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Abstract

In this paper, we argue that localization solution based
on cellular phone technology, specifically GSM phones, is
a sufficient and attractive option in terms of coverage and
accuracy for a wide range of indoor, outdoor, and place-
based location-aware applications. We present preliminary
results that indicate that GSM-based localization systems
have the potential to detect the places that people visit in
their everyday lives, and can achieve median localization
accuracies of 5 and 75 meters for indoor and outdoor envi-
ronments, respectively.

1 Introduction

Development of location-aware applications and sys-
tems, especially in the social-mobile [19] and health care [6]
domains, has been driving the need for more accurate and
pervasive localization technologies. We see a taxonomy
emerging where location-enhanced applications can be cat-
egorized into three types according to their needs: indoor
localization, outdoor localization and place detection. Dig-
ital homes [13], in-building navigation, and in-building co-
ordination between peers [21] all desire indoor localiza-
tion with at least room-level accuracy. City-wide tourist
guides [7, 2], the US FCC’s E911 mandate, and location-
based web search [5] need outdoor wide-area localization
where coverage is often paramount to precision. Some ap-
plications benefit from the combination of both indoor and
outdoor localization on a single easy to carry device. Those
include Computer Supported Cooperative Care (CSCC) [6],
social-mobile computing [19] and gaming [3]. Finally, new

location-enhanced applications are emerging that use in-
formation about places the user visits repeatedly instead
of latitude-longitude coordinates [11]. Examples of these
place detection applications include automatic configura-
tion of wireless network settings based on place, recom-
mendation systems that learn user’ preferences by tracking
the places (e.g., restaurants, bars) the user visits, location-
enhanced instant messengers, systems that allow setting re-
minders based on places that are important to the user [20].
In this paper, we argue that localization based on cellular
phone technology, specifically GSM phones, can be a suffi-
cient and appropriate solution both in terms of coverage and
localization accuracy for this taxonomic spectrum of appli-
cations.

There is a conception that client-based GSM localiza-
tion is inherently inaccurate. GSM’s large cell sizes (GSM
macro-cells have a range of 35km, which can be extended if
necessary) seem to make it harder to achieve good localiza-
tion accuracies. In this paper, we argue that this conception
is in fact incorrect. We show that GSM localization achieves
accuracies that are appropriate for many applications. In
indoor environments it is possible to perform room level
localization with GSM and achieve median localization ac-
curacies of 2 to 5 meters. We also report our preliminary
results for wide-area outdoor GSM localization, achieving
up to 75m median error. Finally, we show how having only
GSM traces reported by a cell phone allows us to detect
places people visit in their everyday lives.

2 Background

Many available localization technologies have low cov-
erage or only work in a specific environment. The most



commonly available location technology today is the Global
Positioning System (GPS). Although accurate and very ef-
fective in open environments, GPS typically does not work
well where people spend their time. For example, GPS does
not work well indoors, in urban canyons, or in similar ar-
eas with limited view of sky. A recent study showed that
GPS coverage is available only 4.5% of the time for a de-
vice carried in users’ pockets or purse during a typical day
[15], although these numbers are admittedly worst-case and
they rise if only both mobile and stationary times are con-
sidered. GPS-enabled devices are quite valuable and will
become more and more widespread, but it is clear that many
systems require another technology to meet the coverage
and accuracy demands of applications. Infrared [12], ul-
trasound [18] and Bluetooth localization systems [1] work
well indoors, but deploying these technologies to the wide-
area is either cost prohibitive or not technically possible, for
example, due to infrared interference from the sun.

The wide adoption of WiFi-enabled mobile devices and
rapid deployment of WiFi access points make WiFi lo-
calization attractive. The RADAR project [4] pioneered
indoor WiFi location, achieving 2-3 meter median accu-
racy and inspiring many follow-up efforts [14, 9]. Place
Lab [15] introduced wide-area WiFi location, showing me-
dian accuracies ranging between 15 and 60 meters and
high coverage. Examples of recent commercial systems
using Place Lab’s approach include Microsoft’s Virtual
Earth (http://virtualearth.msn.com) and SkyHook Wireless
(http://www.skyhookwireless.com). Finally, the Beacon
Print project [11] showed how the places people go to can
be learned and recognized, without relying on a coordinate-
based localization system. Unfortunately, because of their
high power consumption, current WiFi-enabled devices are
not frequently used “on-the-go” and, unless a power line
is available nearby, are used intermittently. For exam-
ple, Henderson et al. showed that although people do use
their WiFi-enabled devices in several locations, they tend to
power them off before moving to a new place and do not
power them on unless necessary [10]. As a result, WiFi-
equipped devices cannot be used effectively as a platform
for location-enhanced applications that rely on continuous
network connectivity or spontaneous interactions, for exam-
ple, social-mobile and monitoring applications.

