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A B S T R A C T

Over the years, cloud computing has been a key enabler for handling complex applications and services for
Internet of Things (IoT) devices situated at the edge of the network. Services and applications that are driven
by the IoT environment commonly have stringent latency-sensitive requirements and may experience long
network delays due to the long physical distance of cloud-based computational resources from IoT devices.
Fog computing gained adoption as a solution in this case because it shortens this distance by spreading the
computing power around the edge of the network in tiers. This contributes to network latency reduction and
response times improvements of applications that have sensitive temporal requirements, besides improving the
overall data traffic management in the network. Nevertheless, when certain requirements of an application are
prioritized over others during the resource allocation process, a fog tier closer to IoT devices may experience
resource depletion, forcing other latency-sensitive applications to use resources from a distant fog level and
causing them to become non-responsive. To address this issue, this work proposes an approach for allocating
modular applications in a hierarchical tier-based fog computing architecture. The proposed approach, named
Least Impact - X (LI-X), aims to minimize the response time of latency-sensitive applications and reduce data
traffic on the network by mitigating the idle time of resources at the lower levels of the hierarchical fog. This
is achieved by distributing the application modules among the fog tiers in order to minimize the response
time of delay-sensitive applications, while also reducing the overall network traffic. The performance of LI-X
was compared to previous studies in a simulated iFogSim environment. Results have demonstrated that LI-X
outperforms these studies in most of the proposed scenarios, effectively reducing response time and minimizing
communication data costs on the network.
1. Introduction

The recent years have been marked by a substantial growth of the
Internet of Things (IoT), characterized by the development of various
applications that seek to connect things to the Internet. IoT can serve
a wide range of purposes, including improving traffic flow and public
transportation, smart grids, and enabling residential automation for
tasks such as lighting control, security management, temperature regu-
lation, and even plant watering schedules. IoT can also be leveraged for
complex video and audio processing applications such as online gaming
and interactive services [1].
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IoT devices are equipped with sensors and actuators to collect real-
time information and interact with the real world. As a consequence,
IoT applications have to process large amounts of data to meet dif-
ferent application requirements efficiently [2–4]. Nevertheless, these
devices frequently lack sufficient computational capabilities to process
a huge amount of data and make faster decisions. A solution to bring
computing capabilities closer to these devices is the employment of
cloud computing services by IoT applications. It provides storage and
processing resources for the collected IoT data to be able to be executed
by complex algorithms and data analysis [5–8].
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In this context, cloud computing acts as a central point of data stor-
age and processing power. It allows resources to be resized according
to demand due to its computational capabilities and elasticity features.
The drawback in this case falls in the long geographical and logical
distances that data needs to travel between cloud data centers and IoT
devices. Latency in the communication between these entities can be
introduced, which can be a concern for latency-sensitive applications
that require real- or near-real-processing time. Even small delays may
not be acceptable [9]. In some scenarios [10–13], it may be necessary
for data to be transmitted back and forward to IoT devices, making
communication delays even longer.

Fog computing arrived to bring cloud computing capabilities closer
to IoT devices, mitigating the latency issue associated with data trans-
fers. It aims to reduce the time required for data to travel on the
communication channel between IoT devices and computing resources,
as well as decreasing overall network traffic as a result of reducing
the network distance that data has to travel. To efficiently deliver this
computing power widely to IoT devices at the edge of the network,
fog computing nodes must be strategically geographically distributed
to ensure close proximity to mobile devices in order to minimize
data transmission latency and network traffic [14–16]. By allowing
data to be processed and stored closer to its source, within trusted
administrative domains, fog computing inherently limits the exposure
of sensitive data. This localized handling of data not only reduces
the vulnerability associated with wide-area network transmissions but
also aligns with privacy-preserving practices by confining data within
defined, reliable boundaries [17].

Hierarchical fog computing is a distributed computing architecture
that organizes and distributes computational resources across multiple
levels in a fog computing network. This architecture enables resources
to be distributed across different geographic locations, forming a hi-
erarchical structure with interconnected levels. The resources at each
level can vary in computational power and connectivity, allowing for
a more efficient distribution of resources and improved scalability. Hi-
erarchical fog computing is designed to meet application requirements
more effectively than centralized cloud computing, which aggregates
resources in a single level or physical location. This architecture pro-
vides a more flexible and scalable approach to data processing, allowing
for efficient utilization of resources and the ability to quickly adapt to
changing application needs [18–21].

Applications have varying resource requirements, such as network
utilization and response time. Additionally, these applications can be
modular, allowing for the execution of individual modules on different
devices at different levels of a hierarchical fog. Given the limited re-
sources and distributed nature of fog computing, service providers must
employ application placement algorithms to enhance the execution of
these applications and modules to improve resource utilization and
satisfy the unique requirements of each application [19,22].

To address the requirements of efficient application placement in
a hierarchical fog computing architecture, we propose an approach
designed to enhance both the latency and communication cost. This
problem involves strategically allocating IoT applications across a dis-
tributed fog computing network, which is inherently challenged by
limited resources, varying latency requirements, and complex network
traffic dynamics. The essence of this problem lies in determining where
and how to place different application components within the hier-
archical structure of fog computing to optimize performance. This
optimization needs to address not only the computational efficiency of
individual applications but also the overall network efficiency and re-
source utilization. Such optimization is crucial for meeting the diverse
and dynamic demands of IoT applications, which range from latency-
sensitive tasks to large-scale data processing. The goal is to achieve
an optimal balance between resource availability, application require-
ments, and network constraints, thereby enhancing the efficiency and
responsiveness of IoT systems in a fog computing environment [14,21,
96

23].
The challenges in optimizing application placement in fog com-
puting are multifaceted and complex. Firstly, there is the issue of
accurately assessing and predicting the varying resource demands of
diverse IoT applications. This requires a deep understanding of each ap-
plication’s unique characteristics, such as their computational intensity,
data size, and latency sensitivity. Secondly, the inherent limitations
in fog computing resources, including computational power, storage
capacity, and network bandwidth, pose significant constraints. An-
other major challenge is dynamically adapting to fluctuating network
conditions and application demands in real-time, ensuring optimal
placement decisions are continually maintained. Additionally, ensuring
efficient data transmission and minimizing latency, especially for real-
time and critical IoT applications, is a key challenge. These issues are
compounded by the need to maintain overall system balance, avoiding
resource overloads or underutilization, which can lead to reduced
system efficiency and performance degradation.

To address these gaps, our research introduces the Least Impact -
X (LI-X) approach, a novel strategy designed to enhance both latency
management and communication cost efficiency in hierarchical fog
computing. LI-X optimally distributes application modules across the
computational resources of the fog network, minimizing response time
for latency-sensitive applications and reducing overall network traffic.
Furthermore, it uniquely considers the communication patterns be-
tween application modules, ensuring efficient resource utilization while
minimizing the impact on other applications. This approach represents
a significant contribution to the field of IoT and fog computing, offer-
ing a more effective solution to the pressing challenges of placement
applications and latency management in today’s increasingly complex
IoT environments.

The performance of the proposed approach was evaluated through
simulations and experimental evaluations using the iFogSim simulator.
The results of this study are expected to contribute to the advancement
of the field of fog computing by providing a solution for the efficient
placement of modular applications within hierarchical fog computing
environments. The contributions of this work are three-fold:

(i) Development of an algorithm for modular applications place-
ment in a hierarchical fog computing environment, incorporat-
ing latency and communication costs requirements;

(ii) Improvement of the iFogSim simulator to enable the construc-
tion of fog computing topologies in a declarative manner, al-
lowing a more intuitive and efficient design and configuration
of hierarchical fog computing environments; and

(iii) Conducting an extensive evaluation of LI-X compared to pre-
vious algorithms across different topologies using the iFogSim
simulation tool, providing insights on the performance and ef-
fectiveness of these algorithms in different scenarios and envi-
ronments and identifying potential areas for improvement.

The rest of this paper is organized as follows. We present the
problem statement in Section 2. In Section 3, we propose the latency
and Communication Cost-Sensitive Approach, while in Section 4, we
present and evaluate the results. In Section 5, we give an overview of
the related work. Finally, we present the conclusion and future work
in Section 6.

2. System model and problem statement

The increasing demand for latency-sensitive applications has driven
the growth of fog computing, a distributed computing paradigm that
extends cloud computing services to the network’s edge. To efficiently
use computational resources in fog, designing an appropriate hierar-
chical architecture that considers the diversity of devices and their
computing capabilities is crucial. However, a major challenge in Fog
Computing is the efficient allocation of resources in a heterogeneous
environment, which includes devices with different processing power

and connectivity and diverse applications with varying requirements.
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Fig. 1. Overview of a hierarchical fog computing.

herefore, developing resource allocation mechanisms that efficiently
anage resources in such a dynamic and diverse environment is essen-

ial.

.1. Hierarchical fog computing

Fog computing architecture models typically have a three-layer
tructure, with the cloud at the top, followed by the fog layer, and
inally, the IoT (or edge) devices at the bottom layer. The fog layer
ims to minimize the latency between IoT devices and computational
esources. This is accomplished by utilizing geographically distributed
esources near the IoT devices, ensuring a wider coverage area [24,25].
herefore, the fog layer resources can be organized as a multi-level
tructure, building a hierarchical organization. Generally, it starts from
evels with limited resources in terms of number or capacity, located
loser to the IoT devices, then on to more resourceful fog levels that
re further away from IoT devices but not as far away as the cloud.
ig. 1 shows that the fog layer can comprise many levels [22,25].

