
This paper is included in the Proceedings of the
2022 USENIX Annual Technical Conference.

July 11–13, 2022 • Carlsbad, CA, USA
978-1-939133-29-8

Open access to the Proceedings of the
2022 USENIX Annual Technical Conference

is sponsored by

JITServer: Disaggregated Caching JIT
Compiler for the JVM in the Cloud
Alexey Khrabrov, University of Toronto; Marius Pirvu

and Vijay Sundaresan, IBM; Eyal de Lara, University of Toronto

https://www.usenix.org/conference/atc22/presentation/khrabrov

JITServer: Disaggregated Caching JIT Compiler for the JVM in the Cloud

Alexey Khrabrov
University of Toronto

Marius Pirvu
IBM

Vijay Sundaresan
IBM

Eyal de Lara
University of Toronto

Abstract
Managed runtimes such as the Java virtual machine (JVM)

rely on just-in-time (JIT) compilers to improve application
performance by converting bytecodes into optimized machine
code. Unfortunately, JIT compilation introduces significant
CPU and memory runtime overheads. JIT compiler disaggre-
gation is a technique that decouples the JIT from the JVM and
ships compilation to a separate remote process. JIT disaggre-
gation reduces overall memory usage; however, its communi-
cation overheads result in higher system-wide CPU usage.

JITServer is a disaggregated caching JIT compiler we im-
plemented in the Eclipse OpenJ9 JVM. It improves system-
wide resource utilization by enabling the caching of compiled
native code and its reuse in JVMs running on different ma-
chines. JITServer is transparent to the application developer,
and supports all the dynamic features in the JVM specification.
In our experiments, JITServer reduced overall CPU cost by
up to 77%, overall memory usage by up to 62%, application
start time by up to 58% and warm-up time by up to 87%.

1 Introduction

Java virtual machines (JVMs) rely on just-in-time (JIT) com-
pilers to improve the performance of Java applications by
converting the bytecodes of the application into optimized
machine code. Since this transformation is done at runtime,
the JIT has the ability to tailor-fit the generated code for a
specific application instance and its execution environment.
On the downside, JIT compilation can introduce significant
runtime overheads in terms of processing power and memory.
The extra CPU cycles needed for compilation can interfere
with applications’ progress, delaying their start-up, increasing
their warm-up time or affecting the response time and qual-
ity of service. Similarly, the data structures allocated by the
JIT compiler create unpredictable spikes in memory usage,
which increase memory footprint and can lead to performance
degradations (due to paging) and out-of-memory failures. In
our experiments, JIT compilation accounted for up to 50% of
CPU time used during the start-up and warm-up phases, and
for up to hundreds of MBs of memory footprint.

The competition for resources between the application and
the JIT is more intense in CPU and memory constrained envi-
ronments such as containers and VMs found in cloud datacen-
ters that maximize resource utilization and application density.

Automatic scaling of cloud applications is done by launching
and shutting down instances based on load. Frequent restarts
of applications pose serious challenges to Java workloads due
to the high start-up overhead of JIT compilation, which needs
to be amortized over a long execution period. The memory
overhead of JIT compilation is more significant for smaller (in
terms of overall memory usage) application instances which
are common in the cloud (e.g. microservices).

JIT compiler disaggregation is a technique that addresses
these overheads by decoupling the JIT from the JVM and run-
ning it in a separate remote process. The JIT no longer steals
CPU cycles from the application, which leads to more pre-
dictable behavior and better quality of service, and improves
application warm-up in CPU constrained environments. Mem-
ory footprint spikes are also eliminated, enabling smaller con-
tainers, higher application density, and reduced costs in the
cloud. Moreover, remote JIT simplifies resource provisioning:
the user only has to consider CPU and memory required for
application execution, while compilation resources can be
scaled independently of the applications.

While JIT disaggregation reduces overall memory usage,
on the downside, it can result in higher system-wide CPU
usage. The CPU cost and latency of each compilation in this
setting is higher compared to local JIT due to communica-
tion overheads. JIT overheads are not eliminated, but rather
transferred to a different host, at the expense of additional
networking and serialization costs.