Fortunately, there are devices that people do carry with
them most of the time that have continuous network con-
nectivity: mobile phones. Mobile phones have low power
consumption, ubiquitous connectivity, established interface
metaphors, wide adoption, and, most important for this pa-
per, research results suggests that they can offer indoor,
outdoor, and place detection capabilities. We believe all
these characteristics make mobile phones an excellent plat-
form for developing and deploying location-enhanced ap-
plications. Phone localization has specific advantages over

WiFi localization: (a) phones operates over a licensed band,
meaning no interference from microwave ovens and cord-
less phones; (b) phones use a managed network, meaning no
interference from neighboring access points that happened
to be tuned to the same channel; (c) phone networks require
significant installation investments, resulting in stable en-
vironment that changes less frequently [15]; and (d) phone
network coverage is greater than that of WiFi networks.

3 GSM Primer

Global System for Mobile Communication (GSM) is the
most widespread cellular telephony standard in the world,
with deployments in more than 210 countries by over 676
network operators [8]. In North-America, GSM operates
on the 850 MHz and 1900 MHz frequency bands. Each
band is subdivided into 200 KHz wide physical channels
using Frequency Division Multiple Access (FDMA). Each
physical channel is then subdivided into 8 logical channels
based on Time Division Multiple Access (TDMA). There
are 299 non-interfering physical channels available in the
1900 MHz band, and 124 in the 850 MHz band, totaling
423 physical channels.

A GSM base station is typically equipped with a num-
ber of directional antennas that define sectors of coverage
or cells. Each cell is allocated a number of physical chan-
nels based on the expected traffic load and the operator’s
requirements. Typically, the channels are allocated in a
way that both increases coverage and reduces interference
between cells. Thus, for example, two neighboring cells
will never be assigned the same channel. Channels are,
however, reused across cells that are far-enough away from
each other so that inter-cell interference is minimized while
channel reuse is maximized. The channel to cell alloca-
tion is a complex and costly process that requires careful
planning and typically involves field measurements and ex-
tensive computer-based simulations of radio signal propa-
gation. Therefore, once the mapping between cells and fre-
quencies has been established, it rarely changes.

Every GSM cell has a special Broadcast Control Channel
(BCCH) used to transmit, among other things, the identi-
ties of neighboring cells to be monitored by mobile stations
for handover purposes. While GSM employs transmission
power control both at the base station and the mobile de-
vice, the data on the BCCH is transmitted at a full and con-
stant power. This allows mobile stations to compare signal
strength of neighboring cells in a meaningful manner and
choose the best one for further communication.

We collected GSM traces using a Sony Ericsson GM28
GSM modem and an Audiovox SMT 5600 phone, depicted
in Figures 1 and 2. The modem operates as an ordinary
GSM cell phone, but exports a richer programming inter-
face. Both the modem and the phone provide two inter-



Figure 1. GM28 Sony Ericsson
Modem

Figure 2. Audiovox SMT 5600
Smart Phone

faces for accessing signal strength information: cellsAPI
and channelsAPI 1. The cellsAPI interface reports the cell
ID, signal strength, and associated channel for the n neigh-
boring cells. While the modem’s and the phone’s specifica-
tion does not set a hard bound on the value of n, in practice
we saw the maximum value of n varying from 6-7. The
channelsAPI interface simultaneously provides the signal
strength for up to 35 channels on the modem and 18 chan-
nels on the phone. In practice, 6 of the channels typically
correspond to the 6-strongest cells. Unfortunately, channel-
sAPI reports signal strength but does not report cell IDs.

Although the modem exposes the cellsAPI and channel-
sAPI explicitly, we are not aware of any GSM phone that
makes this information easily available. For example, to
access cell and channel information on the Audiovox SMT
5600 phone, we had to write a C tool that reads this data
directly from the phone’s memory.

We speculate that the fact that current phones do not ex-
pose similar interfaces reflects the unwillingness of network
operators to make signal strength information public. In-
deed, by not exposing these interfaces, network operators
can maintain a monopoly on the provisioning of location-
based services. What needs to be done to influence network
operators to allow exposing such interfaces is beyond the
scope of this paper. Instead, in this paper we explore the
opportunities that are made possible by the availability of
signal strength information on the phone.

