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Abstract

This paper introduces adaptation-aware editing and pro-
gressive update propagation, two novel mechanisms that
enable authoring multimedia content and collaborative
work on mobile devices. Adaptation-aware editing en-
ables editing content that was adapted to reduce download
time to the mobile device. Progressive update propaga-
tion reduces the time for propagating content generated at
the mobile device by transmitting either a fraction of the
modifications or transcoded versions thereof.

With application-aware editing and progressive update
propagation, an object present at a mobile device is char-
acterized not only by a particular version, as in conven-
tional replication, but also by a particular fidelity. We
demonstrate that replication models can be extended to
account for fidelity independently of the mechanisms used
for concurrency control and consistency maintenance. As
a result, the two techniques described in this paper can
easily be added to any replication protocol, whether opti-
mistic or pessimistic.

We report on our experience implementing adaptation-
aware editing and progressive update propagation. Ex-
periments with two multimedia applications, an email
reader and a presentation software package, show that
both mechanisms can be added with modest programming
effort and achieve substantial reductions in upload and
download latencies.

1 Introduction

Research on mobile computing has made significant
progress in adapting applications for viewing multime-
dia content on mobile devices [5, 8, 21]. Multimedia au-
thoring and collaborative work on these platforms remain,
however, open problems.

We identify three factors that hinder multimedia author-
ing and collaborative work over bandwidth-limited links:

1. Read adaptations. The adaptation techniques used
to lower resource usage (e.g., energy, bandwidth)
may result in situations where content present at the
mobile device differs significantly from the versions
stored at the server. Typical adaptation techniques
adapt by downloading just a fraction of a multime-
dia document, or by trancoding content into lower-
fidelity representations. Naively storing user modifi-
cations made to an adapted document may delete el-
ements that were not present at the mobile device, or
it may replace high-fidelity data with the transcoded
versions sent to the mobile device (even in cases
where the user did not modify the transcoded ele-
ments).

2. Large updates. Mobile users can generate large mul-
timedia content (e.g., photographs, drawings, audio
notes) whose propagation may result in large re-
source expenditures or long upload latencies over a
bandwidth-limited link .

3. Conflicts. The use of optimistic replication mod-
els [12, 23] allows concurrent modifications that may
conflict with each other. Conflicts can occur in other
circumstances as well, but low bandwidth and the
possibility of frequent disconnection make their oc-
currence more likely.

This paper introduces adaptation-aware editing and
progressive update propagation, two novel mechanisms
that enable document authoring and collaborative work
over bandwidth-limited links. These mechanisms extend
traditional replication models to account for the fidelity
level of replicated content. Both mechanisms decom-
pose multimedia documents into their component struc-
ture (e.g., pages, images, sounds, video), and keep track
of consistency and fidelity at a component granularity.
Adaptation-aware editing enables editing adapted docu-



ments by differentiating between modifications made by
the user and those that result from adaptation. Progressive
update propagation reduces the time and the resources re-
quired to propagate components created or modified at
the bandwidth-limited device by transmitting subsets of
the modified components or transcoded versions of those
modifications. Adaptation-aware editing and progressive
update propagation also reduce the likelihood of update
conflicts in two ways. First, by working at the compo-
nent level rather than the whole-document level, they re-
duce the sharing granularity. Second, because both mech-
anisms lower the cost to download and upload compo-
nent data, they encourage more frequent communication,
hence increasing the awareness that users have of their
collaborators’ activities [3].

By reducing the cost of propagating multimedia con-
tent, adaptation-aware editing and progressive update
propagation enable new types of applications and extend
the reach of existing applications into the mobile realm.
The following two examples illustrate the use of both
mechanisms:

1. Maintenance. A work crew inspects damage to a
plant caused by an explosion. They use a digital cam-
era to take pictures of the problem area, and send the
pictures over a wireless connection to the head office.
Since bandwidth is low, and they want an urgent as-
sessment of the seriousness of the situation, they use
progressive update propagation to initially send low-
resolution versions of the pictures. These initial im-
ages allow the head office to determine quickly that
there is no need to declare an emergency, but that
repair work nonetheless needs to be started immedi-
ately. The crew continues to use progressive update
propagation to send higher-resolution versions of the
pictures, sufficiently detailed to initiate repairs. The
head office forwards these pictures to a trusted con-
tractor and to the insurance company. The contrac-
tor uses adaptation-aware editing to indicate the sug-
gested repairs on the pictures, and sends the marked-
up pictures back to the head office and the insurance
company. Both approve the repairs, and the contrac-
tor heads out to the site. When the work crew arrives
back at the office, full-resolution pictures are saved
for later investigation.

2. Collaborative presentation design. A team member
on a mobile device takes advantage of adaptation-
aware editing to reduce download time by download-
ing and editing an adapted version of a presentation.
The adapted document consists of just a few slides of
the original presentation and has low-fidelity images,
sounds, and videos. The team member then uses
progressive update propagation to share her modifi-
cations to the presentation, which include a photo-
graph taken with a digital camera. Progressive up-

date propagation reduces the time for uploading the
photograph by sending a low-fidelity version of the
image. When the team member reconnects over a
high-bandwidth link, the system automatically up-
grades the version of the photograph.

The previous scenarios cannot be handled by current
adaptation systems that only handle adaptation of read-
only content. They also cannot be supported by current
replication systems. Propagating transcoded versions of
components as described in the above examples, requires
the replication model to account for the fidelity level of
replicated content. Upgrading the fidelity of an image in a
particular version of a document is different from creating
a new version with (user) modifications to the document.

This paper shows that fidelity can be added to a repli-
cation protocol independently of the mechanisms used for
concurrency control and consistency maintenance. Repli-
cation models are typically represented by state diagrams,
and we follow this general paradigm. We present state
diagrams that incorporate the presence of transcoded ver-
sions of components, for use with both optimistic and pes-
simistic replication. The introduction of transcoded com-
ponent versions is orthogonal to the maintenance of con-
sistency between replicas. More specifically, new states
are added to represent transcoded versions, but the seman-
tics of the existing states and the transitions between them
remain unchanged. Therefore, fidelity can be added eas-
ily to any replication protocol, whether optimistic or pes-
simistic.