At each level, resources can be distributed among heterogeneous
loudlets, known as micro data centers, nano data centers, or local
louds. In each cloudlet, different resources may be available such as
omputing power (CPU), RAM, storage, graphic processing (GPU), and
ommunication (network) [19,22,25]. In this work, we assume the level
losest to the devices as level 1, the level closest to the cloud as level
, and the intermediate levels are represented by the set of 𝐿𝑒𝑣𝑒𝑙𝑠 =
2, 3,… , 𝑛 − 1}. Therefore, it is necessary to choose at which fog level
ach application module should be executed to meet the requirements
f each application.

.2. Applications

Latency-sensitive applications are benefited from the use of fog
omputing since the distance necessary to travel the data between the
evice and a cloudlet tends to be shorter than the distance necessary
o travel the same data set between the device and the cloud. Thus it is
ossible to reduce the total time between the request and the arrival of
he response. Fog computing also offers the benefit of reducing data
raffic on the network. By bringing computation and storage closer
o the edge devices, data has to travel shorter distances, resulting in
ower overall network usage and benefiting applications with high data
ransmission rates, where fog computing can alleviate data flow and
educe transmission costs.
97
Fig. 2. EEGTBG application modules.

An IoT application operates as a Software-as-a-Service (SaaS), uti-
lizing an Application Program Interface (API) to extract and analyze
sensor data. Key components of these applications include sensors and
context awareness. Sensors are typically characterized by their compact
size, resource limitations, and power constraints. Virtualized servers
play a crucial role in processing the generated data. In a broader
context, IoT applications can typically be divided into finite modules,
facilitating deployment across various physical or logical computing
devices. This modular structure enables their deployment across a
range of physical or logical computing devices. [21].

In this paper, we consider the applications composed of modular
parts, meaning the application comprises modules that can be executed
individually in different cloudlets. Moreover, each application can have
different priority levels regarding requirements, and each module can
use different computational resources. The modules of the applications
are allocated to available resources in a fog computing architecture to
reduce the delay in delay-sensitive applications and also aim to reduce
the data traffic in the network. We assume two different applications,
one delay-sensitive and the other that generates high data traffic but
does not require a very tight response time. The following sections will
present details of each one. The general idea of this work is similar to
proposals from three other works in the literature [19,22,26].

2.2.1. EEG Tractor Beam Game – EEGTBG
An electroencephalography Tractor Beam Game (EEGTBG) is a mul-

tiplayer game based on Brain–Computer Interface — (BCI), where the
user uses their brain to interact with the game with the support of EEG
readers. Additionally, it is a latency-critical application, i.e., it requires
low delay limits close to real-time. Players must use an EEG headset
connected to their smartphones (Fig. 2). The goal is to collect items
using concentration; the more concentrated the player is, the more they
will attract the items to them [19,26–28].

EEGTBG game has three main processing modules: Client, Concen-
tration Calculator, and the Coordinator. The dependencies between the
modules were modeled using definitions of periodicity, selectivity, and
data size. For example, a 1 kB tuple is sent from the concentration
calculator to the connector every 100 ms, or for every tuple received
by the Concentration Calculator, a 0.5 kB tuple is sent to the Client.
Fig. 3 presents a graph with the representation of the modules, and
the dependencies between them, which were also used in the works
of [19,22,26].

2.2.2. Video Surveillance Object Tracking – (VSOT)
Video surveillance systems are traditionally designed to store data

streams humans can later analyze. However, analyzing hours of video
footage from multiple cameras is not a trivial task. Recent years have
seen the introduction of smart video monitoring systems capable of
detecting and tracking objects, detecting actions, and performing scene
descriptions, among other features. These systems can reduce or even
eliminate the need for human video analysis. On the other hand, video

streams can generate a high amount of data traffic, and using only
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Fig. 3. Modules of EEG Tractor Beam Game.
Source: Adapted from [28].

Fig. 4. VSOT application modules.

cloud resources to process the data may increase network overload and
transportation costs [28–30].

Gupta et al. (2017) [28] present a component-based video surveil-
lance system, as illustrated in Fig. 4. The proposed system consists of
sensors, actuators, and five modules that perform the tasks of detecting
and tracking the movement of objects, as well as providing a user
interface: Motion Detector, Object Detector, Object Tracker, PTZ Control,
and User Interface.

Motion Detector module operates internally in the cameras and
detects any movement, sending the video stream to the Object Detector
for analysis. The Object Detector module receives the video, compares it
with previous images, and checks for movements of a specific object. If
detected, it forwards the request to the Object Tracker module, which is
responsible for calculating the coordinates of the object, the direction
of movement, and the new camera position so it can continue to track
the object. After making the necessary calculations, the new camera
position is sent to the PTZ Control module, which operates internally
in the camera and will activate actuators to reposition the camera with
the new parameters. The User Interface module receives relevant video
segments identified by the system and provides an access interface
for their users. Fig. 5 presents a graph with the representation of the
modules, and the dependencies between them, which were also used in
the works of [19,22,26].

To efficiently utilize these resources, as each cloudlet has limited
resources, applications need to be forwarded to be executed at other
levels of the fog architecture. In such situations, decision-making in-
volves choosing which application or application module should be
executed on another cloudlet. These resource allocation decisions can
be performed based on resource characteristics, application perfor-
mance requirements, and/or the availability of resources at different
levels of the hierarchical fog [19,22].
98
Fig. 5. Modules of VSOT.
Source: Adapted from
[28].

Fig. 6. Basic modules of a cloudlet.

2.3. Resource allocation

Considering the architecture presented in Fig. 1, the fog layer is
composed of different cloudlets distributed across various levels. Each
cloudlet of a given level 𝑙 connects with another cloudlet from the
immediately above level 𝑙+1 until its final level 𝑛 (cloud). Based on this
premise, we defined a cloudlet as a set of four basic modules (Fig. 6):
(i) the storage unit, responsible for providing data persistence for the
applications; (ii) the communication unit, responsible for establishing
and managing connections with other devices; (iii) the computational
unit, responsible for providing resources such as memory and pro-
cessing power for the application modules, represented in the figure
by containers or virtual machines; (iv) and finally the controller unit,
responsible for managing the applications and resource utilization.

As limited resources are offered, effective resource allocation is
crucial to meet applications’ various Quality of Service (QoS) require-
ments. Resource allocation determines where and with what resources
each application will be executed. These decisions directly affect the re-
sponse time of applications [24,31]. To efficiently utilize these limited
resources, allocation algorithms may consider computational process-
ing power, network communication, energy consumption, and storage
capacity as inputs [24,31,32].

2.4. Distributed management

Allocation algorithms may also consider the hierarchical layers and
levels with its heterogeneous cloudlets, and the possibility of sharing
resources among themselves [19,28]. We use a distributed approach
for deciding where each application module should be executed. Each
cloudlet has the autonomy to decide, through its controller unit, which
modules of newly arrived applications should be executed and, in some
cases, forward them to the next cloudlet in the immediately higher
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level. In the context of distributed management, the following key
aspects highlight the advantages of this approach:

(i) Reducing Latency: For those fog applications that often have
stringent latency requirements, a distributed computing frame-
work helps reduce network latency by bringing computational
resources closer to the edge of the network.

(ii) Improving Data Traffic Management: Distributed computing re-
sources across different geographical locations and levels in
a hierarchical fog computing architecture contribute to more
efficient data traffic management. This leads to a reduction in
network congestion and more effective use of resources.

(iii) Enhanced Scalability and Flexibility: A distributed hierarchi-
cal fog computing architecture provides greater scalability and
flexibility compared to traditional centralized cloud comput-
ing models, allowing for dynamic resource allocation based on
changing application needs and network conditions.

(iv) Minimizing Communication Costs: The proposed approach,
named Least Impact - X (LI-X), minimizes response time for
latency-sensitive applications and reduces network data traffic
by optimizing the placement of application modules across the
fog tiers, thereby reducing communication costs and enhancing
system performance.

(v) Adaptability to Changing Application Needs: The distributed
nature of fog computing allows for the flexible allocation of
modular applications, adapting to changing requirements in IoT
environments.

(vi) Minimizing Idle Time of Resources: LI-X approach also mini-
mizes the idle time of resources in lower levels of the hierar-
chical fog by efficiently distributing application modules, which
is a key aspect of effective distributed management.

A hierarchical architecture provides one approach to modeling the
dge-cloud continuum, and alternative topologies should be evaluated
ased on factors like deployment costs and the business models of
elecom and edge providers. Take, for instance, a mesh topology that
ermits horizontal communications; while each configuration involves
cost-performance trade-off, a mesh topology may incur additional

nfrastructure costs. However, it can enhance the efficiency of hori-
ontal resource allocation. This introduces a larger search space for
ptimization problems, necessitating more sophisticated and costly
esource allocation algorithms.