4 Indoor and Outdoor Localization

We begin this section by describing how GSM and WiFi
localization works. We then present our experimental GSM
localization results and show that although GSM accuracies

1The terms cellsAPI and channelsAPI are used to simplify presenta-
tion. In practice, the cellsAPI correspond to AT*E2EMM=1 command and
the channelsAPI correspond to the AT*E2NBTS? command on the GM28
GSM modem, respectively

appear slightly lower than those achieved using WiFi lo-
calization, they are comparable and sufficient for the same
types of location-enhanced applications.

Two approaches to GSM and WiFi localization are fin-
gerprinting and centroid, both of which require a
training phase where given a set of GPS-stamped WiFi or
GSM traces the algorithm builds a model of an environ-
ment, which it later uses for predicting device’s location.
Given the training traces, the centroid algorithm learns
the positions of radio beacons in the environment (i.e., WiFi
APs or GSM cell towers) by positioning the radio beacon
in a location where the signal strength for that beacon was
observed the strongest. During the testing phase, the cen-
troid algorithm predicts a position of a measurement by
averaging the positions of the radio beacons that appear in
the measurement. Typically, giving a higher weight dur-
ing averaging to radio beacons with stronger signal strength
yields better localization accuracy. Unfortunately, walls,
doors and other obstacles attenuate radio signals in an un-
predictable way, making the centroid algorithm inaccu-
rate in indoor environments. Therefore, we present cen-
troid results only for outdoor experiments.

In contrast, the fingerprinting algorithm uses the
training set to build a mapping from measurements to po-
sitions where those measurements were observed. Then,
during the testing phase,
fingerprinting matches every measurement in the
testing set to one or more measurements observed during
the training phase and then averages the true positions of
the best matched measurements. Once again, weighting by
the signal strength of the best matched measurements yields
better results.

We also show results for a random algorithm, which
predicts position by randomly picking a measurement from
the training set and assigning its position as the predicted
position, thus providing a lower bound on the performance
of a localization system. The localization error, or the dis-
tance between the true and predicted position, of random
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Figure 3. Median indoor lo-
calization error.
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Figure 4. Floor classification
accuracy.
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Figure 5. Outdoor localiza-
tion error (median and 95%).

depends on the size of the area covered by the training set.

��� ������ ��	
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In our previous work [17], we presented the first accu-
rate GSM indoor localization system that achieves median
accuracy ranging from ����� to ����� in large multi-floor
buildings. We will first briefly summarize this work and
then present our new preliminary results for room level lo-
calization.

4.1.1 Coordinate level accuracy

To test our system, we collected GSM measurements on the
5th and 6th floors of the Intel Research Seattle Lab build-
ing, the 5th and 7th floors of Bahen Center (the home to
the Department of Computer Science of the University of
Toronto) and at the basement, 1st and 2nd floors of a private
house located in a suburban Seattle area. The measurements
were collected about 1.5 meters apart. We tested the accu-
racy with which GSM and WiFi localization systems based
on fingerprinting [4] are able to differentiate floors of the
buildings and to localize mobile devices within the floor.

Figure 3 and Figure 4 summarize our results. In our
experiments, WiFi achieved within-floor localization accu-
racies consistent with previous findings [4, 9]. Also, be-
cause of reinforced concrete floors in the Research Lab
and the University buildings, WiFi was able to differentiate
floors perfectly. In the house environment, however, WiFi
achieves low classification accuracy as the house’s wood
structure presents little obstacle to radio propagation, mak-
ing it harder to differentiate floors.

GSM localization system performs well, achieving
within-floor localization results comparable to 802.11 sys-
tem. Moreover, our GSM system effectively differentiates

between floors in both wooden and steel-reinforced con-
crete structures, achieving correct floor classifications be-
tween ��% and ��% of the time.

4.1.2 Room level accuracy

To test room level localization accuracy, we first collected
a training trace by walking around with an Audiovox 5600
SMT cell phone in 8 rooms on the 6th floor of Intel Re-
search Seattle building. One hour later, we gathered an ad-
ditional similar trace using the same phone. We used fin-
gerprinting to match training and testing measurements.

First, we have repeatedly broken the training set down
into two random sets with 90% of points in the training set
and 10% in the testing set. In all cases, we obtained 100%
classification accuracy, which suggests that two consecutive
measurements taken on the phone are typically very similar.
We then tried to match the measurements taken within an
hour and saw 70% accuracy (87 of 126). More detailed
examination revealed that in most incorrect classifications
the predicted room was the next closest room.