We argue that in order to achieve the full benefits of disag-
gregated JIT, the compiler server resources must be effectively
shared between multiple client JVMs by making it possible
to reuse compilations of common methods. Unfortunately,
reusing dynamically compiled native code across multiple
JVM instances is a challenging task. JIT-compiled code can-
not be simply plugged into a different JVM in the general
case since it often contains pointers to runtime entities that are
located at different addresses in different JVMs, and relies on
runtime assumptions that might not hold in a different JVM
environment. Due to the dynamic nature of the JVM, locat-
ing runtime entities and verifying assumptions across JVM
processes is more difficult compared to relocating statically-
compiled code in languages like C. The key idea is to use
secure hashes of immutable class metadata to efficiently de-
tect equivalent classes and methods across JVMs.

In this paper, we describe the design and implementation

USENIX Association 2022 USENIX Annual Technical Conference 869

of JITServer - our disaggregated JIT compiler in Eclipse
OpenJ9 [6], a popular open source JVM. JITServer caches
compiled native bodies and reuses them for future compilation
requests for the same methods from other client JVMs. This
enhancement dramatically decreases compilation latency for
cache hits and significantly reduces overall resource usage by
amortizing compilation costs over multiple clients. Caching
compiled code at the server happens transparently and does
not add any complexity to application development. Our main
use case is running multiple application instances in a cloud
datacenter in, e.g., containers with resource limits. Remote
JIT might not be beneficial if the JVM has plenty of resources
for local JIT, or if the network latency is high.

This paper makes the following contributions:
• We propose a novel mechanism that facilitates caching of

compiled native code in a remote JIT compilation system
and enables correct, transparent and efficient reuse of such
code by JVMs running on different machines. We show
that caching is necessary to achieve the full benefits of JIT
compiler disaggregation.

• We describe the design and implementation of JITServer.
Unlike previous work, our solution is compliant with the
JVM specification, does not rely on simplifying assump-
tions, and is implemented in a production grade JVM with a
sophisticated JIT. We provide insight into the challenges of
implementing remote JIT in a dynamic environment such
as the JVM and the ways to solve them.

• We present the first (to the best of our knowledge) study
of remote JIT in the context of cloud computing. We show
that JITServer improves start time, warm-up time, CPU and
memory usage, without trading-off peak throughput, allow-
ing more efficient, higher density deployments of JVM-
based applications in the cloud. In our experiments, JIT-
Server reduced overall CPU cost by up to 77%, overall
memory usage by up to 62%, application start time by up
to 57% and warm-up time by up to 87%.
The rest of the paper is organized as follows: Section 2

provides a survey of related work and motivates our solution;
Section 3 presents the design of JITServer and its novel mech-
anism for reusing compiled code in multiple JVMs; Section 4
evaluates the performance of our system; finally, Section 5
concludes the paper and explores future work directions.

2 Motivation and Related Work

In this section we present a survey of existing solutions for
the JIT overhead problem and discuss their limitations.

2.1 Static AOT Compilation in the JVM
One way to circumvent the negative effects of JIT compilation
is to use static ahead-of-time (AOT) compilation. HotSpot
JVM used to include a (now deprecated [10]) static AOT com-
piler jaotc [9] that compiled the bytecode of an explicitly
specified list of Java classes or .jar files into native code.

GraalVM Native Image [7] compiles a Java application in-
cluding all the classes it uses (determined by static analysis)
into a standalone native executable, and can run parts of the
application initialization code at AOT compile time [31].

However, an inherent limitation of static AOT compilation
is the closed world assumption: all the code that can execute
at runtime must be available at compile time. This assumption
severely limits support for dynamic JVM features such as cus-
tom dynamic class loading, class definition and redefinition
at runtime, and invokedynamic bytecodes. Static AOT only
supports a subset of Java and JVM bytecodes.

On the performance front, static AOT compilers typically
do not take advantage of the latest CPU features, because
the code they produce must be compatible with a wide range
of target machines. Moreover, the lack of runtime profiling
information can lead to suboptimal performance. While it is
possible to use profiling information at build time, it requires
a realistic workload, which makes application development
more difficult. In addition, performance profile of a given
method can change between application phases, and achiev-
ing peak performance in such cases still requires dynamic
recompilation at runtime.

2.2 Sharing Compiled Code between JVMs
JIT overhead can be reduced by caching and sharing compiled
code among JVMs. Examples include ShMVM [20] (based
on HotSpot), ShareJIT [32] (based on Android Runtime), and
the Shared Classes Cache (SCC) [16, 19] and dynamic AOT
compilation in OpenJ9. We focus on the latter as the more
recent and practical implementation of this approach.