There are several possible implementations of
adaptation-aware editing and progressive update propa-
gation. We present a prototype implementation of these
mechanisms that takes advantage of existing run-time
APIs and structured document formats [5]. This imple-
mentation allows us to adapt applications for multimedia
authoring and collaboration without changing their source
code.

We demonstrate our implementation by experimenting
with the Outlook email browser and the PowerPoint pre-
sentation software. Both applications see large reductions
in user-perceived latencies. For Outlook, progressive up-
date propagation reduces the time a wireless author has
to stay connected to propagate emails with multimedia at-
tachments. For PowerPoint, adaptation-aware editing and
progressive update propagation reduce the time that wire-
less collaborators need to wait to view changes made to
the presentation by their colleagues.

The rest of this paper is organized as follows. Section 2
introduces adaptation-aware editing and progressive up-
date propagation and explores the implications of extend-
ing pessimistic and optimistic replication models to sup-
port these mechanisms. Sections 3 and 4 present the de-
sign and evaluation of our prototype implementation of
adaptation-aware editing and progressive update propaga-



tion. Finally, Sections 5 and 6 discuss related work and
conclude the paper.

2 Incorporating Fidelity in Replica-
tion Protocols

In this section, we describe the implications of extending
traditional replication models to provide various degrees
of support for adaptation-aware editing and progressive
update propagation.

We assume that it is possible to decompose docu-
ments into their component structure (e.g., pages, images,
sounds, video). Component decomposition can be guided
by the document’s file format, or by a policy set by the
content provider or by the client. For example, HTML
documents [24], as well as documents from popular pro-
ductivity tools [4] use well defined tags to signal the pres-
ence of multimedia elements such as images, sounds, and
videos.

Multiple versions of a component can co-exist in dif-
ferent replicas. Two versions of a component may dif-
fer because they have different creation times, and hence
reflect different stages in the development of the compo-
nent, or because they have different fidelity levels. We
consider two fidelity classes: full and partial. For a given
creation time, a component can have only one full-fidelity
version but many partial-fidelity versions. A component is
present at full fidelity when its version contains data that
is equal to the data when the version was created. Con-
versely, a component is present with partial fidelity if it
has been lossily transcoded from the component’s origi-
nal version. Fidelity is by nature a type-specific notion,
and hence there can be a type-specific number of differ-
ent partial-fidelity versions. We assume that it is possible
to determine whether one version has higher fidelity than
another one.

This discussion considers both pessimistic and op-
timistic replication models. A pessimistic replication
model guarantees that at most one replica modifies a com-
ponent at any given time, and that a replica does not mod-
ify a component while it is being read by some other
replica. The mutual exclusion guarantee can be realized
by various mechanisms, such as locks or invalidation mes-
sages. With optimistic replication, replicas may read and
write components without any synchronization. A manual
or automatic reconciliation procedure resolves conflicts
caused by concurrent writes on different replicas.

Replication models are typically represented by state
diagrams, and we follow this general paradigm. The states
and transitions for a replication model are independent
of the specific mechanisms used for consistency mainte-
nance and depend only on whether the replication model
is pessimistic or optimistic. The discussion in this sec-

tion is therefore independent of specific mechanisms used
for consistency maintenance, such as invalidations, leases,
or timeouts. The mechanisms for consistency mainte-
nance only determine what events trigger specific transi-
tions (e.g., transition from Clean to Empty on receiving
an invalidation message). This discussion is also indepen-
dent of the specific mechanisms used to propagate ver-
sions between replicas. The use of data or operation ship-
ping, as well as optimizations, such a version diffing, are
implementation decisions that do not affect the underlying
replication model.

We consider both primary replica and serverless ap-
proaches. In a primary replica approach, a server holds
the primary replica of the document. Clients can replicate
subsets or all of the document’s components by reading
them from the server’s primary replica. Client modifica-
tions are sent to the server, and there is no direct commu-
nication between clients. In contrast, in a serverless con-
figuration there is no centralized server or primary replica
and replicas communicate directly.

In the rest of this section, we first describe the implica-
tions of supporting adaptation-aware editing and progres-
sive update propagation in isolation. We then describe
replication models that support both mechanisms. The
initial discussion assumes a primary replica. Serverless
systems are discussed afterwords.

2.1 Adaptation-Aware Editing

The simplest form of adaptation-aware editing limits users
to modifying only components that are loaded with full fi-
delity at the bandwidth-limited device. Such an imple-
mentation requires the replication system to keep track
of which components are available at the bandwidth-
limited device and whether these components have been
transcoded into partial-fidelity versions. This information
is normally already present in replication systems or can
be easily added. The replication system then prevents
users from modifying any component that is not present
with full fidelity.

A simple extension to the previous model is to allow
users to (completely) overwrite or delete partial-fidelity
components or components that were not included in the
client’s replica subset. In this scenario, the user can (com-
pletely) replace the content of a component that was not
loaded or that was loaded at partial fidelity with new full-
fidelity content generated at the bandwidth-limited device.
The user can also remove a component from the docu-
ment altogether. Adding this functionality does not re-
quire keeping extra state.
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Figure 1: State transition diagram for a pessimistic (A) and an optimistic (B) replication model with support for
adaptation-aware editing. Partial-fidelity states and the transitions in and out of these states are represented with gray
ovals and dotted arrows, respectively. In contrast, states present in traditional replication models and their transitions
are represented with clear ovals and full arrows, respectively.