In the context of upward and downward offloading, the decision-
aking process assumes proper capacity planning, ensuring sufficient

esource capacity at each hierarchical level. Additionally, even within
hierarchical architecture, indirect horizontal communication is con-

eivable. However, this comes at the cost of increased communication
xpenses, as more links would be utilized for communication both
pward and downward in the hierarchy. It is crucial to recognize that
he intricacies of these choices depend on careful consideration of
arious factors to strike a balance between efficiency and affordability
n the deployment of edge-cloud architectures.

The subsequent section will delve into the algorithm proposed in
his work, aiming to organize the modules of modular applications
n an architecture where their communication is structured vertically.
his approach focuses on enhancing communication flows within the
rchitecture, with a specific emphasis on reducing the delay time of
ensitive applications while concurrently attempting to minimize data
raffic.

. Hierarchical allocation algorithms

Let 𝐴 = {𝑎1, 𝑎2,… , |𝐴|} be the set of applications and 𝐷 =
{𝑑1, 𝑑2,… , |𝐷|} be the set of devices. Each application 𝑎𝑖 is represented
by a directed graph 𝐺𝑎𝑖 = (𝑉𝑎𝑖 , 𝐸𝑎𝑖 ), where 𝑉𝑎𝑖 is the set of the app 𝑎𝑖’s
modules and 𝐸𝑎𝑖 is the set of directed arcs connecting 𝑎𝑖’s modules. The
99

application requirement for executing the modules of 𝑎𝑖 is represented
Table 1
Table of the model parameters.

App’s parameters Description

𝐴 = {𝑎1 , 𝑎2 ,… , |𝐴|} Set of applications deployed by the devices
𝐺𝑎𝑖 = (𝑉𝑎𝑖 , 𝐸𝑎𝑖 ) Graph representing the application 𝑎𝑖
𝑉𝑎𝑖 Set of the app 𝑎𝑖 ’s modules
𝐸𝑎𝑖 Set of directed arcs connecting 𝑎𝑖 ’s modules
𝑅𝑎𝑖 Application requirement for executing the modules of 𝑎𝑖
𝑇𝑎𝑖 Execution time for the application 𝑎𝑖

Devices parameters Description

𝐷 = {𝑑1 , 𝑑2 ,… , |𝐷|} Set of devices connected to access points

Fog parameters Description

𝐹 = {𝑓 1
1 ,… , 𝑓 𝑗

𝑖 ,… , 𝑓 𝑘
𝑛 } Set of computing resources in the fog hierarchy

𝑛 Fog resource id
𝑘 Fog level id
𝑓 𝑗
𝑖 .𝐵 Associated bandwidth vector

Cloud parameters Description

𝐶 = {𝐶1 ,… , 𝐶𝑙 ,… , |𝐶|} Set of computing resources in the cloud

by 𝑅𝑎𝑖 . The execution time for the application 𝑎𝑖 is represented by 𝑇𝑎𝑖 .
The fog hierarchy consists of a set of computing resources at some level
𝐹 = {𝑓 1

1 ,… , 𝑓 𝑗
𝑖 ,… , 𝑓𝑘

𝑛 }, where 𝑛 is the resource id, 𝑘 is the fog level id,
and 𝑓 𝑗

𝑖 .𝐵 is the associated bandwidth vector. Additionally, the system
has a set of computing resources in the cloud, 𝐶 = {𝑐1,… , 𝑐𝑖,… , 𝑐𝑚},
where 𝑚 is the resource id. All model parameters are shown in Table 1.

Each resource within the fog and cloud computing environments,
represented as 𝑅𝑓 𝑗

𝑖
and 𝑅𝑐𝑖 respectively, is defined by key attributes

such as computational power, storage capacity, and available band-
width. These resources are interconnected through a network of
communication links, denoted as 𝐿, which facilitate data transfer be-
tween devices, fog nodes, and cloud nodes. Each link in this network
is characterized by its specific data transfer rate and latency. Within
this framework, applications, represented as 𝑎𝑖, generate a series of re-
quests 𝑅𝑄𝑎𝑖 , where each request encompasses particular computational
demands, storage needs, and data transfer requirements. These requests
are intended to be processed within predefined execution times 𝑇𝑎𝑖 ,
ensuring efficient and timely handling of the computational tasks.

The central problem addressed in this article is the optimization
of application placement within the fog and cloud computing environ-
ments. Our objective is to develop an approach for placing application
requests, aiming to minimize latency while maximizing resource uti-
lization efficiency. This optimization challenge, critical for achieving
efficient and responsive computing in fog and cloud environments.

The optimization objective is given as minimizing the overall la-
tency for all applications, represented by the sum of individual latencies
for each application, Latency𝑎𝑖 , in addition to a weighted measure
of resource utilization across the fog and cloud layers, symbolized as
Utilization𝑅,𝐿. The weighting factor, 𝜆, is employed to balance the
emphasis between latency and resource utilization. This optimization is
bounded by several constraints: the capacities of fog resources, R𝑓 𝑗

𝑖
, and

cloud resources, R𝑐𝑖 , must not be exceeded; data transfers are required
to comply with the characteristics of communication links, particularly
regarding data rates and latency; and all application requests are to be
processed within their designated execution times, ensuring efficient
and timely computational performance.

3.1. LI-X algorithm

LI-X algorithm performs resource allocation of application mod-
ules to minimize latency in delay-sensitive applications and alleviate
network congestion resulting from data traffic. To achieve this, LI-
X calculates 𝜙(𝑚) (Eq. (1)), which represents the average amount of
MIPS (Millions of Instructions per Second) required for executing a
given module 𝑚 of an application without forming request queues.

∑𝑖<𝑛;𝑗<𝑘;𝑙<|𝑐| 𝑗
In this equation, 𝛽 is 𝑖=𝑗=𝑙=0 (𝑓𝑖 + 𝐶𝑙), representing the number
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of resources used to process a given request 𝑥 that module 𝑚 has
previously processed. The average amount of resources required for
each request is calculated by summing the number of resources used by
each request divided by the number of observed requests. The amount
of resources required for the module is calculated by dividing the
average resources used to process each request by the frequency of
requests received by module 𝑚. This estimates the necessary resources
for executing module 𝑚 in any cloudlet.

𝜙(𝑚) =
1
𝑥 𝛽

𝑓𝑟𝑒𝑞(𝑚)
(1)

Algorithm 1 presents the initialization of LI-X. Firstly, the set of
applications that need to be instantiated is extracted from the set of all
applications 𝐴. In line 2, the applications are sorted according to their
priority, with latency-sensitive applications having higher priority than
the others. In line 3, the modules of each application are extracted and
added to a list, which will later have its elements evaluated individually
by the following algorithms in an attempt to allocate resources for each
of them in the fog, starting from the current cloudlet 𝑐.

Algorithm 1 Initialize (Cloudlet c)
Ensure: Cloudlet c
1: 𝑎 ← 𝑆𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝐴 𝑛𝑒𝑎𝑟 𝑐
2: 𝑠𝑜𝑟𝑡(𝑎)
3: 𝑚𝑜𝑑𝑢𝑙𝑒𝑠 ← 𝑀(𝑎)
4: for 𝑚 in 𝑚𝑜𝑑𝑢𝑙𝑒𝑠 do
5: 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑂𝑛𝐷𝑒𝑣𝑖𝑐𝑒(𝑐, 𝑚) (Algorithm 2)
6: end for

The resource allocation decision process is detailed in Algorithm
. When a resource allocation request is received for a module 𝑚 on a
loudlet 𝑐, the algorithm checks whether there are available resources
o allocate. If available, the allocation is performed (lines 1–3), and the
lgorithm is terminated. Otherwise, Algorithm 3 is triggered to return
list 𝑀𝑢𝑝 of modules from the current application already allocated

n cloudlet 𝑐, including the current module 𝑚, that would cause the
east communication impact if they were reallocated to higher levels
f the fog. Once the return of Algorithm 3 is obtained, if the current
odule 𝑚 is the only element in the 𝑀𝑢𝑝 list, it will be forwarded

or allocation in the cloudlet immediately above cloudlet 𝑐 in the fog
ierarchy (lines 5–7).

If module 𝑚 is not in the list, or there are other modules in the
𝑢𝑝 list, the additional resources required to instantiate module 𝑚 in

he cloudlet 𝑐 are calculated (lines 10–12). First, the difference between
he available resources in the cloudlet 𝑐 and the resources required for
he execution of module 𝑚 is checked. Then, the number of resources
hat would be made available if one instance of each module in the 𝑀𝑢𝑝
ist were moved to another fog level or architecture layer is calculated.
ased on these two pieces of information, the number of instances of
ach module that should be moved so that resources for module 𝑚 can
e allocated in the cloudlet 𝑐 is determined. Next, it is checked if there
re enough modules in the 𝑀𝑢𝑝 list in the cloudlet 𝑐 to be moved. If
here are, the modules are removed from the cloudlet 𝑐 and moved to
he cloudlet above it. Then, resources for module 𝑚 are allocated in the
urrent cloudlet 𝑐. If there are not enough modules to release resources
ith relocation, module 𝑚 will be sent to the cloudlet above.