SCC in OpenJ9 is a memory mapped file used to cache
compiled code and the internal representation of immutable
class metadata. The SCC is populated in a cold run and is
subsequently consumed by other JVM instances in warm runs.
The SCC improves start-up and warm-up performance in the
warm runs since the class metadata is already available in a
pre-processed format and does not need to be parsed from
the class files, and loading cached compiled methods is much
less CPU-intensive than JIT-compiling them. This approach
is called dynamic AOT compilation: methods are compiled
and stored in the SCC during execution, in contrast with static
AOT where the code is compiled before it runs.

Unfortunately, this approach does not completely eliminate
the need for a JIT compiler for two reasons: (i) the hit rate
in the SCC is not 100% as the set of compiled methods can
vary from run to run; and (ii) dynamic AOT code can be
slower that regular JIT-compiled code since it has to meet
certain constraints in order to be relocatable and usable in
a different JVM instance. Therefore, performance critical
methods are still JIT-recompiled with more optimizations in
order to achieve peak throughput. Since such compilations
are responsible for most of the JIT memory overhead, this
approach cannot effectively reduce peak memory usage.

While it is possible to ship a pre-populated SCC with an ap-

870 2022 USENIX Annual Technical Conference USENIX Association

plication, the complexities involved often make it impractical.
The associated increase in image size can be significant up to
hundreds of MBs (63-128% increase for the applications we
used in our evaluation). A larger image size adds overhead
on the critical path of deployment and contributes to the cold
start latency. Dynamic AOT code makes assumptions about
the execution environment such as target CPU instruction set,
GC algorithm (its reference read and write barriers), and heap
size (determines compressed pointer shift). Shipping a pre-
populated SCC requires either maintaining multiple versions
for all possible combinations of CPU generations and JVM
parameters (which complicates deployment), or generating
suboptimal portable code that works across all configurations.

Managing the pre-populated SCC puts additional burden
on application developers and increases complexity and cost
of continuous integration and deployment. Caching methods
compiled during warm-up requires simulating a realistic work-
load, which can be a complex task. Creating a fully populated
SCC can also increase application build times by up to orders
of magnitude since it can take minutes of application run time
to achieve full warm-up. Anecdotal evidence (e.g. Docker
images for OpenJ9 [2] and Open Liberty [11] - a popular Java
framework optimized for OpenJ9, and the Java runtime in the
OpenWhisk [4] serverless platform) suggests that in practice,
the SCC is typically pre-populated only by starting up and
shutting down an application instance, and does not include
any methods compiled during the warm-up phase.

Another way to leverage the SCC is to share it locally
between JVMs on a given host, populating it dynamically at
runtime instead of pre-populating it at application build time.
However, this approach also has drawbacks. Sharing the SCC
between applications creates the potential for side-channel
attacks and other security issues. Thus if sharing is limited to a
single application, the scheduler is forced to pack instances of
the same application on the same host, which can lead to “hot
spots” during load spikes when multiple instances of the same
application contend for (often oversubscribed) resources. This
approach also increases applications’ exposure to individual
host failures. Managing per-application SCC volumes shared
between containers also complicates deployment.

2.3 Checkpointing and Reusing JVM Processes
Another approach to circumvent JVM slow start is to check-
point the state of a "warm" JVM process and restore it when
starting a new application instance. Cloneable JVM [24], Re-
playableJVM [30], and Catalyzer [22] explored checkpointing
well-defined and deterministic state after the start-up phase
of the application. Such snapshots do not include any meth-
ods compiled during warm-up under load, and still require
JIT compilation to reach peak performance. Checkpointing
also suffers from the same usability issues as shipping a pre-
populated cache of compiled methods: additional developer
effort and having to generate slower portable code or maintain
multiple versions for different CPUs and JVM configurations.

HotTub [27] takes a somewhat different approach of
reusing JVM processes to keep the JVM state “warm” for
the next run of the same or similar application. Photons [23]
co-locates multiple copies of a serverless function as threads
within the same JVM instance. These systems only reuse com-
piled code within the same machine, and can only persist it
across non-concurrent invocations by keeping the pre-warmed
JVMs running, which incurs a significant idle footprint.