2.1.1 Pessimistic Replication

Figure 1(A) shows the state transition diagram for individ-
ual components of a client replica for a pessimistic repli-
cation model that supports modifying full-fidelity compo-
nent versions and overwriting partial-fidelity component
versions. In our state diagrams, we represent new partial-
fidelity states by gray ovals and the new transitions in and
out of these states by dotted arrows. In contrast, we rep-
resent the states present in traditional replication models
by clear ovals and their transitions by full arrows. The
state diagram for the primary replica (not shown) stays
the same as without support for adaptation-aware editing.
This diagram contains two states, Empty and Clean, with
the obvious meanings.

In the client replica state transition diagram, a compo-
nent can be in one of four states: Empty, Partial-Clean,
Clean, and Dirty. A component is in Empty when it is
being edited by some other client replica or when the
client chooses not to read it. A component transitions
into Partial-Clean when the client replica reads a partial-
fidelity version. This version can be further refined by
reading higher-fidelity partial-fidelity versions (i.e., Read-
Partial) or the component can transition into Clean by
reading a full-fidelity version. The component transitions
into Dirty when the client replica either modifies a full-
fidelity version (i.e., component in Clean state) or over-
writes an unloaded component or a partial-fidelity version
(i.e., component in Empty or Partial-Clean). The com-
ponent transitions back to Clean when the client replica
propagates a full-fidelity version to the primary replica.
Finally, a component transitions back to Empty when the

client replica no longer wishes to read the component.
Transitions to Empty depend on the specific mechanisms
used to guarantee mutual exclusion, and can occur, for ex-
ample, when the client replica releases a lock or receives
an invalidation.

2.1.2 Optimistic Replication

Figure 1(B) shows the state transition diagram for an op-
timistic replication model. The optimistic replication di-
agram differs from the pessimistic diagram (Figure 1(A))
in two ways: First, it has an extra state for conflict res-
olution. The component transitions to the Conflict state
when the replica detects the primary replica version and
the client replica version are concurrent (i.e., it is not
possible to determine a partial ordering for the two ver-
sions) [15]. The component transitions back to the Dirty
state once the client replica reads the conflicting version
and resolves the conflict. Second, transitions from the
Clean and Partial-Clean states to the Empty state occur
when the client replica learns that the primary replica has
a more recent version for the component. The decision of
when to transition to Empty is left to the implementation.
Some implementations may eagerly invalidate the current
version, while others may allow the user to keep working
with the current version. In other words, it is the imple-
mentation’s responsibility to decide how eagerly it wants
to act on the consistency information it receives.
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2.1.3 Modification of Partially-Loaded Components

A more ambitious form of adaptation-aware editing al-
lows users to modify just a portion of a partial-fidelity ver-
sion, for example, to replace parts of transcoded images,
audio recordings, or video streams. Such modifications
result in a component version that contains a mixture of
partial- and full-fidelity data, which contravenes our ini-
tial assumption that the replication system keeps track of
fidelity at the component granularity. While the semantics
of some data types, such as images, may support mod-
ifications to just parts of the component’s version, these
semantics are not visible to the replication system. To re-
flect the changes to the replication system, the component
has to be split into two subcomponents as shown on Fig-
ure 2. The first subcomponent holds the partial-fidelity
data, which was not modified by the user, and the second
subcomponent holds the full-fidelity modifications made
by the user. The original component (now turned into a
container for the two subcomponents) transitions to the
Dirty state, to reflect the change in the document’s com-
ponent structure. The subcomponent holding unmodified
partial fidelity data remains in the Partial-Clean state. In
contrast, the subcomponent holding new full-fidelity data
transitions to the Dirty state.

A partial-fidelity version can also be changed by an op-
eration that does not produce any full-fidelity data, for in-
stance, by applying a gray-scale filter to a partial-fidelity
image. For these cases, the operation rather than the re-
sulting data has to be propagated to the primary replica,
and applied there [16]. After the operation has been prop-
agated and applied to the server’s version, the client’s ver-
sion transitions into Partial-Clean if the client’s version

can be lossily trancoded from the server’s version, and to
Empty otherwise. In other words, the client’s version tran-
sitions to Partial-Clean only if the lossy trancoding algo-
rithm used to derive the client’s version and the operation
being propagated are commutative.

In either of the above cases, reflecting the modifications
made to the partial-fidelity version on the full-fidelity ver-
sion available at the server requires data-type specific in-
strumentation (i.e., code that knows how to extract the
modifications to a partial-fidelity version, and merge them
with the full-fidelity version at the server).

2.2 Progressive Update Propagation

A replication system supports progressive update propa-
gation by propagating a subset of the modified compo-
nents and/or by propagating partial-fidelity versions of
modified components.

In this section, we consider the implications of an im-
plementation that supports progressive update propaga-
tion but does not support transcoding components on read
or editing partial-fidelity components. In such an imple-
mentation, client replicas have by default full-fidelity ver-
sions of the components they replicate. A client replica
has a partial-fidelity version for a component only when
the component is being updated by some other client and
the updates are being progressively propagated. In other
words, the decision to propagate partial-fidelity data is
made by the replica that is writing the component and
not by the reader, as was the case in the previous sec-
tion. Moreover, independently of whether we implement
a pessimistic or optimistic approach to replication, once
a partial-fidelity version has been propagated to the pri-
mary replica, it can only be replaced with another version
created by the same writer (i.e., a higher-fidelity version
or a more recent version). Replacing a partial-fidelity ver-
sion with a version created by a different writer would
require editing partial-fidelity components, which is not
allowed by the implementation discussed in this section.
In Section 2.3 we describe an implementation that allows
a writer to replace a partial-fidelity version created by an-
other writer.

2.2.1 Pessimistic Replication

Supporting progressive update propagation requires
adding one new state to the primary replica’s state tran-
sition diagram (Partial-Clean) and two new states to the
client replica’s state transition diagram (Pseudo-Dirty and
Partial-Clean).

Figures 3 (A) and (B) show the state transition diagram
for an individual component in a pessimistic replication
model at a client replica and at the primary replica, re-
spectively. The transition diagram for the primary replica
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Figure 3: Pessimistic replication state transition diagram
for components of the client (A) and primary (B) replicas.

is simple. A component at the primary replica can be in
one of three states: Empty, Partial-Clean, and Clean. A
component is in the Empty state while it is being edited by
a client replica. The component transitions to the Partial-
Clean and Clean states when the writer pushes a partial-
fidelity or a full-fidelity version of the components, re-
spectively.