After the allocation request of a module in a cloudlet 𝑐, Algorithm 3
s responsible for selecting the group of modules that are candidates to
e sent to the upper levels of the fog. The first step of this algorithm is
o find the possible sets 𝑆 of modules that could be moved to the level
bove the fog, and this selection is based on Algorithm 4.
100
Algorithm 2 allocateOnDevice (𝑐𝑙𝑜𝑢𝑑𝑙𝑒𝑡, 𝑚𝑜𝑑𝑢𝑙𝑒)
Ensure: Cloudlet c, Module m
1: ℎ𝑎𝑠𝑆𝑝𝑎𝑐𝑒 ← 𝑟(𝑐) ≤ 𝑛(𝑚)
2: if ℎ𝑎𝑠𝑆𝑝𝑎𝑐𝑒 = 𝑡𝑟𝑢𝑒 then
3: 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒(𝑐, 𝑚)
4: else
5: 𝑀𝑢𝑝 ← 𝑚𝑜𝑑𝑢𝑙𝑒𝑠𝑇 𝑜𝑈𝑝(𝑚, 𝑐) (Algorithm 3)
6: 𝑐𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑃 (𝑐)
7: if {𝑚𝑜𝑑𝑢𝑙𝑜} = 𝑀𝑢𝑝 then
8: 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑂𝑛𝐷𝑒𝑣𝑖𝑐𝑒(𝑐𝑝𝑎𝑟𝑒𝑛𝑡, 𝑚)
9: else
0: 𝑐𝑝𝑢𝑇 𝑜𝐷𝑒𝑝𝑙𝑜𝑦 ← 𝑟(𝑐) − 𝑛(𝑚)
1: 𝑐𝑝𝑢𝑇 𝑜𝑅𝑒𝑙𝑒𝑎𝑠𝑒 ← 𝑛(𝑀𝑢𝑝)
2: 𝑡𝑜𝑡𝑎𝑙𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 ← 𝑟𝑜𝑢𝑛𝑑𝑈𝑝(𝑐𝑝𝑢𝑇 𝑜𝐷𝑒𝑝𝑙𝑜𝑦 ÷ 𝑐𝑝𝑢𝑇 𝑜𝑅𝑒𝑙𝑒𝑎𝑠𝑒)
3: if 𝑐𝑜𝑢𝑛𝑡𝑆𝑒𝑡(𝑐,𝑀𝑢𝑝) ≥ 𝑡𝑜𝑡𝑎𝑙𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 then
4: for all 𝑚𝑜𝑑𝑢𝑙𝑒𝑇 𝑜𝑈𝑝 𝑖𝑛 𝑀𝑢𝑝 do
5: for 𝑖 ← 0; 𝑖 < 𝑐𝑜𝑢𝑛𝑡; 𝑖 ← 𝑖 + 1 do
6: 𝑑𝑒𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒(𝑐, 𝑚𝑜𝑑𝑢𝑙𝑒𝑇 𝑜𝑈𝑝)
7: 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑂𝑛𝐷𝑒𝑣𝑖𝑐𝑒(𝑐𝑝𝑎𝑟𝑒𝑛𝑡 , 𝑚𝑜𝑑𝑢𝑙𝑒𝑇 𝑜𝑈𝑝)

8: end for
9: end for
0: 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑂𝑛𝐷𝑒𝑣𝑖𝑐𝑒(𝑐, 𝑚)
1: else
2: 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑂𝑛𝐷𝑒𝑣𝑖𝑐𝑒(𝑐𝑝𝑎𝑟𝑒𝑛𝑡, 𝑚)
3: end if
4: end if
5: end if

Algorithm 3 modulesToUp (module, cloudlet)
Require: Cloudlet c
Ensure: Set of modules M moved upwards (elevated).
1: 𝑆 ← 𝑚𝑜𝑑𝑢𝑙𝑒𝑠 𝑠𝑒𝑡𝑠 𝑖𝑛 𝑐 (Algorithm 4)
2: for all 𝑚𝑜𝑑𝑢𝑙𝑒 𝑠𝑒𝑡𝑀 ∈ 𝑆 do
3: 𝐶𝑜𝑠𝑡𝑚 ← 0
4: for all 𝑚𝑜𝑑𝑢𝑙𝑒 𝑚 ∈ 𝑀 do
5: 𝐶𝑜𝑠𝑡𝑚 ← 𝐶𝑜𝑠𝑡𝑚 + 𝑖𝑚𝑝𝑎𝑐𝑡 𝑜𝑓 𝑀
6: end for
7: end for
8: 𝑆𝑒𝑙𝑒𝑐𝑡 𝑀 𝑤ℎ𝑜𝑠𝑒 𝐶𝑜𝑠𝑡𝑚 𝑖𝑠 𝑚𝑖𝑛𝑖𝑚𝑢𝑚

Algorithm 4 GenerateModulesSet (Cloudlet c)
Ensure: Cloudlet c
1: 𝑆 ← ∅
2: for 𝑚𝑜𝑑𝑢𝑙𝑒 𝑚𝑠 ∈ 𝐶 do
3: for 𝑚𝑜𝑑𝑢𝑙𝑒 𝑚𝑡 ∈ 𝑐 do
4: if ∉ 𝑈𝑝 𝑎𝑟𝑐 𝑓𝑟𝑜𝑚 𝑚𝑠 𝑡𝑜 𝑚𝑡 then
5: 𝑀 ← {𝑚𝑠}
6: 𝑆 ← 𝑆 ∪ {𝑀}
7: end if
8: end for
9: end for

10: 𝑆𝑜𝑙𝑑 = ∅
1: while 𝑆𝑜𝑙𝑑 ≠ 𝑆 do
2: 𝑆𝑜𝑙𝑑 = 𝑆
3: for 𝑠𝑒𝑡 𝑀𝑠 ∈ 𝑆 do
4: for 𝑚𝑜𝑑𝑢𝑙𝑒 𝑚𝑠 ∈ 𝑀𝑠 do

15: for 𝑚𝑠 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔 𝑒𝑑𝑔𝑒 𝑒 do
16: 𝑀𝑚𝑒

← {𝑚𝑠} ∪ {𝑠𝑜𝑢𝑟𝑐𝑒(𝑒)}
17: 𝑆 ← 𝑆 ∪𝑀𝑚𝑒

18: end for
19: end for
20: end for
21: end while
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For each set, the possible impact caused on the network when the
group of modules is moved upwards (or elevated) is calculated. This
calculation is performed by Algorithm 5. The group with the smallest
impact will be selected as a candidate to be sent to higher levels.
Algorithm 4, proposed by [19], generates arrangements of possible
modules that can be moved to higher levels of the fog hierarchy.
Starting from the analysis of the modules present in a cloudlet 𝑐, the
lgorithm selects and creates an arrangement 𝑀 of only one element for
ach module present in cloudlet 𝑐 that does not initiate communication
ith other modules already present in the same cloudlet 𝑐 and adds

hem to a set of arrangements 𝑆 (lines 1–9). In the second part of the
lgorithm, for each arrangement, 𝑀 present in 𝑆, modules responsible
or initiating communication with any modules in 𝑀 are sought. When

module satisfies this criterion, a new arrangement 𝑀 is created,
dding the new module and then adding to 𝑆. The process is iterative

and repeats until no more new arrangements are created (lines 10–20).
Then, Algorithm 5, proposed in [19], is used to calculate the impact

a module 𝑚 may cause in the network when moved to higher levels of
the fog in conjunction with a module set 𝑀 . To do so, for each edge of
the application 𝐴 to which the module 𝑚 belongs, Eq. (2) is calculated,
where 𝑏 is the number of bytes transmitted from the source module
of the edge to a destination module, 𝑠 is the selectivity of the edge,
𝑇𝑎 is the periodicity at which the application transmits data, and 𝑝 is
the periodicity of the edge. If the edge has 𝑚 as its source module, the
destination module of the edge is not in higher-level cloudlets, and 𝑚
does not belong to the set 𝑀 , then the value of Eq. (2) is added to the
resulting impact. However, if the destination module is at higher levels,
the value of Eq. (2) is subtracted from the resulting impact. On the other
hand, if 𝑚 is the destination device of the edge, the destination module
is not found in devices at higher hierarchical levels of the fog, and 𝑚
does not belong to the set 𝑀 , the increment is performed. However,
the decrement will be performed if the destination module is allocated
at higher levels of the hierarchy.