Although we plan to perform more elaborate testing in
the future, these results suggest that room level localization
using GSM traces is feasible and GSM phones could sup-
port applications like in-building navigation and in-building
coordination between peers.

��� ������� ��	
��
����

This section presents our preliminary GSM outdoor lo-
calization results. We collected traces from a vehicle driv-
ing in two neighborhoods in the Seattle metropolitan area:
(a) Belltown, a mix of commercial and residential urban
high-rises and (b) Redmond, a medium density residential
neighborhood. We collected GPS-stamped GSM traces us-



Figure 6. Place detection accuracy using GSM mobile phones.

ing a laptop connected to a GPS device and the Sony Erics-
son GSM modem.

The median and the 95% accuracy results for the cen-
troid, fingerprinting and random algorithms are
summarized in Figure 5. As expected, fingerprinting
achieves the best accuracy, with median error below 75m in
both areas we tested. The centroid algorithm performs
worse, achieving a 213m median error. These preliminary
results are encouraging, as 75m or even 213m median error
is comparable to what is possible with WiFi and likely more
than sufficient for many wide-area location-enhanced appli-
cations such as social coordination and local web search.

5 Place Detection

In this section, we describe how using a stream of GSM
readings, we were able to effectively detect places people
visit in their everyday lives. We developed an algorithm that
given a stream of time-stamped GSM readings, outputs the
times when a person was at a “place”. Here, we consider a
place to be a time interval during which our algorithm pre-
dicted that the user was stationary for more than 3 minutes.
To gather data, we developed an application that runs on
an Audiovox SMT 5600 phone, continuously scans nearby
GSM cell towers once per second and allows users to use
text entry to name and select the places they went. Having
the GSM traces labeled with the ground truth data enabled
us to test the accuracy of our place detection algorithm.

Our place detection algorithm applies a simple principle:
when someone is at a place the stream of GSM readings
their phone captures is “stable.” Currently, we measure sta-
bility by tracking the Euclidean distance in signal strength
space [4] between consecutive GSM readings. The smaller
the signal distance between two readings, the more similar
these readings are. When the phone is stationary, the dis-
tance between consecutive GSM measurements tends to be
small, whereas when the cell phone is being carried around,
the Euclidean distance between consecutive GSM measure-
ments will oscillate widely. We deployed the system to 5
users in our lab who carried the phones and labeled every

places they went to for a month. Figure 6 shows the effec-
tiveness of our GSM place prediction algorithm in reconi-
gizing when the phone is stable or mobile between places.
Precision is how often the algorithm’s prediction matches
the true state while recall is how many of the true states
were correctly identified by the algorithm. With this high
accuracy, we argue it should be possible to extend this ca-
pability to a full place learning and recognition system for
GSM phones, analogous to what BeaconPrint [11] did with
WiFi. This capability would allow GSM phones to sup-
port applications like visit-driven recommendation systems,
place-based device configuration, and context-aware notes
and reminders.

6 Conclusions and Future Work

In this paper, we argued that for emerging location-
enhanced applications, client-based GSM localization can
provide an adequate solution both in terms of coverage and
accuracy in a device people already carry. To dispel the
notion that location systems using GSM phones are inher-
ently less accurate than systems built for WiFi devices, we
presented preliminary results showing that using GSM it is
feasible to achieve 2-5 meters median error and room-level
localization indoors, 70-200 meters median error outdoors,
and to detect places people go in their everyday lives. These
results are comparable to what has been demonstrated pre-
viously for WiFi.

In this paper, we discussed localization solutions based
on GSM cellular network. However, we believe that on-
phone localization based on cellular networks is not spe-
cific to GSM. Indeed, any cellular technology that transmits
stable beacons from the cellular towers (e.g., for the need
of hand-off purposes) will make the on-phone localization
possible.

The main drawback of many existing localization sys-
tems, whether WiFi or GSM, is the non-trivial training
required for the system to become usable. For instance,
fingerprinting-based solutions require a tedious training
data collection, and centroid-based solutions require as-



sembling maps of locations of cellular towers or access
points in the target environment. We already made ini-
tial steps toward reducing the training needed for wide-
area centroid-based location using a technique called bea-
con self-mapping [16]. Our future plans include investigat-
ing novel ways of reducing training requirements for both
indoor and outdoor localization.
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