2.4 Remote JIT Compilation
Remote JIT has been originally proposed in research that fo-
cused on embedded, mobile, and IoT devices where local JIT
is prohibitively expensive in terms of memory, CPU or energy
consumption [17,18,21,25,28,29]. JCOD [21], MoJo [28] and
VM* [25] are based on simplified JVMs and JIT compilers
that either do not rely on dynamic JVM runtime information,
or only support static AOT compilation of a subset of Java.

Lee et al. [26] describe a JIT compilation server based on
Jikes RVM, a research JVM written in Java. To the best of
our knowledge, their work is the state-of-the-art in the liter-
ature on remote JIT for the JVM. Its design assumes that
all the information needed to compile a method is included
in the compilation request, which becomes impractical in a
complex modern JIT. The authors do not consider overall re-
source usage (including the server), and only use simulations
to evaluate performance with multiple clients.

Foremost, these previous approaches do not reduce, and in
fact can increase, system-wide CPU usage. Each individual
remote compilation consumes more CPU time than its local
equivalent (assuming homogeneous hardware) due to com-
munication overheads, and takes more time overall due to net-
work latency. As we show in our evaluation (see Section 4.2),
remote JIT can increase overall CPU usage, especially for
short-running workloads that are common in modern cloud
computing. In this paper, we leverage caching compiled meth-
ods at the server to reduce the overall CPU cost by amortizing
it over multiple clients. In addition, we show that for cloud
workloads, JITServer significantly reduces overall memory
consumption since the spikes of maximum memory usage
from multiple clients are unlikely to align.

Azul Cloud Native Compiler [5] is a recently released re-
mote JIT for the Azul JVM. Unfortunately, there is only lim-
ited technical information available about the design of this
proprietary closed-source system. In particular, it is not known
if it implements caching, or how it affects system-wide re-
source usage. We are unable to compare performance against
it since its license forbids publishing benchmarking results.

Remote JIT is less susceptible to failures than other disag-
gregated designs (e.g. memory disaggregation) since it has
no shared hard state. Unlike the case of mobile and IoT de-
vices (the main target of previous remote JIT work), network
latencies in cloud datacenters are relatively low, and our evalu-
ation shows that remote JIT performs very well in this setting.
Modern cloud applications themselves are also typically dis-

USENIX Association 2022 USENIX Annual Technical Conference 871

7

App.
thread

Code
cache

Comp.
threadVM

1
Generate comp. request

6

2 Process
comp.
request

Queue

Relocate
and install

8

4

5

Listener
thread

Comp.
thread

Queue

Add request to
comp. queue

Begin
compilation

Send remote
comp. request

Return compiled body

Query runtime
environment

3

6

Client Server

Figure 1: Remote compilation mechanism

tributed, thus remote JIT does not exacerbate the reliability
and latency concerns. Remote JIT shifts resource provisioning
complexity from the application to the infrastructure, which
can be arguably beneficial. Local JIT requires application
developers to manage the complexity and extra costs of over-
provisioning memory (which goes unused after warm-up) and
CPU (to maintain QoS despite JIT activity during warm-up)
for each JVM. Instead, the operator’s effort to setup JITServer
autoscaling can be reused many times across applications.

3 Design and Implementation

In this section we present an overview of JITServer design and
implementation. We start with the description of the remote
compilation mechanism, and then explain how we enable
caching compiled methods to be reused by multiple clients.

3.1 Remote Compilation Mechanism
Figure 1 shows the high-level design of remote compilation in
JITServer. The client on the left is a complete JVM running
an application, while the server on the right is a separate,
possibly remote process offering a JIT compilation service
shared by multiple client JVMs connected to it. In this paper,
we focus on the mechanisms. We plan to explore automatic
sizing and scaling of JITServer resources in future work.

Existing remote JIT designs assume that each compilation
is a simple request-reply operation that requires a single net-
work round-trip since all the data required by the server is
either already available there or included with the request [26].
While this was feasible for simple JIT compilers in previous
work, such a design proved difficult to implement in a modern
JVM. The JIT in OpenJ9 has over 100 optimization passes
that use over 100 types of JVM state queries, compared to
~40 optimizations and 12 types of state in [26]. We took a dif-
ferent approach that resulted in lower implementation effort
and complexity: a compilation request only carries data that
is likely to be used by most compilations, and remaining data
is requested from the client on demand, cached at the server,
and invalidated when necessary to ensure correctness.