𝐼𝑒 ← 𝑏 × 𝑠 ×
𝑇𝑎
𝑝

(2)

Algorithm 5 calcImpact (moduleSet M, module m)
Require: 𝑚𝑜𝑑𝑢𝑙𝑒 𝑠𝑒𝑡 𝑀 ;𝑚 ∈ 𝑀 ;𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑟𝑐𝑠 𝐸

nsure: 𝑡𝑜𝑡𝑎𝑙𝐼𝑖𝑚𝑝𝑎𝑐𝑡𝑚
1: for all 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑒𝑑𝑔𝑒 𝑒 ∈ 𝐸 do
2: 𝐼𝑒 ← 𝑏 × 𝑠 × 𝑇𝑎

𝑝
3: if m is the source of 𝑒 then
4: if No upward device has the target module of 𝑒 then
5: if 𝑡𝑎𝑟𝑔𝑒𝑡 𝑚𝑜𝑑𝑢𝑙𝑒 𝑜𝑓 𝑒 ∉ 𝑀 then
6: 𝑡𝑜𝑡𝑎𝑙𝐼𝑚𝑝𝑎𝑐𝑡𝑚 ← 𝑡𝑜𝑡𝑎𝑙𝐼𝑚𝑝𝑎𝑐𝑡 + 𝐼𝑒
7: end if
8: else
9: 𝑡𝑜𝑡𝑎𝑙𝐼𝑚𝑝𝑎𝑐𝑡𝑚 ← 𝑡𝑜𝑡𝑎𝑙𝐼𝑚𝑝𝑎𝑐𝑡 − 𝐼𝑒

10: end if
11: end if
12: if 𝑚 is the target of 𝑒 then
13: if No upward device has the source module of 𝑒 then
14: if 𝑠𝑜𝑢𝑟𝑐𝑒 𝑚𝑜𝑑𝑢𝑙𝑒 𝑜𝑓 𝑒 ∉ 𝑀 then
15: 𝑡𝑜𝑡𝑎𝑙𝐼𝑚𝑝𝑎𝑐𝑡𝑚 ← 𝑡𝑜𝑡𝑎𝑙𝐼𝑚𝑝𝑎𝑐𝑡 + 𝐼𝑒
16: end if
17: else
18: 𝑡𝑜𝑡𝑎𝑙𝐼𝑚𝑝𝑎𝑐𝑡𝑚 ← 𝑡𝑜𝑡𝑎𝑙𝐼𝑚𝑝𝑎𝑐𝑡 − 𝐼𝑒
19: end if
20: end if
21: end for

LI-X most often uses cloudlets at the lower level of the fog, making
pplication execution tend to be done close to the IoT device when
esources are available. This reduces response time and minimizes the
ata transmitted in the network. Furthermore, when lower levels are
verloaded, the approach selects modules to move to higher levels that
ause the least impact on the data network.
101
Fig. 7. Allocation request example.

Now, let us delve into the complexity analysis of the LI-X. Assuming
that resources need to be allocated to modules (𝑤) of an application,
and considering that communication between these modules is repre-
sented by a directed graph where the set of edges (𝑒) represents the
communication between the modules (𝑤). It is observed that Algorithm
5 has a complexity of 𝑂(𝑤) since its execution depends only on the
umber of edges (𝑒) in the application in question.

Additionally, Algorithm 4 is responsible for generating possible
ombinations of modules that could have their resources allocated
ogether, taking into account their communication. This algorithm has
n approximate complexity of 𝑂(2𝑤) in the worst case, which occurs
hen the application has a complete communication graph, meaning

hat all modules interact with each other, resulting in a complete graph.
oving forward, the first line of Algorithm 3 executes Algorithm 4 and

raverses the sets with the objective of finding the one that has the least
mpact when the modules are allocated together on the same device.
ince it makes use of Algorithm 4, its complexity is also approximately
(2𝑤).

Next, Algorithm 2 comes into play, responsible for allocating re-
ources to modules or forwarding modules to other fog levels. In line
, it utilizes Algorithm 3, which represents its highest degree, to find
he set of modules that could be grouped together and cause the least
ommunication impact on the network, resulting in an approximate
omplexity of 𝑂(2𝑤). It is worth noting that this complexity depends
n the number of modules in the application, and for the considered
cenarios, it has a low execution time since both applications used have
small number of modules. The next section presents an illustrated

emonstration of what is expected from this proposal and a comparison
ith other approaches from the literature.

.2. Toy example

To demonstrate the process of the allocation policy, assume a
atency-sensitive application in which the proposed LI-X algorithm is
ompared to other algorithms from the literature (DP-I and CB-E). This
oy application is based on the EEGTBG application (Fig. 3) and has
ix allocated modules at the lower level cloudlet. Suppose that each
odule uses 1000 MIPS. As shown in Fig. 7, there are two modules
er user, which are grouped by different colors. The Concentration
alculator module and the Coordinator module from a single user can
e allocated at the same time at different levels of the fog hierarchy.

Suppose the cloudlet at the lower level, where the six modules
re currently running, has 6000 MIPS of CPU resources and becomes
verloaded and cannot accept any new modules. In this scenario,
he overloaded cloudlet is identified as Cloudlet-0-0, while the upper-

level cloudlet Cloudlet-0 remains unoccupied. Subsequently, a new user
enters the system with two modules, represented by white rectangles
in Fig. 7. In order to ensure the system’s performance and efficiency,
the algorithm needs to determine which modules should be relocated
to the upper level of the fog hierarchy.

To illustrate the allocation process, we evaluated three different
algorithms: DP-I, CB-E, and LI-X. Fig. 8(a) shows the behavior of the DP-

I algorithm upon the arrival of new modules. When there is insufficient
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Fig. 8. Outcome example.
pace for allocation at a lower level, DP-I redirects the new modules to
igher levels of fog computing, in this case, Cloudlet-0.

The CB-E algorithm, illustrated in Fig. 8(b), considers the commu-
ication impact on the executed data traffic before deciding which
odules to elevate. Suppose that the algorithm identified all Coordi-
ator modules as the best choice for elevation since it would cause
he least communication impact. Therefore, the algorithm elevated all
odules of this type to the level above fog computing.

In contrast, Fig. 8(c) shows the result when modules are allocated
sing the LI-X algorithm. The operation of LI-X is similar to that of
B-E, differing in the way the decision is made about which modules
hould be moved to higher levels. A series of steps are performed
or each module that needs to have resources allocated. Considering
hat initially, the selected module is the ‘‘Coordinator’’, which will be
onsidered the current module 𝑚. The first step is to check if there
re enough resources for the new module 𝑚 in the current cloudlet
Algorithm 2, lines 1–3). Assuming that, in the example, there is no
pace in Cloudlet-0, line 5 is executed. Algorithm 3, triggered on line
, originates from the CB-E proposal. Assuming the same scenario, it
ill return the 𝑀𝑢𝑝 set containing only the ‘‘Coordinator’’ module as a

andidate to be moved. Line 7 is then considered true, and the newly
rrived 𝑚 module ‘‘Coordinator’’ is forwarded to Cloudlet-0-0.

In Cloudlet-0-0, the process restarts, but as there is enough space,
esources are allocated to the module (Algorithm 2, line 3). Next,
he process restarts with the module 𝑚 being the ‘‘Concentration Cal-
ulator’’ that will try to be allocated in Cloudlet-0. As there is not
nough space, line 5 is executed. Assuming the same scenario, line 5
f Algorithm 2 is executed, and Algorithm 3 returns the 𝑀𝑢𝑝 set with
nly the ‘‘Coordinator’’ as a candidate module. However, now line 7
s not true, and the process of moving modules with already allocated
esources begins. Line 10 returns the number of resources needed for
he ‘‘Concentration Calculator’’ module to be allocated, subtracting the
vailable resources in the cloudlet 𝑟(𝑐) from the resources required
o run this module 𝑛(𝑚). Assuming the values in the example, the
𝑝𝑢𝑇 𝑜𝐷𝑒𝑝𝑙𝑜𝑦 variable will be −1000, and 𝑐𝑝𝑢𝑇 𝑜𝑅𝑒𝑙𝑒𝑎𝑠𝑒 is the number
f resources that would be freed when raising an instance of each of
he modules in the 𝑀𝑢𝑝 set. In this case, the answer will be 1000, as
he 𝑀𝑢𝑝 set contains only the ‘‘Coordinator’’ module.

Next, on line 12, it is determined how many instances from the
𝑢𝑝 set need to be moved for the current module m to have resources

llocated in Cloudlet-0. On line 13, the algorithm checks if there are
nough instances from the 𝑀𝑢𝑝 set in the current cloudlet that could be
oved to make room for the module 𝑚. If there are, the resources for

ach of the instances are deallocated, and these modules are forwarded
o Cloudlet-0-0. In our example, one of the ‘‘Coordinator’’ modules
ould be sufficient. This module is then forwarded to Cloudlet-0-0,
nd another attempt is made to allocate module 𝑚 in the current
loudlet (line 20). As there is now available space, the ‘‘Concentration
102
Fig. 9. Fog hierarchical topologies.

Calculator’’ module will be allocated, resulting in the configuration
illustrated in Fig. 8(c).

The following section will present the experimental environment
used to evaluate our proposal.

4. Experiments and results

We defined four different fog topologies (shown in Fig. 9) to conduct
our experiments. Each topology has the cloud in the upper layer, fol-
lowed by a Gateway with a delay of 100 ms. These evaluated topologies
comprise one or more levels of cloudlets, ending with the layer of
IoT devices. There are varying levels of communication delay between
the different layers. The Type A (Fig. 9(a)), Type B (Fig. 9(b)), and
Type C (Fig. 9(c)) topologies are the same as those used in the works
of [19,22,26]. We also propose a new Type D topology, a variation with
three levels of cloudlets. These different topologies in this work aim to
evaluate the performance of different application allocation methods
in different scenarios that can frequently occur when a fog computing
infrastructure is considered.

For all topologies shown in Fig. 9, 4 instances of VSOT application
(Fig. 5) were added in the IoT Devices layer. As for the EEGTBG
application (Fig. 3), 16 different scenarios were created to simulate the
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Fig. 10. Network usage: Topology A.

obility of the game’s users. In this sense, scenarios were evaluated,
imulating the absence of players until the arrival of 15 EEGTBG
layers. The Camera, Motion Detector, and PTZ Control modules of
he VSOT application are allocated in the Camera itself, and the User
nterface module is allocated in the cloud (Fig. 4). The other modules
re allocated in the cloud or fog according to the algorithm’s decision.
he EEG, Display, and Client modules of the EEGTBG application are
llocated with the player device. The other modules are allocated in
he fog or cloud (Fig. 2).