A component in a client replica can be in one of five
states: Empty, Clean, Partial-Clean, Dirty, and Pseudo-
Dirty. A component is in the Empty state either while it
is being modified by some other client replica or when
the client has chosen not to read it. A component transi-
tions to Clean by reading a full-fidelity version. If only a
partial-fidelity version is available at the primary replica
because the last writer has not propagated a full-fidelity
version yet, the client replica can read this version and
transition to Partial-Clean. The component transitions
from Clean to Dirty after the client modifies its content.
The client can then propagate modifications to the pri-
mary replica in two ways. First, the writer can push a
full-fidelity version of the modifications, forcing the com-

ponent at the primary and writer’s replica to transition
to Clean. Second, the writer can propagate a partial-
fidelity version of the component, forcing the component
to transition to Partial-Clean in the primary replica, and
to Pseudo-Dirty in the writer’s replica. The various repli-
cas remain in these states until the writer pushes a full-
fidelity version and the component at both the primary
and writer’s replica transition to Clean. At this time, other
client replicas can read the full-fidelity version and tran-
sition to Clean. Alternatively, a writer in Pseudo-Dirty
can modify the component for a second time and tran-
sition to Dirty. If other replicas are to obtain access to
a partial-fidelity version, it is imperative that the writer
relinquishes exclusive access rights. This enables other
replicas to read the partial-fidelity version, but requires
the replica in Pseudo-Dirty to re-acquire exclusive access
to the component before it can modify it again and transi-
tion to Dirty.

2.2.2 Optimistic Replication

In an optimistic replication scheme, before propagating
modifications to a component, the writer has to determine
if his modifications conflict with other modifications pre-
viously reflected at the primary replica. If there is a con-
flict, the client replica has to resolve it by merging (in a
type-specific way) the full-fidelity versions of the conflict-
ing modifications. After resolution, the client replica can
propagate a full- or partial-fidelity version of the com-
ponent to the primary replica. If, however, the primary
replica has only a partial-fidelity version for a conflict-
ing component (i.e., the concurrent writer has not propa-
gated a full-fidelity version of its modifications), the two
versions cannot be merged as this would violate the re-
striction on editing partially-loaded components. In this
case, conflict resolution has to be delayed until the client
replica, which propagated the conflicting partial-fidelity
version, propagates a full-fidelity version of its modifica-
tions. This problem demonstrates the limitations of imple-
menting partial update propagation for optimistic concur-
rency control in the absence of adaptation-aware editing.
The next section describes how to implement this combi-
nation.

2.3 Combining Adaptation-Aware Editing
and Progressive Update Propagation

In this section we explore the implications of extend-
ing pessimistic and optimistic replication models to sup-
port both partial document editing and progressive update
propagation. We consider replication systems that support
all the features presented in Sections 2.1 and 2.2.
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Figure 4: State transition diagrams for individual components of client replicas that support partial document editing
and progressive update propagation based on pessimistic (A) and optimistic (B) replication models.

2.3.1 Pessimistic Replication

Figure 4 (A) shows the state transition diagram for com-
ponents at the client replica for a pessimistic replication
system that supports adaptation-aware editing and pro-
gressive update propagation. The state transition diagram
for components at the primary replica is the same as the
one shown in Figure 3 (B).

The diagram in Figure 4 (A) is similar to that of Fig-
ure 3 (A) and most states have similar semantics. The
semantics of Partial-Clean and Partial-Dirty are, however,
a little different. A component may be in the Partial-Clean
state because the client requested a partial-fidelity version
to reduce its network usage, or because only a partial-
fidelity version of the component is available at the pri-
mary replica. As was the case in Section 2.2.1, if other
replicas are to obtain access to a partial-fidelity version,
it is imperative that the writer relinquishes exclusive ac-
cess rights. Moreover, if another replica is to replace the
partial-fidelity version with a later version with new data,
the current writer should relinquish all access.

Because adaptation-aware editing is supported, a sec-
ond client replica can read and modify a component as
soon as a partial-fidelity version is available at the pri-
mary replica. Two scenarios are possible. First, the sec-
ond client replica can delete or completely overwrite the
component. In this case, the second writer propagates the
new version of the component to the primary replica (in
either full or partial fidelity), where it supersedes all pre-
vious versions, including any version propagated by the
first writer. Based on the implementation, any further
versions propagated by the first writer are either stored

for archival purposes or discarded. Second, the second
client replica modifies just a portion of the component.
As was the case in Section 2.1.3, propagating the modi-
fications to the partial-fidelity version requires data-type
specific instrumentation. This instrumentation may or
may not require waiting for the first writer to propagate
a full-fidelity version of its modifications. Alternatively,
for some data types it may be possible to propagate the
second writer’s modifications to the primary replica, and
merge them lazily with the first writer’s modification as
they arrive.

2.3.2 Optimistic Replication

Figure 4 (B) shows the state transition diagram for an
optimistic replication model that supports partial docu-
ment editing and progressive update propagation. The
state transition diagram is similar to that of the pessimistic
replication model we discussed in Section 2.3.1, with
states and transitions with the same names having equiv-
alent semantics. The optimistic replication diagram dif-
fers in two ways: First, it has an extra state for conflict
resolution. Second, it transitions from Clean and Partial-
Clean to Empty and from Dirty to Conflict when the client
replica learns about a more recent or concurrent compo-
nent version. As was the case in Section 2.1.2, the ea-
gerness with which the transitions to the Empty state are
taken is an implementation decision.