OpenJ9 runs a number of background threads that perform
JIT compilation concurrently with application threads. It uses
tiered compilation: methods are scheduled for compilation
at lower optimization levels once they reach certain invoca-

tion thresholds, and particularly hot methods that consume a
significant portion of CPU time are scheduled for recompila-
tion at higher optimization levels. The bytecode interpreter
and the sampling thread add compilation requests to a queue
consumed by the compilation threads. The number of active
threads is adjusted dynamically: additional ones are activated
when the JIT is starved of CPU time (e.g. if there is a large
number of application threads) or the queue becomes too
large. Compilation threads compile one method at a time, and
each compilation is a single-threaded task.

JITServer uses the same basic design with compilation
queues and threads on both the client and the server. At Step
1, application threads add requests to the compilation queue.
At Step 2, a client compilation thread dequeues a request and
sends a remote compilation request to the server (Step 3). The
client sends enough data for the server to start the compilation,
such as the bytecodes of the method. A listener thread on the
server accepts the connection and enqueues a compilation
request (Step 4), and a compilation thread reads the request
data from the network and starts the compilation (Step 5).

During remote compilation, the server may issue various
queries to the client requesting information about classes,
methods, fields, execution environment, etc. (Step 6). When
the compilation is complete, the server sends the compiled
body to the client (Step 7) along with metadata that needs to
be instantiated at the client. The client performs necessary
relocations (e.g. fixes up calls to runtime helper methods) and
installs the compiled method in its own code cache (Step 8)
- now it is ready to be executed. As long as the compilation
queue is not empty, the client thread keeps the connection
open and reuses it for subsequent requests.

Each compilation is performed by a dedicated pair of
threads - one on the server and one on the client. The number
of in-progress compilations is limited by the maximum num-
ber of client threads (16 in the current implementation). Our
evaluation shows that this value works well in practice. We
used a maximum of 128 server threads in our experiments.

The server JIT compiler in our current implementation is
identical to the local OpenJ9 JIT compiler and uses the same
set of optimizations and heuristics that control its behaviour.
All compilations are performed remotely. We focus on evalu-
ating the benefits of JIT disaggregation and caching on their
own in this paper, and plan to explore how the compiler can
be improved in the disaggregated setting in our future work.

3.2 Caching JVM Runtime Information
Remote compilation of large or complex methods can require
exchanging a large number of messages between the client
and the server. To reduce the negative effect of network la-
tency on performance, the server aggressively caches runtime
information received from the clients. Note that this is dif-
ferent from caching the resulting compiled code, which we
describe in Section 3.4. Caching is essential for performance:
in an early JITServer prototype that did not implement such

872 2022 USENIX Annual Technical Conference USENIX Association

caching, client threads alone used ~10x more CPU time than
local JIT. Caching reduced the average number of messages
per compilation from over 1000 to ~40.

The server handles requests from multiple clients in paral-
lel and maintains their data in client sessions identified by a
unique client ID included with each compilation request. A
session is created when a client first connects to the server,
and destroyed when the client terminates or stays inactive for
a long time. Most of the information that does not change
throughout the client’s lifetime (e.g. JVM configuration and
class metadata for primitive types) is sent with the first compi-
lation request. Mutable client state needs to be synchronized
with the server as classes are being loaded, unloaded, or rede-
fined, and profiling information is updated. We describe how
we handle caching of important types of client data.
Class Metadata Java classes are represented in OpenJ9
as data structures called ROMClasses, which represent im-
mutable data, including method bytecodes, and RAMClasses,
which contain the mutable data and point to the ROMClasses
they are based on. Multiple RAMClasses can use the same
ROMClass, e.g. if they are loaded by different class loaders.

The server maintains mirrors of the clients’ ROMClasses
and RAMClasses. To reduce memory consumption, it stores a
single copy of each unique ROMClass that is shared by all the
clients using it. To handle class unloading and redefinition, the
client sends with each compilation request the list of classes
unloaded or redefined since the previous compilation request,
which are in turn deleted from the server cache.

Server compilation threads are synchronized with class
unloading and redefinition using a reader-writer lock. Threads
acquire this lock for writing before deleting the entries, and
acquire it for reading while performing a compilation. When
runtime information queries are sent to the client, the lock
is released, and the client’s reply will also indicate whether
class unloading happened during this compilation, in which
case the compilation is aborted and retried.
Class Hierarchy Table CHTable (class hierarchy table) is
an OpenJ9 data structure that captures relationships between
classes and enables fast discovery of such relationships used
for speculative optimizations, e.g. devirtualization. The server
mirrors the client’s CHTable and keeps it up to date with
incremental updates sent along with the compilation requests.