To serve as a comparative basis for this proposal, we used the
P-I algorithm proposed in [22] and the CB-E algorithm proposed

n [19]. The DP-I resource allocation algorithm prioritizes latency-
ensitive applications and assigns all modules of these applications to
he lowest-level cloudlet for execution. If resources are unavailable
t the lowest level, the algorithm allocates modules to higher levels
nd uses the cloud as a last option for execution [22]. CB-E is an
llocation policy that prioritizes latency-sensitive applications at the
ower levels of the fog, similar to DP-I. However, when resources
ecome scarce, it selects modules that could be relocated to higher
og layers with minimal impact on network traffic. The algorithm then
ends the selected module types to the subsequent levels and layers of
he architecture [19]. For each combination of topology (Fig. 9) with
ach of the algorithms (DP-I, CB-E, and LX-I), ten simulation runs were
erformed, varying the iFogSim simulator seed for each set.

.1. Topology A

We analyzed the network traffic of different algorithms in a Topol-
gy Type A scenario (Fig. 9(a)). The results showed that LI-X had a
light advantage over CB-E and DP-I regarding average network traffic,
ith LI-X having an average of 130.95 kB of data traffic while CB-E
nd DP-I had 183.57 kB and 201.21 kB, respectively. It is worth noting
hat CB-E presented a gain over LI-X from the arrival of the 12th user,
s shown in Fig. 10(a). Nonetheless, LI-X outperformed the compared
lgorithms in the overall experiment, with a gain of 28.7% over CB-E
nd 34.9% over DP-I. These findings suggest that LI-X may be a more
uitable solution for scenarios similar to the one analyzed in this study.

Regarding the application delay in the Topology A scenario
Fig. 11), it was observed that in the EEGTBG application, LI-X achieved
n average delay time of 30.22 ms. In comparison, CB-E had an average
elay time of 117.87 ms, and DP-I achieved an average delay time
f 26.93 ms. It is possible to notice a similar behavior between the
lgorithms up to the 9th user, but from the 12th user, the CB-E starts to
iffer from the other algorithms. When evaluating the behavior of the
SOT application, LI-X also performed better, with an average delay

ime of 222.38 ms. CB-E presented the second-best result with a delay
ime of 230.18 ms, and finally, DP-I had an average response time of
50.67 ms. Therefore, LI-X was better than CB-E by 3.39% and DP-I by
1.29%.

In order to understand the reasons for the behavior presented above,
ig. 12 shows the distribution of application modules among devices in
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Fig. 11. Delay: Topology A.

Fig. 12. Module per device: Topology A.

opology A. As shown in Fig. 9, from the arrival of the 12th user, all
EGTBG modules are allocated in the cloud, leading to higher delay due
o the distance between devices. On the other hand, some modules of
he VSOT application were allocated in Cloudlet-1, which is closer to
he user, reducing the delay and total data traffic over the network for
his application. This also explains the behavior identified in the graphs
f Fig. 10.

In Fig. 12, DP-I and LI-X exhibit similar behavior, particularly when
he number of users is high. Fig. 13 provides a more detailed view of
ow EEGTBG modules are distributed across devices from the arrival of
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Fig. 13. Modules per device: Topology A. Highlight when the system is overloaded.

Fig. 14. Network usage: Topology B.

the 10th user. Highlighting when the 12th user arrives, CB-E allocates
all EEGTBG modules in the cloud, while LI-X prefers to allocate a
larger number of instances of the concentration_calculator module in
the Cloudlet-1. This module was identified as a potentially significant
cause of communication impact when allocated further away from the
user. LI-X allocated the connector module as much as possible with the
remaining resources. In contrast, the other instances of the modules
were moved to the cloud due to insufficient resources in the Cloudlet-1.

4.2. Topology B

Figs. 14(a) and 14(b) present the total and average network traffic,
respectively, for Topology Type B (Fig. 9(b)) as users arrive in the
system. Despite a smaller difference, LI-X still had the lowest average
network usage compared to CB-E (305.29 kB) and DP-I (326.80 kB),
with an average of 268.64 kB. As with Topology Type A, CB-E gained
an advantage over LI-X from the arrival of the 12th user, as shown in
Fig. 14(a). However, in the experiment’s average, LI-X had a 12.01%
gain over CB-E and a 17.80% gain over DP-I.

The average delay time in Topology B for the EEGTBG application is
presented in Fig. 15. LI-X had an average delay time of 79.61 ms, CB-E
had an average of 154.22 ms, and DP-I had an average of 104.95 ms.
In this scenario, LI-X had a gain of 48.4% over CB-E and 24.2% over
DP-I. For the VSOT application, CB-E had an average delay time of
248.93 ms, DP-I had an average of 266.59 ms, and LI-X had an average
delay time of 242.45 ms, representing a gain of 2.67% over CB-E and
a gain of 9.1% over DP-I.

In Topology B, the distribution of modules among devices is shown
in Fig. 16. This topology is similar to Topology A, as both have only one
fog level with the same amount of computational resources, differing
only by the distance between devices. Due to this, the results regarding
the allocation location of each module instance of the application also
showed significant similarities. The average delay increases due to the
additional distance between the devices and the first fog level. From
the arrival of the 9th user, CB-E starts to allocate all instances of
the EEGTBG application modules in the cloud, causing a significant
increase in the average delay. And from the arrival of the 12th user,
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CB-E allocates all modules of the VSOT application in Cloudlet-1,
Fig. 15. Delay: Topology B.

Fig. 16. Modules per device: Topology B.

which ends up reducing the average delay for this application and the
total network traffic since VSOT is the application that generates and
transmits the most data.

The module distribution of the EEGTBG application instances
among the devices in Topology B is presented in detail in the graphs
of Fig. 17, starting from the arrival of the 12th user. Once again, it is
observed that CB-E allocates all application modules in the cloud, while
DP-I distributes the modules proportionally, respecting the resource
limit. LI-X prefers allocating the concentration_calculator module in
Cloudlet-1, which reduces the average delay time for the EEGTBG
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Fig. 17. Module count per device: Topology B. Highlight when the system is
overloaded.

Fig. 18. Network usage: Topology C.

pplication, as the concentration_calculator module has a major impact
n communication.

.3. Topology C

The experiment conducted in Topology C involved the addition of a
ew level of fog. The corresponding network traffic was captured and
nalyzed for varying user arrival rates. Fig. 18(a) displays the network
raffic for each arrival rate, while Fig. 18(b) shows the average network
raffic. The performance of three different allocation algorithms, LI-X,
B-E, and DP-I, was compared in this topology. The results indicate that
I-X outperformed the other two algorithms, with an average network
raffic of 78.67 kB, compared to CB-E’s average of 197.04 kB and DP-
’s average of 151.21 kB. This trend was observed for all workloads, as
llustrated in Fig. 18(a). On average, LI-X achieved a gain of 60.08%
ver CB-E and 47.98% over DP-I.

In terms of delay evaluation for Topology C (Fig. 19), the EEGTBG
pplication exhibited an average delay time of 40.27 ms with LI-X,
39.33 ms with CB-E, and 52 ms with DP-I. LI-X outperformed the
ther algorithms with a gain of 71.1% over CB-E and 22.6% over DP-I.
imilarly, for the VSOT application, LI-X performed better in reducing
he average delay time, resulting in a 14.1% reduction compared to
B-E and a 30.2% reduction compared to DP-I.

Analyzing the allocation of application modules in Fig. 20, CB-E
oes not allocate any VSTO application module at the first fog level,
hich has only half the resources available in Topologies A and B. The

ame issue occurs with the EEGTBG application after the arrival of the
th user. This is due to CB-E’s decision to move all module instances
o the upper level when there is insufficient space to allocate them all,
eaving the first level of fog unused. This behavior also extends to upper
evels as more users join the system. By the 12th user, the EEGTBG
pplication is entirely allocated in the cloud, increasing the average
elay.

Fig. 20 shows that DP-I and LI-X can utilize all fog levels as EEGTBG
sers arrive in the system. DP-I and LI-X allocate application modules
rom lower levels up to the cloud when resources are scarce in the
ower levels. However, the two approaches differ in how they distribute
he application modules. In the distribution of EEGTBG application
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Fig. 19. Delay: Topology C.

Fig. 20. Modules per device: Topology C.

modules from the 10th user’s arrival (Fig. 21), DP-I distributes the
modules more evenly, allocating them on the same device whenever it
obtains all the application modules for the new user. On the contrary,
LI-X prioritizes the allocation of the concentration_calculator module
in the lower levels. If it is not feasible to allocate it there, it is
allocated in the upper levels. This approach enables LI-X to reduce
delay since the concentration_calculator module generates lower data
traffic and minimal communication with other application modules,
reducing overall data traffic.
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Fig. 21. Module count per device: Topology C. Highlight when the system is
overloaded.

Fig. 22. Network usage: Topology D.