Supporting both adaptation-aware editing and progres-
sive update propagation, also enables client replicas to
resolve conflicts even when the server’s primary-replica
just has a partial-fidelity version for the component. In



such case, the client replica reads the conflicting partial-
fidelity version, resolves the conflict, and chooses whether
to propagate a full- or partial-fidelity version of the mod-
ifications. Resolving conflicts using partial-fidelity ver-
sions requires data-type specific functionality similar to
that described in Section 2.1.3 for reflecting modifications
made to partial-fidelity versions.

2.4 Serverless Replication

The earlier state diagrams can be carried over from a pri-
mary replica configuration to a serverless configuration
without any change. In a serverless configuration, when
a replica modifies a component it becomes the source for
distributing these modifications to other replicas. In prac-
tice, however, not all replicas have to read the modifica-
tions directly from the source replica and replicas can get
these modifications from some other replica that in turn
got the modifications from the source replica.

Independently of how the modifications are propagated,
the last writer has a full-fidelity version of the component
and is perceived by other replicas as the source for this
version. Hence, the replica that writes the component last
becomes effectively a temporary “primary replica” for the
component that it modified. The states and state transi-
tions otherwise remain the same. If a replica wants to pro-
gressively read the component from the primary replica,
it needs to maintain a Partial-Clean state. If the tempo-
rary primary replica for a particular component wishes to
progressively propagate its modifications (i.e., in a push-
based implementation), it needs to maintain a Pseudo-
Dirty state. If it wants to update more than one replica
concurrently, it needs to maintain the progress of each in-
dividual transmission as part of that state.

2.5 Summary

We have described the changes necessary to the state di-
agrams for pessimistic and optimistic replication models
in order to support adaptation-aware editing and progres-
sive update propagation. In general, the changes involve
adding states and transitions. The existing states and
transitions remain with their original semantics. Some
complications arise if we allow modifications to partial-
fidelity versions, requiring components to be split to re-
flect old partial-fidelity data and new full-fidelity data.
Additionally, data-type specific instrumentation may be
required to extract the modifications and reflect them on
the full-fidelity version.

3 The CoFi Prototype

This section describes CoFi, a prototype implementa-
tion of adaptation-aware editing and progressive update
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Figure 5: CoFi architecture.

propagation. We named our prototype CoFi because it
keeps track of both consistency and fidelity. We first dis-
cuss CoFi’s system architecture. We then present our
optimistic primary replica implementation of adaptation-
aware editing and progressive update propagation (see
Section 2.3.2).

3.1 System Architecture

CoFi adapts applications for collaborative and multimedia
authoring over bandwidth-limited networks without mod-
ifying their source code or the data repositories. CoFi fol-
lows the philosophy introduced in Puppeteer for read-only
adaptation [5], which takes advantage of the exposed run-
time APIs and structured document formats of modern ap-
plications.

Figure 5 shows the four-tier CoFi system architecture.
It consists of the application(s), a local and a remote
proxy, and the data server(s). The application(s) and data
server(s) are completely unaware of CoFi. Data servers
can be arbitrary repositories of data such as Web servers,
file servers, or databases. All communication between
the application(s) and the data server(s) goes through the
CoFi local and remote proxies that work together to im-
plement adaptation-aware editing and progressive update
propagation. The CoFi local proxy runs on the bandwidth-
limited device and manipulates the running application
through a subset of the application’s exported API. The lo-
cal proxy is also in charge of acquiring user modifications,
transcoding component versions, and running the adap-
tation policies that control the download and upload of
component versions. The CoFi remote proxy runs on the
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Figure 6: The native data store, CoFi remote and local proxies, and the application can have versions of the document
that differ in their component subsets and fidelities.

other side of the bandwidth-limited link and is assumed to
have high-bandwidth and low-latency connectivity (rela-
tive to the bandwidth-limited device) to the data servers.
The CoFi remote proxy is responsible for interacting with
the native store and transcoding component versions. Be-
cause applications differ in their file formats and run-time
APIs, the CoFi proxies rely on component-specific drivers
to parse documents and uncover their component struc-
ture, to detect user modifications, and to interact with the
application’s run-time API.

CoFi supports subsetting and versioning adaptation
policies. Subsetting policies communicate a subset of the
elements of a document, for example, the first page. Ver-
sioning policies transmit a less resource-intensive version
of some of the components of a document, for example,
a low-fidelity version of an image. CoFi adapts applica-
tions by extracting subsets and versions from documents.
CoFi uses the exported APIs of the applications to incre-
mentally increase the subset of the document or improve
the fidelity of the version of the components available to
the application. For example, it uses the exported APIs to
insert additional pages or higher-fidelity images into the
application.

3.2 Optimistic Primary Replica Replication

CoFi implements an optimistic primary replica replication
model as described in Section 2.3.2. The prototype con-
sists of a group of bandwidth-limited nodes, each running
a CoFi local proxy, that collaborate by exchanging com-
ponent data over a single CoFi remote proxy, which stores
the primary replica of the document. When a document is
first opened, it is imported from its native data store into
the CoFi remote proxy. Further accesses to the document,
both reads and writes, are then served from the CoFi re-
mote proxy’s version. In a more complete implementa-
tion, there would be multiple remote proxies communi-
cating between each other, but this communication can be
implemented by known methods and the current proto-
type allows us to focus on the novel aspects of CoFi. To
enable communication with non CoFi-enabled programs,

CoFi exports document modifications back to their native
data store.

In CoFi, several versions of a document co-exist in var-
ious parts of the system. Figure 6 exemplifies the state of
the system for a single client editing a PowerPoint doc-
ument. The figure shows that there is one version of the
document in each of the native data store, the CoFi remote
and local proxy, and the application. Moreover, the figure
shows that these versions differ in their component sub-
sets and component fidelities. In the example, the native
data store and the CoFi remote proxy have complete ver-
sions of the document. In contrast, both the CoFi local
proxy and the application have just incomplete versions:
the first slide is empty and the images of the second slide
are only present in partial fidelity. Finally, the application
version has an extra slide component.