To guarantee functional correctness, the server must pro-
cess class unloading/redefinition and CHTable updates in the
same order as the client. This requirement imposes a partial
order on compilation requests: critical requests that carry up-
dates must be processed in the same order as they originated
at the client, while other non-critical requests between subse-
quent critical requests can be reordered. We use a sequencing
scheme to order critical requests: if the server receives an
update with an out-of-order sequence number, it suspends
the compilation thread until the update with the expected se-
quence number arrives. If the expected message is lost, after a
timeout, the server clears cached data for the client and restarts

the update mechanism by requesting the entire CHTable.
Profiling Data While interpreting Java methods, OpenJ9
collects profiling data about branch direction and targets of
virtual and interface calls and instanceof/checkcast oper-
ations. The optimizer at the server makes extensive use of this
data and issues many queries to the client. To reduce the num-
ber of messages, we batch profiling data requests by sending
the data for all the bytecodes in the method in a single reply.

Unlike class hierarchy information, imprecise profiling data
does not affect functional correctness of generated code. Pro-
filing data for already compiled methods (which can be inlined
into newly compiled ones) has stabilized and can be cached
without significant effect on performance. In contrast, profil-
ing data for interpreted methods continue to be accumulated,
and using a stale version can lead to bad optimization deci-
sions. Thus, the server caches this data only for the duration
of the current compilation.

3.3 Reliability and Security
The client JVM in our design still includes a fully functional
local JIT compiler. Out-of-process compilation makes Java
applications more resilient to JVM crashes caused by inter-
mittent software bugs in the JIT compiler. JITServer only
maintains soft state, allowing transparent failure handling:
after a server crash, the client JVM can switch to a different
JITServer instance or compile the method locally (which is un-
likely to trigger the same bug again) and continue execution,
and the failed JITServer instance can be simply restarted.

We assume a security model where the server instance and
all the client JVMs that connect to it are in the same secu-
rity domain: the clients need to trust the server to generate
correct native code. JITServer supports encrypted communi-
cation using OpenSSL. Encryption adds a relatively small but
non-negligible overhead: it increases start time by up to 9%,
warm-up time (to 90% of peak throughput) by up to 5%, and
CPU time used by the JIT by up to 5%. Unencrypted commu-
nication can be used in settings with an isolated network (e.g.
on-premises cloud deployments) to reduce the overhead.

Even if communication is encrypted, remote JIT can po-
tentially introduce side channels for an in-network attacker
that can observe the timing and sizes of messages exchanged
between the server and the client JVMs. However, the same
issue applies to any distributed or client-server application,
and in practice does not prevent their widespread adoption.

3.4 Reusing Dynamically Compiled Code
OpenJ9 is capable of producing relocatable code (aka dy-
namic AOT code) that can be reused in a different JVM in-
stance running on the same machine. It maintains a Shared
Classes Cache (SCC) - a memory-mapped file shared by
JVMs on the same host that stores immutable class meta-
data and dynamic AOT code. These cached methods include
additional metadata that is used to locate and patch pointers to
JVM runtime entities such as RAMClasses (see Section 3.2)

USENIX Association 2022 USENIX Annual Technical Conference 873

residing at different addresses in different JVMs, and to verify
that assumptions (e.g. about class hierarchies) made during
compilation still hold in a different JVM environment.

Dynamic AOT methods refer to SCC entities in their vali-
dation and relocation records by offset within the SCC. While
this approach is very efficient when running on a single ma-
chine, this means that dynamic AOT code cannot be reused
as-is on a different machine (with a different SCC). Since
the order of class loading and dynamic AOT compilations is
not deterministic, SCC entities will generally reside at differ-
ent SCC offsets on another machine, making dynamic AOT
code generated on another machine invalid. The fundamental
source of this problem is the tight coupling of the dynamic
AOT code with the SCC it is stored in. We propose a new
scheme to store these artifacts independently.

Our caching mechanism is based on the existing OpenJ9
infrastructure for relocating dynamically compiled code, but
uses a different way of identifying runtime entities such as
classes across JVMs. Our novel scheme allows us to decouple
compiled code from class metadata and enable its reuse in
any JVM running on any host. We store compiled methods
in a serialized format that refers to JVM runtime entities by
globally unique identifiers instead of SCC offsets. When an-
other client JVM requests a compilation of the same method,
the server replies with a cached serialized version. The client
then deserializes the method by finding the corresponding
runtime entities, and then relocates and loads the native code.