4.4. Topology D

In Topology D, a third level of fog is added. Fig. 22(a) shows
the total network traffic according to the arrival of new users, and
Fig. 22(b) presents the average network traffic for the Type D topology
(Fig. 9(d)). In this topology, LI-X also achieved a significantly better
result than the other algorithms, with LI-X having an average of 68.66
kB, CB-E having an average of 193.64 kB, and DP-I having an average of
99.66 kB. LI-X outperformed the other algorithms for all user quantities
in this topology, as shown in Fig. 22(a). On average, LI-X had a gain of
68.55% compared to CB-E and 31.29% compared to DP-I.

After analyzing the data traffic of the network (Fig. 23), LI-X was
found to reduce the average delay time by 79.7% compared to CB-E and
by 22.9% compared to DP-I for the EEGTBG application. The average
delay times were 40.42 ms, 198.93 ms, and 52.42 ms, respectively. For
the VSOT application, CB-E had an average delay time of 64.13 ms, DP-I
had a delay time of 116.07 ms, and LI-X had a delay time of 81.76 ms.
This corresponds to a performance loss of 27.5% compared to CB-E, and
a gain of 29.6% compared to DP-I. Although LI-X did not achieve the
best time for the VSOT application, it was able to meet the objective of
reducing the average delay time of the sensitive application.

Upon evaluating the allocation of application modules across the
levels of the fog in Topology D, it is observed from the graphs in
Fig. 24 that, even in the absence of EEGTBG users, CB-E fails to allocate
any module of the VSOT application at the first fog level. Instead, it
distributes the modules of VSOT among the upper levels of the fog and
the cloud for almost all user quantities. This behavior is due to the algo-
rithm’s inability to allocate instances of the same module individually
at different levels. As for the EEGTBG application, all instances begin to
be migrated to upper levels according to the available resources as users
arrive. This behavior causes resource idleness at lower fog levels and
increases the delay in each interaction. As a result, the module instances
are allocated further away from the user, as observed in Fig. 23.

DP-I allocates resources based on availability at lower levels, which
avoids resource idleness but leads to a lack of resource utilization.
However, LI-X considers each module’s behavior and allocates them,
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favoring those that cause less impact. In Fig. 25, the distribution of
Fig. 23. Delay: Topology D.

Fig. 24. Modules per device: Topology D.

application modules among the fog levels can be observed, starting
from the arrival of the 10th user. The concentration_calculator module
is allocated in lower levels, while the connector module is allocated
in higher levels according to resource availability. This way, LI-X can
reduce the average delay time since the concentration_calculator mod-
ule is the EEGTBG application module that causes the most significant
impact being allocated farther away from the user.
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o

Fig. 25. Module count per device: Topology D. Highlight when the system is
verloaded.

Table 2
Network usage (in kB).

Topology CB-E DP-I LI-X ≈CB-E ≈DP-I

A 183.57 201.21 130.95 −28.7% −34.9%
B 305.29 326.80 268.64 −12.01% −17.80%
C 197.04 151.21 78.67 −60.08% −47.98%
D 193.64 99.92 68.66 −68.55% −31.29%

Table 3
Average delay (in milliseconds).

Topology App CB-E DP-I LI-X ≈CB-E ≈DP-I

A VSOT 230.18 250.67 222.38 −3.39% −11.29%
VRGame 117.87 59.93 30.22 −74.36% −49.57%

B VSOT 248.93 266.59 242.45 −2.60% −9.06%
VRGame 154.22 104.95 79.61 −48.38% −24.14%

C VSOT 153.44 188.90 131.82 −14.09% −30.22%
VRGame 139.33 52.00 40.27 −71.10% −22.56%

D VSOT 64.13 116.07 81.76 +27.49% −29.56%
VRGame 198.93 52.42 40.42 −79.68% −22.89%

4.5. Analysis

The network usage of the algorithms used in the study and the
difference of LI-X compared to the other algorithms are summarized
in Table 2. It was found that CB-E outperformed DP-I when lower-level
fog cloudlets had enough resources to allocate all instances of specific
module groups. However, when there were not enough resources for all
instances, CB-E elevated entire groups of module instances to higher-
level cloudlets, increasing the distance to IoT devices and impacting
data traffic between modules. On the other hand, LI-X achieved better
results for all topologies because it reduces network usage by posi-
tioning groups of module instances that have a greater impact on
communication within the same cloudlet, a strategy similar to CB-E,
and reduces resource idleness at the lower-level fog cloudlets, a strategy
similar to DP-I. This behavior was observed in all presented scenarios,
showing that LI-X is a good solution for these scenarios.

Table 3 presents detailed information about the delay results for
the application requests in all experiment scenarios. As shown, the LI-X
algorithm reduced the average delay time for the sensitive application
in all cases and also managed to reduce the delay for the non-sensitive
application in almost all scenarios, with only a 27.49% loss in topology
type D. This was achieved by the strategy of allocating resources to
groups of modules with higher communication impact close to each
other, which reduced the time required for communication between
these groups. Additionally, LI-X reduced the idleness of resources at
lower levels of the fog and was more selective when moving groups of
modules, placing more related modules in the lower levels of the fog.
As a result, more module instances of the applications were executed
closer to the IoT devices, thus reducing delays in communication.

In this way, LI-X has shown to be a more efficient solution when
compared to the compared works. This conclusion is supported by the
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results obtained in the experiments, which demonstrated the ability
of LI-X to reduce delay, optimize the use of resources, and minimize
network traffic in fog computing environments. Moreover, these find-
ings contribute to the advancement of the field and provide valuable
insights for developing future hierarchical fog computing systems. It
could be a valuable addition to the existing literature on this topic,
which we present in the next section.

5. Related work

Due to the various limitations and challenges associated with using
cloud computing for certain applications, particularly those that use
the Internet of Things (IoT) paradigm, fog computing is consolidating
as an option by providing computational power in proximity to the
user. Various types of applications can benefit from this paradigm,
particularly those that require fast responses, systems that work with
facial recognition, voice recognition, and translation, health-related
applications, surveillance and emergency systems, and real-time games,
among others [33]. However, due to the nature of fog computing and
its applications, a series of other challenges have been presented and
begun to be studied.

In Shah-Mansouri e Wong (2018) [34], the authors study task
allocation in a hierarchical fog computing architecture to maximize
user experience by reducing the response time of applications, as well
as energy cost reduction. To achieve this, they use algorithms and
game-theoretic approaches. According to the authors, the results of
the experiments showed that users generally achieved a better Quality
of Experience (QoE) compared to other proposals in the literature.
However, this work does not address modular applications but rather a
task execution system, where applications can be executed at any time
on any device as long as the task is directed to that device.

In Yangui et al. (2016) [35], an architecture for a Platform-as-a-
Service (PaaS) is proposed to automate the provisioning of applications
in hybrid cloud–fog environments. The proposed PaaS architecture
allows for the development of applications according to the target
domain, configuring and scaling resources to deploy and execute ap-
plication modules, managing the flow of execution, monitoring Service
Level Agreements (SLA), migrating modules, and providing interfaces
for resource and module management. Different scenarios of applica-
tion allocation were observed, and different results were found for
each allocation arrangement. The author concludes that the ideal or-
ganization of application modules is not a trivial task and requires
sophisticated algorithms to achieve better results.

According to Chamola et al. (2017) [33], a Software-Defined Net-
work (SDN) containing multiple cloudlets can be used to execute
services in proximity to mobile device users. Executing tasks on a
cloudlet network can be a solution for improving QoS in terms of
service response time. Based on the proposed policy, if a cloudlet
becomes overloaded, tasks should be transferred and processed on
another available cloudlet in the network. The management and distri-
bution of tasks are handled by a centralized service called the cloudlet
central manager.

Taneja e Davy (2017) [36] presents an algorithm for mapping
IoT application modules based on a fog computing architecture that
considers the requirements of each application module, such as CPU,
memory, and bandwidth. The author aims to allocate the application
modules as closely as possible to the users and end devices. To do
this, the algorithm considers the resources available in each fog node
and seeks to reduce the idleness of resources closest to the network’s
edge. The author emphasizes the importance of using an architecture
based on fog computing and cloud computing when aiming to reduce
the response time of applications. Although the algorithm considers
that application modules can be allocated on different devices, the
authors do not consider the priority of applications or the impact of
communication between these modules.
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Table 4
Summarizing of related work [19,22,26,33,35–39].

Article Journal/Congress published Fog Hierarchical Requirements Modular Distributed

or multi-level CPU Network app management

Yangui et al.
(2016) [35]

IEEE Inter. Symposium on Local
and Metropolitan Area Networks

Chamola et al.
(2017) [33]

IEEE Inter. Conference on Pervasive
Computing and Communications

Taneja e Davy
(2017) [36]

IFIP/IEEE Symposium on Integrated
Network and Service Management

Aburukba et al.
(2020) [37]

Elsevier Future Generation
Computer Systems (FGCS)

Ali et al.
(2020) [38]

IEEE Transactions on Cloud
Computing

Kaur et al.
(2022) [39]

IEEE Transactions on Services
Computing

Bittencourt et al.
(2017) [26]

IEEE Cloud Computing

Charantola et al.
(2019) – [DP-I] [22]

IEEE/ACM Inter. Conference on
Utility and Cloud Computing

Peixoto et al.
(2022) – [CB-E] [19]

IEEE Transactions on Services
Computing

This work – [LI-X]
In Aburukba et al. (2020) [37], a customized genetic algorithm
is proposed to solve the problem of scaling requests received from
IoT devices in a fog computing architecture. With the main goal of
minimizing the latency of applications, the proposed approach shows
good results compared to other techniques such as round-robin or
priority queue. Ali et al. (2020) [38] present an adaptation of the Non-
dominated Sorting Genetic Algorithm (NSGA-II), which aims to reduce
the response time and execution cost of applications. Both proposals
utilize a centralized decision system.