The differences between the versions in the remote and
local proxy result from subsetting and versioning adapta-
tions. In contrast, the differences between the versions in
the local proxy and the application result from user modi-
fications. The native store and remote proxy versions can
differ because the two versions have not been synchro-
nized (i.e., modifications have not been propagated to the
native store), or when the native store version is being up-
dated using out-of-band mechanisms (i.e., outside of the
CoFi system).

The rest of this section describes how versions of the
document converge by exchanging component data. First,
we describe how CoFi propagates user modifications from
the bandwidth-limited device to the CoFi remote proxy
and the data store. Second, we describe how the CoFi
local proxy refreshes the application’s document version
with newer or higher-fidelity component versions.

3.2.1 User Modification Propagation

Adaptation policies running on the CoFi local proxy (as
described in Section 3.1) control the propagation of user
modifications to the CoFi remote proxy. Update propa-
gation involves four stages: acquiring user modifications,
resolving conflicts, transmitting modifications to the re-
mote proxy, and synchronizing the modifications with the



document’s native store.

Acquire Modifications CoFi acquires user modifica-
tions by comparing the local proxy’s document version
to the application’s version. Ideally, CoFi would use the
application’s exported API to acquire any user modifica-
tions. When such functionality is not provided by the ap-
plication’s API, CoFi instructs the application to save a
temporal version of the document in the local file system.
CoFi then parses the temporary document and compares
it to the local proxy version.

Conflict Resolution CoFi detects conflicting modifica-
tions by tagging component versions with version num-
bers, which determine the partial order of modifications
in the system. CoFi implements both client- and server-
based conflict resolution. In client-based resolution, the
local proxy fetches the conflicting version from the re-
mote proxy, resolves the conflict and creates a new version
that dominates the two conflicting versions. In server-
based resolution, the client pushes its version to the re-
mote proxy, and a resolver executing in the remote proxy
creates a new version that merges the conflicting modifi-
cations.

When user intervention is necessary to resolve a con-
flict, conflict resolution is client-based. To facilitate con-
flict resolution, the application-specific resolution policy
can use the application’s exported API to present the con-
flicting component versions in the context of the applica-
tion’s environment.

Modification Transmission A policy running on the lo-
cal proxy selects the subset of components for which to
propagate modifications, as well as the fidelity level for
each component in the subset. The policy can later in-
crease the fidelity level of a previously propagated compo-
nent by re-selecting the component and pushing a higher-
fidelity version.

Synchronization with Native Storage CoFi’s remote
proxy exports documents to their native storage to en-
able information sharing with clients outside of the CoFi
system and to leverage the mechanisms that these storage
systems may implement (e.g., availability, fault tolerance,
security, etc). Before exporting modifications, CoFi needs
to detect if the native store has been modified by an ap-
plication outside of CoFi’s control. CoFi detects and re-
solves conflicts created by out-of-band modifications us-
ing similar mechanisms to those explained above (i.e., by
comparing the last-known and current states of the native
store).

3.2.2 Refreshing the Application’s Version

Adaptation policies can refresh the application’s docu-
ment version to reflect changes made by other users or
to increase the fidelity of a component present at partial
fidelity. This process involves three steps: fetching newer
or higher-fidelity versions, detecting any user modifica-
tions to the components about to be updated, and using
the application’s API to update the application’s docu-
ment version. If the update process detects that the com-
ponents have been modified by the user, then a conflict
has occurred and the modifications have to be merged
with the new version fetched from the remote proxy in
a component-specific way – following the techniques for
conflict resolution described in Section 3.2.1.

3.3 Implementation Details

3.3.1 User Interaction with CoFi

In our current prototype, the applications’ toolbars are ex-
tended with extra fields for selecting an adaptation policy
that determines the fidelity level at which a document is
opened or saved. Eventually, CoFi could rely on mon-
itoring of bandwidth or other resources to automatically
choose a particular fidelity level.

CoFi also provides a Component Viewer window that
shows the current state of components in a document. Us-
ing this window, users can determine what components
are currently loaded in the application, what components
are in progress of being loaded, whether modifications to
a component have been propagated to the remote proxy
and with what fidelity, whether a newer version of a com-
ponent is known to be available at the remote proxy, and
whether a conflict has been detected for any component.
Users can also interact with the Component Viewer to
control the propagation of component versions.

3.3.2 Client-Server Interactions

The current prototype implementation is client-driven.
That is, clients specify when they want to read or write
a document and at what fidelity. The client also indicates
when it wants to get or send a refinement of an earlier
transcoded version. The server does not notify the clients
of new versions or new refinements. Such a facility could
be added through a callback mechanism, but would leave
other aspects of the implementation unchanged.

3.3.3 Relationship to Puppeteer

CoFi shares some of the code base of Puppeteer [5],
namely the code to parse document formats, some of the
code in the local proxy to interact with the application,



and the protocol to interact between the local and remote
proxies.

4 Experimental Results

In this section, we report on our experience using CoFi
to add adaptation-aware editing and progressive update
propagation to the Outlook email client and the Power-
Point presentation system. We implement progressive
update propagation for both applications. For Power-
Point we also support adaptation-aware editing. The CoFi
drivers and policies we implement for Outlook and Pow-
erPoint consist of 2,365 and 3,315 lines of Java code, re-
spectively.

We measure the performance of CoFi on an experimen-
tal platform consisting of three 500 MHz Pentium III ma-
chines running Windows 2000. Two of the machines are
configured as clients and one as a server. Client machines
run the user application and the CoFi local proxy. The
server machine runs the CoFi remote proxy. Clients and
the CoFi server communicate via a fourth PC running the
DummyNet network simulator [26]. This setup allows us
to control the bandwidth between clients and server to em-
ulate various network technologies. We use our depart-
mental NFS and IMAP servers as the native stores for our
experiments with PowerPoint and Outlook, respectively.

4.1 Outlook

We developed an email service that supports the progres-
sive propagation of images embedded in or attached to
emails. On the sender side, the progressive email ser-
vices use Outlook’s email client to generate emails. On
the receiving end, we support both CoFi-enabled clients
running Outlook and standard third-party email readers.

