth-limited devices by calling on the run-time
interfaces these application expose. Puppeteer reduces the
time it takes to load documents in component-based ap-
plication, such as those in the Microsoft Office or Sun’s
OpenOffice suits, by providing to the applications trans-
formed versions of documents which consists of a sub-
set of the components of the original documents (e.g.,

Puppeteer
Remote Proxy

Low BW Link

Internet

High BW Link

Client

Puppeteer
Local Proxy

API

App2

Data

App1

Data API

Data Sever 1 Data Sever 2

Figure 6: Puppeteer architecture.

just a few pages, or slides). After the document is ren-
dered and the application returns control to the user, Pup-
peteer uses the application’s exposed API to extend the
document with additional components or to upgrade the
fidelity of components transmitted with low fidelity.

Figure 6 shows Puppeteer’s system architecture. All
data flowing in and out of the bandwidth-limited de-
vice goes through the Puppeteer local and remote prox-
ies. The local proxy runs on the bandwidth-limited de-
vice and adapts the application by calling on its run-
time API. The remote proxy runs at the other end of the
bandwidth-limited device and has fast access (relative to
the bandwidth-limited client) to the servers storing the
documents being adapted.

The initial EACS implementation runs on the Puppeteer
remote proxy and is limited to scheduling data flowing
into the bandwidth-limited client. The EACS prototype
relies on a scheduler that implements the WF2Q+ Packet
Fair Queuing (PFQ) algorithm [4], to distribute bandwidth
among the component subsets according to their rate allo-
cations.

4.2.2 Text First

We quantify the performance of the Text First EACS trans-
mission policy presented in section 4.1.1 by simultane-
ously loading an image-rich 668 KB Web page and a
1.05 MB PowerPoint presentation using Internet Explorer
5.5 (IE5) and Microsoft PowerPoint (PPT).

For this experiment we assume that the Web page is
requested first and that a few seconds latter the user starts
downloading the PowerPoint presentation; while some of
the images of the Web page are still being transferred. We
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Figure 7: Bandwidth allocations for loading a Web page
and a PowerPoint presentation with the EACS Text First
policy.

use an adaptation policy that loads a document into the
application as soon as all its text components are present
at the local proxy (the HTML for IE, and the text of all
slides for PPT), and displays images and other embedded
components as they become available at the local proxy.

Our objective is to minimize the time that it takes to get
all the PowerPoint text components to the client. A best
effort scheduler would just split the available bandwidth
equally between the Web page and PowerPoint compo-
nents. Instead, Text First should prioritize the transmis-
sion of PowerPoint slide; potentially cutting in half the
time to open a text-only version of the presentation.

We ran our experiments on a platform consisting of
two Pentium III 500 MHz and one Athlon 1.2 GHz run-
ning Windows 2000. We configured the two Pentium III
500 MHz machines as: a data server running Apache 1.3,
which stores the two documents we use in our experi-
ments; and a client that runs the user’s applications and
the Puppeteer local proxy. We ran the Puppeteer remote
proxy and our EACS resolver on the Athlon 1.2 GHz. The
local and remote Puppeteer proxies communicate via an-
other PC running the DummyNet network simulator [16].
This setup allows us to emulate various network technolo-
gies, by controlling the bandwidth between the local and
remote Puppeteer proxies. The Puppeteer remote proxy
and the data server communicate over a high speed LAN.

Figures 7 show the bandwidth allocations for loading
the two documents over a 56 Kb/sec network link. The
figure shows that Text First reallocates bandwidth from
sending images embedded in the Web page to sending
PPT slides. This reallocation lowers the time to load a
text-only version of the PPT presentation by 49% com-
pared to a best-effort scheduler. Moreover, the EACS
generated transmission policy achieves an average of 90%
network utilization, and comes within 3% of the network
utilization achieved by a similar hand-tuned transmission

policy.

5 Related Work

In HATS [8], we experimented with combining dynamic
control over bandwidth scheduling and adaptation. While
this combination enabled us to adapt multiple applica-
tions in concert (our intended purpose), it required cod-
ing transmission scheduling policies in Java. As a re-
sult, a significant programming effort was needed to im-
plemented every new transmission strategy. Moreover,
the HATS system was limited to hierarchical transmis-
sion strategies that are closely linked with the hierarchi-
cal structure of the applications, documents, and compo-
nents running on the bandwidth-limited device. In con-
trast, EACS supports the implementation of hierarchical
transmission strategies based on other criteria. For exam-
ple, we can write a EACS policy that splits bandwidth first
based on component type and then based on the applica-
tion or documents that owns the component.

EACS provides a language to specify a domain-specific
scheduling policy. Network scheduling is, by itself, a ro-
bust field of research including work that enables clients
to specify their quality of service (QoS) network require-
ments [9, 23], provides differentiated service in network
hierarchies [4, 11], or adds differentiated services to gen-
eral purpose operating systems [2, 1, 5, 19]. EACS is
fundamentally built on the concept of solving constraints,
which is also an area that has been extensively stud-
ied [21].

6 Conclusions

In this paper, we have demonstrated a general-purpose
system for specifying bandwidth usage policies, where the
user can specify constraints that apply to different sets of
objects based on their attributes. Constraints can spec-
ify that some objects go before other objects, or they can
specify that some objects must get a specific proportion of
the available bandwidth. Even if these policies are under-
or over-constraining, our system can still efficiently solve
for optimal proportions of the total bandwidth to be ap-
plied to each individual object. As a result of this freedom,
users are free to write and compose bandwidth policies
without being forced to worry about any of the low-level
details of bandwidth policy implementations.

The Extensible Adaptation via Constraint Solving
(EACS) system provides the user with a simulator, to sim-
plify and accelerate the design and testing of bandwidth
policies. Furthermore, when executing bandwidth poli-
cies with real data, we observe very little difference in
throughput between EACS and hand-tuned implementa-
tions of the same policies.
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In the future, there are a number of additional features
that would be beneficial to study with EACS. We would
like to study whether GUIs or other techniques could aid
unsophisticated users in selecting appropriate bandwidth
policies. We also would like to investigate how to add
notions of object subsets and transformations (removing
or transcoding objects) into the EACS policy language.
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