In Kaur et al. (2022) [39], the authors present the Real Time Hetero-
geneous Hierarchical Scheduling 𝑅𝑇𝐻2𝑆 algorithm, designed for task
scheduling in real-time in a multilevel fog computing architecture. The
premise of the work is that a group of tasks with different sizes, priori-
ties, and deadlines need to be executed. Thus, the algorithm attempts to
schedule the execution of the group of tasks considering their different
profiles, prioritizing those with higher priorities and shorter deadlines.
To evaluate the 𝑅𝑇𝐻2𝑆, the authors used the iFogSim simulation tool
and a real-world dataset of task execution records to compare the
performance of the proposed algorithm with the direct execution of
tasks in a cloud environment, as well as with the Longest Time First
(LTF) scheduling algorithm, which attempts to allocate larger tasks
to fog nodes where they would be executed more quickly. In their
experiments, the 𝑅𝑇𝐻2𝑆 achieved better success rates in delivering
the most tasks within the deadline and also achieved lower costs for
task execution compared to LTF. However, this work does not consider
modular applications and resource allocation based on individual tasks.

The work of Bittencourt et al. (2017) [26] discussed the problem of
allocating applications on devices in a single-level fog network using
the iFogSim simulator. The study analyzed the behavior of two distinct
applications in the fog, with different numbers of users moving between
regions, taking into consideration three different resource allocation
strategies: Concurrent, where the requested applications are allocated
concurrently on the same cloudlet without considering resource usage
limits, First-Come-First-Served (FCFS), which allocates resources based
on the order of allocation requests and directs requests to the cloud
when no more resources are available, and finally, Delay-Priority (DP),
which takes into account the priority of the application. In this case, ap-
plications with tighter response time requirements are prioritized over
others. When no more resources are in the cloudlet, the applications are
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directed to the cloud. As the number of users increased in a particular
cloudlet, DP demonstrated better performance in terms of response time
for latency-sensitive applications at the cost of increased network traf-
fic. Despite having minimal network traffic, the Concurrent approach
did not show good results in terms of latency for the applications
since all applications were executed on a single cloudlet concurrently,
compromising the execution of the tasks. Bittencourt et al. (2017) [26]
did not consider a multi-level fog network scenario and also considered
the application modules as a single group that needed to be positioned
together on the same device.

In Charantola et al. (2019) [22], the authors propose the Delay-
Priority & Individual (DP-I) algorithm for resource allocation in a
single-level fog architecture. The study considers that applications can
be divided into modules that communicate with each other and can
be positioned on different devices. When there is a need to allocate
resources for a new application or for new modules of an application
already running on a specific cloudlet, and in the absence of sufficient
resources, the algorithm, instead of elevating the entire application to
the cloud, selects only the dependent modules, which communicate
with each other, and directs them to the cloud. Additionally, the algo-
rithm prioritizes keeping applications with lower latency requirements
on the cloudlet. The study compares the proposed approach with the
algorithms evaluated by Bittencourt et al. (2017) [26]. The impressive
results suggest that with the new proposal, it was possible to reduce the
average delay in applications with lower latency requirements and that
users can experience differences in QoS as services are migrated to the
cloud service. However, it does not consider a multi-level fog scenario.

Peixoto et al. (2022) [19] proposes the CB-E (Communication Based
& Edgewards), an approach that aims to reduce network traffic while
trying to meet the latency requirements of applications. To do this,
when there is a need for resource allocation for new applications in a
cloudlet, and there are not enough resources, the algorithm evaluates
the group of modules that should be migrated. It does this by consider-
ing the increase in network traffic that may be produced when certain
modules or dependent groups of modules are sent to higher fog levels.
Then, it sends to higher levels of the fog all modules of a certain type or
groups that cause the least impact on the network. The authors eval-
uated their results in three different scenarios, considering scenarios
with a single-level fog and two levels, also varying the computational
capacity of the cloudlets. They compared the proposed approach with

the algorithms evaluated by Bittencourt et al. (2017) [26] and the
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approach proposed by Charantola et al. (2019) [22]. The effectiveness
of CB-E in reducing total data traffic while maintaining acceptable de-
lays in latency-sensitive applications was demonstrated by its superior
performance compared to the algorithms proposed in [22,26]. As a
result, CB-E proved to be a valuable solution for this scenario.

As seen in Table 4, various studies have been conducted around
resource allocation for network architectures based on fog computing
applications. Most related works in the review did not consider that the
fog layer may have multiple levels. Additionally, only three considered
the data traffic generated by communication or the delay caused by
the distance between devices. Another important issue is the modular
nature of applications, which was only considered in four studies.
However, some studies deal only with the execution of isolated tasks
and not reserving resources for certain applications. Notably, only three
studies use a distributed strategy for decision-making about the location
of resource allocation for applications or their modules.

Our study is based on the findings of previous research conducted
by other authors in the field of cloud–fog resource allocation. In the
first previous one, Bittencourt et al. (2017) [26] present and evaluate
the allocation of applications using the FCFS and DP algorithms, which
consider the available CPU on the device for the allocation of new
applications but do not consider the modularity of the applications.
Next, Charantola et al. (2019) [22] present the CB algorithm, which
considers the applications’ modularity and priorities, aiming to reduce
response time. Then, Peixoto et al. (2022) [19] present the CB-E, which
in addition to considering the modularity of the applications, also
evaluates the impact of communication between each of its modules
and presents a two-level hierarchical fog.

Referring to the details presented in Table 4, it provides a com-
prehensive summary of the model parameters used in the study. It
categorizes these parameters into three main groups: App’s Parameters,
Devices Parameters, and Fog Parameters. Regarding the research gap
addressed in our paper: Our study identifies and addresses a significant
challenge in the context of fog computing, particularly in the context
of applications with stringent latency requirements. The core issue
we observed is the application placement problem in fog computing
environments. More specifically, when application placement in a fog
tier prioritizes certain application requirements over others, it can lead
to an imbalance in the system. This imbalance often results in resource
depletion in tiers closer to IoT devices. Consequently, latency-sensitive
applications are forced to utilize resources from more distant fog levels,
leading to increased response times and potential non-responsiveness.
To tackle this issue, our paper introduces a novel approach named Least
Impact - X (LI-X). This approach is designed to minimize response times
for latency-sensitive applications and reduce network data traffic. The
key innovation of LI-X lies in its ability to mitigate the idle time of
fog resources at lower levels. By strategically distributing application
modules across the fog tiers, LI-X aims to balance the need for rapid re-
sponse times in delay-sensitive applications with the overall reduction
of network traffic.

In addition, the proposed LI-X algorithm outperforms previously
presented studies, including the CB-E [19], regarding reducing data
traffic and meeting application latency requirements. Unlike the CB-E
algorithm, which elevates all running instances of a group of modules
to higher levels of the fog, the LI-X algorithm selectively elevates only
necessary modules to make room for new applications. Furthermore,
the LI-X algorithm considers each module’s average resource utilization
when evaluating resource needs, resulting in reduced resource idle-
ness at lower fog levels. Additionally, this work introduces a fourth
hierarchical level in which all algorithms are evaluated.

6. Conclusion

The proposed Least Impact - (LI-X) algorithm builds upon the exist-
ing knowledge base by utilizing previous studies’ theories, methodolo-
gies, and empirical data to contribute to understanding the hierarchical
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fog topic. To evaluate the performance of the proposed algorithm, LI-X,
it was compared to two other algorithms found in the literature, Delay-
Priority & Individual (DP-I) and Communication Based & Edgewards
(CB-E). For this, a simulated environment was set up using the iFogSim
simulator for different fog architecture topologies. Two different appli-
cations with different requirements were used, and the response time
of the applications in each simulated scenario was evaluated, as well
as the amount of data transmitted through the network. At the end of
the experiments, LI-X presented better results in all scenarios than the
other algorithms.

By referencing the works of other experts in hierarchical fog, a
foundation for future research is established. Therefore, to improve
the proposed work, the following steps can be taken in the future:
(i) Evaluate the impact of live migrations that occur in user mobility
scenarios; (ii) Expand and evaluate the scenarios to new types of
applications and dynamic topologies of hierarchical fog; (iii) Consider
costs and energy efficiency during the resource allocation process; and
(iv) Consider applications or tasks that do not require constant resource
allocation, such as serverless applications.

In light of the role of data privacy in fog computing, we envision
an emerging research avenue in developing privacy-aware allocation
algorithms. Such algorithms would strategically place application mod-
ules and data in fog nodes, considering privacy requirements alongside
computational efficiency. The development of these algorithms presents
an interesting challenge, balancing the trade-offs between privacy,
latency, and resource utilization. This aspect opens up opportunities for
future work where the primary goal is to create sophisticated systems
that not only optimize performance but also rigorously protect data
privacy in increasingly connected IoT environments.
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