We implemented emails as CoFi shared documents that
are written only by the email’s sender but are read by one
or more recipients. Our sender adaptation policy propa-
gates the text content of new emails, transcodes images
into a progressive JPEG representation and sends only
portions of an image’s data. The sender can propagate fi-
delity refinements for images by selecting the email from
a special Outlook folder and re-sending it. The image
fidelity refinements are available to CoFi-enabled recip-
ients as soon as they reach the CoFi remote proxy. For
CoFi-enabled recipients, our adaptation policy fetches the
email’s text content and transcoded versions of its im-
age attachments. Readers request fidelity refinements by
clicking a refresh button added on Outlook’s toolbar. Fi-
nally, we support third-party email readers by composing
a new email message once all images have reached full
fidelity.

0

20

40

60

80

100

120

140

100 200 300 400 500 600 700 800

MailContent (KB)

L
at

en
cy

(S
ec

)

Full Native Partial

Figure 7: Latency for sending emails with and without
progressive update propagation over 56 Kb/sec.

4.1.1 Progressive Update Propagation

Figure 7 plots the latencies for transmitting a set of syn-
thetic emails consisting of a few text paragraphs and
a variable number of image attachments each of size
100 KB over a 56 Kbps link. The plots show results for
a run that uses Outlook without any adaptation support
(Native), and two CoFi runs, one that sends the full im-
ages (Full), and a second that uses versioning to propa-
gate partial-fidelity versions of the images (Partial). In
this experiment, a partial-fidelity version correspond to
the initial ����� of the content of an image encoded in a
progressive JPEG representation.

For the Native run, we measure only the time it takes
to transmit the emails between the mobile client running
Outlook and an SMTP server on the other end of the
bandwidth-limited link. This accounts for the time that
the mobile client has to wait before disconnection in or-
der to propagate the email. We do not include the time it
takes for the SMTP server to deliver the email to the re-
cipients, as these operations can be done asynchronously
and do not require the mobile client to remain connected.
Similarly, for CoFi runs we measure only the time it takes
to transmit the emails between the CoFi local and remote
proxies and do not include the time needed to compose
and send emails to third-party email recipients, or the time
it takes for CoFi-enabled recipients to read the email adap-
tively.

Full demonstrates that the CoFi overhead is small, av-
eraging less than 5% over all emails. In contrast, Partial
shows that progressive propagation of the attachments re-
duces the latency by roughly 80%. The 5% overhead in
CoFi corresponds to the cost involved in parsing the email
content to find its structure, exchanging the control infor-
mation, and transcoding the images.
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Figure 9: Latency for saving modifications to PowerPoint
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Figure 10: Latency breakdown for upgrading the fidelity
of a single image in PowerPoint documents of various
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4.1.2 Fidelity Upgrade

We measured the time it takes for a CoFi-enabled recipi-
ent to upgrade a partial-fidelity image to full fidelity. Fig-
ure 8 shows that the largest fraction of the time necessary
for this fidelity upgrade is due to transmission (Transmis-
sion), and that only a small fraction of the time is spent on
displaying the upgraded images in the application (Dis-
play). In other words, the overhead caused by CoFi’s use
of the API is very small. While we were not expecting the
overhead to be significant, these results confirm that CoFi
supports these kinds of adaptations in practice.

4.2 PowerPoint

We adapted PowerPoint to support adaptation-aware edit-
ing and progressive update propagation. Adaptation-
aware editing reduces download time by enabling mo-
bile clients to edit PowerPoint presentations that have
been aggressively adapted. Previous work [5] demon-
strated that loading text-only versions of PowerPoint pre-
sentations can reduce download latency over bandwidth-
limited links by over 90% for large presentations. The rest
of this section evaluates the benefits of progressive update
propagation, quantifies the latency for updating a Power-
Point presentation with higher-fidelity data, and discusses
our conflict resolution policy.

4.2.1 Progressive Update Propagation

CoFi-enabled PowerPoint propagates modifications pro-
gressively by saving back just subsets of the modified
slides or embedded objects, or by transcoding embedded
images into a progressive JPEG representation and sav-
ing just portions of the images’ data. We implemented
an adaptation policy that propagates modifications every
time the user saves the document. The policy propa-
gates the text content of any new or modified slides and
transcoded versions of new or modified embedded im-
ages. Image fidelity refinements are then propagated on
every subsequent save request until all images at the CoFi
remote proxy reach full fidelity.

We evaluate the effectiveness of progressive update
propagation by measuring the latency for saving modifi-
cations to a set of synthetic PowerPoint documents. We
constructed our synthetic documents by replicating a sin-
gle slide that contained 4 KB of text and a 80 KB image.

Figure 9 shows latency measurements for saving Pow-
erPoint documents with up to 50 slides over a 56 Kb/sec
network link. The figure shows latency results for trans-
ferring the documents over FTP and adaptation policies
that use subsetting and versioning to reduce the data traf-
fic. The FTP measurements give us a baseline for the time
it takes to transfer the full document without any adapta-



tion. We use this baseline to determine the effectiveness
of our adaptation policies.

Figure 9 plots the results of 5 experiments that use sub-
setting to reduce latency. The numbers on the right hand
side of the plot, next to each line, show the proportion
of document slides that was saved back to the remote
proxy. In this manner, the top most line corresponds to
documents that were saved in their entirety, while the low-
est subsetting line corresponds to documents where only
modifications to 20% of the slides were saved. In all ex-
periments, we assume that both the slide’s text and single
image were modified and had to be saved back. The top
most subsetting line, which corresponds to saving the full
document, shows that the CoFi overhead is small, aver-
aging less than 5% over all documents. In contrast, all
other subsetting experiments show significant reductions
in upload latency. The last five lines in Figure 9 show
the results for an adaptation policy that uses subsetting
and versioning of images to further reduce upload latency.
This policy converts images embedded in slides into a pro-
gressive JPEG representation and transfers only the initial
� � � of the image’s data; achieving even larger reductions
in upload latency.

4.2.2 Fidelity Upgrade

Figure 10 shows the breakdown of the execution time for
updating a single image with higher fidelity data. The fig-
ure shows that the API calls to replace the image (Display)
account for a small portion of the overall latency, similar
to what we saw for Outlook in Figure 8. More signifi-
cantly, the figure shows that for large documents, roughly
60% of the time for upgrading the fidelity of an image is
spent making sure the user did not modify the image we
are about to update (Detect). Detecting modifications is
time-consuming because PowerPoint’s API does not sup-
port querying whether a component has been changed. In-
stead, we detect modifications by saving a temporary copy
of the presentation on disk, parsing this copy, and compar-
ing it with the local proxy copy of the presentation. Writ-
ing out a copy of the presentation to disk dominates the
cost of all other factors in the total time taken for detect-
ing modifications.

This experiment represents a worst-case scenario of
having to write out the entire document to upgrade a sin-
gle image. Under normal operation, we expect modifi-
cation detection to benefit from PowerPoint’s ability to
write out modifications incrementally, as well as from the
possible batching of multiple component upgrades into a
single operation (i.e., updating a set of images at a time).
Detecting modification is also only necessary if we allow
editing of partial-fidelity images. If we disallow editing
partial-fidelity images, then the cost to upgrade an image
is just a few milliseconds over the time it takes to transmit

the image over the bandwidth-limited link.
In any case, the large modification detection time re-

sults from specific limitations of the current PowerPoint
API (which could be easily fixed by adding an API call for
checking if a component has been changed), and is not a
fundamental limitation of either adaptation-aware editing
or progressive update propagation.

4.2.3 Conflict Resolution

We consider the following conflicts: one user modifies
a slide while another user deletes it, two users move a
slide to different positions in the presentation, or two users
concurrently modify the same slide. We refer to these
conflicts as edit-delete, move-move, and edit-edit, respec-
tively. For simplicity, for the rest of this section, we refer
to the copy of the presentation available at the remote and
local proxies as the remote and local copies, respectively.

Our PowerPoint policy resolves edit-delete and move-
move conflicts automatically. For edit-delete conflicts, our
policy prioritizes editing over deletion, recreating the slide
in the replica where it was deleted. For move-move con-
flicts, our policy gives priority to the local copy, moving
the slide in the remote copy to reflect its position in the
local copy. Finally, we resolve edit-edit conflicts by using
the CoFi PowerPoint driver to present the two conflicting
slides to the user, and prompting the user to resolve the
conflict by either choosing one of the slides or by merg-
ing their content. The above policy is, however, just one
of the possible ways to resolve conflicts, and we can easily
envision variations or extensions to this simple policy.

The cost of conflict detection is highly dependent on
the size of the documents. The bulk of the cost stems
from writing out the document (see Section 4.2.2) and
from transmitting the data over the network. All other
aspects, including the execution of the conflict detection
algorithm and the use of the APIs to display conflicts to
the user, are insignificant.

5 Related Work

Support for partial propagation of modifications made to
a shared database or file system has been provided be-
fore. This paper, however, is the first to introduce mecha-
nisms that support propagating partial-fidelity versions of
modifications, as well as their progressive improvement.
WebDAV [30], and LBFS [20] implement file systems for
wide-area and low-bandwidth networks. Coda [14], Fi-
cus [25], and Bayou [29] provide support for document
editing on disconnected devices. These systems differ
from CoFi in that they are not aware of the fidelity level
of the objects they replicate.

While various adaptation systems [1, 5, 7, 8, 11, 12, 17,
19, 21, 28] use subsetting and versioning to reduce doc-



ument download time, CoFi is the first to provide adap-
tation support for multimedia authoring and collaborative
work over bandwidth-limited devices.

Several efforts [3, 9, 18] have used component-based
technologies to implement collaborative applications that
adapt to variations on network connectivity, or have im-
plemented collaborative applications that use the docu-
ment’s component structure to reduce conflicts or limit
the amount of data that need to be present at the de-
vice [2, 6, 13, 22, 27]. These efforts, however, do not al-
low the propagation of partial-fidelity versions of modifi-
cations. MASSIVE-3 [10] uses transcoding to reduce data
traffic necessary to keep users of a collaborative virtual
world aware of each other. MASSIVE-3, however, imple-
ments a pessimistic single-writer consistency model.

6 Conclusions

We have described adaptation-aware editing and progres-
sive update propagation, two novel mechanisms for sup-
porting multimedia authoring and collaborative work on
bandwidth-limited devices. Both mechanisms decompose
documents into their components structures (e.g., pages,
images, paragraphs, sounds) and keep track of consis-
tency and fidelity at a component granularity. Adaptation-
aware editing lowers download latencies by enabling
users to edit adapted documents. Progressive update prop-
agation shortens the propagation time of components cre-
ated or modified at the bandwidth-limited device by trans-
mitting subsets of the modified components or transcoded
versions of the modifications.

We demonstrate that support for adaptation-aware edit-
ing and progressive update propagation can be added to
optimistic and pessimistic replication protocols in an or-
thogonal fashion. Specifically, new states are added to the
state machines that describe the replication protocols, but
the existing states and transitions remain unaffected.

We have described the implementation of our CoFi pro-
totype, which supports adaptation-aware editing and pro-
gressive update propagation for optimistic client-server
replication. We have presented performance results for
experiments with multimedia authoring and collaboration
with two real world applications. For these applications,
the ability to edit partially loaded documents and progres-
sively propagate fidelity refinements of modifications sub-
stantially reduce upload and download latencies.

While the experiments in this paper focus on document-
centric applications, the same principles can be extended
to applications with real-time requirements, such as video
or audio. Adaptation-aware editing could be used to sup-
port video editing, while progressive update propagation
would be useful in situations where there is a benefit in re-
transmitting a higher-fidelity version of a video or audio

stream, such as when a user listens to a recording multiple
times.
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