Some compilations (e.g. hot methods at higher optimization
levels) do not use the relocatable format in order to maximize
the performance of generated code, since relocation limits
optimization opportunities. The resulting hit rate in the JIT-
Server cache is 85-93% during the start phase and 68-76%
during warm-up in our experiments, depending on the appli-
cation. In our future work, we will explore compiling more
methods as relocatable code to increase the cache hit rate.

The performance of JIT-compiled code is affected by the
quality of profiling data, leading to a trade-off between com-
piled code reuse and possible performance degradation due
to differences in profiles across the clients. We focus on the
common use case of sharing between instances of the same
application where profiles are likely similar (e.g. horizon-
tal autoscaling, FaaS, data-parallel computation). In other
cases, we expect the effect to be limited since particularly hot
method compilations most affected by conflicting profiles are
not cached and rely on individual clients’ profiles. We plan
to investigate the effect of profiling data variability on the
performance of reused native code in our future work.

3.5 Method Serialization Mechanism
The main building block of dynamic AOT relocations is identi-
fying equivalent classes and methods across JVMs. Examples
include inlining guards (checking an object’s class before ex-
ecuting the inlined body) and calls to other compiled methods.
Such instruction sequences contain addresses of RAMClasses

and methods that need to be patched in a different JVM.
We add another level of indirection to relocatable code by

effectively serializing relocation and validation records. For
each runtime entity they refer to, the server stores a corre-
sponding serialization record with enough information for a
client JVM to find the entity and verify that it is equivalent
to the one used in the original compilation. Each serializa-
tion record also contains the offset from the start of the AOT
method body to the location of the corresponding SCC offset
field stored in the validation or relocation record.

When the server performs a dynamic AOT compilation in
response to a client request, it serializes the compiled method
and stores it in its in-memory cache. Serialized methods are
self-contained and can be persisted to disk and shared across
multiple JITServer instances. In our future work, this will en-
able efficient autoscaling of JITServer resources by launching
new instances with a warm cache persisted from an existing in-
stance. When a different client JVM receives a serialized AOT
method, it iterates through the serialization records, looking
up the corresponding entities and updating the SCC offsets to
them with their local versions. After successful deserializa-
tion, the client proceeds to store the resulting method body in
its local SCC (so that execution environments that do not get
torn down can take advantage of it in the next run), and loads
the method as regular dynamic AOT code.

If any lookups or validity checks fail, deserialization is
aborted and the client JVM requests a regular non-cached
compilation from the server. Deserialization failures occur
infrequently during normal operation: the failure rate for the
applications we used in our evaluation is 1-5% during the
start phase and less than 1% during warm-up. Such failures
happen because the set of classes loaded by the time a method
is compiled varies from run to run, therefore a small number
of lookups fail as the classes have not yet been loaded.

Relocation and validation records can refer to the following
SCC entities: ROMClass - immutable part of class metadata;
ROMMethod - immutable part of method metadata includ-
ing its bytecodes (part of ROMClass); class chain - a list
of ROMClass SCC offsets for classes and interfaces a given
class extends and implements.
Identifying Classes and Methods We identify a class
across JVMs using a combination of its fully-qualified name
and a secure hash (e.g. SHA-256) of the ROMClass. We use
the hash to efficiently check that a client JVM’s version of the
class is the same as the one used during compilation. Since the
ROMClass contains the full description of the class including
the bytecodes of all methods, a matching hash guarantees cor-
rectness. We identify methods by their defining class, name,
and signature (types of parameters and return value).

We use class chains to verify that the whole inheritance
chain of a given class is the same across two JVMs. For
example, if one of the superclasses or interfaces of a given
class is redefined at runtime in the JVM that loads the method,
the class chain will not match, even though the class itself has

874 2022 USENIX Annual Technical Conference USENIX Association

not changed. The serialization record for a class chain is a list
of class serialization records for each class in the chain.

Identifying Class Loaders Since Java classes can be
loaded by application-defined class loaders, a class lookup in
a running JVM requires a class loader (in addition to class
name). We use the following heuristic for class loader identi-
fication: we associate each class with the identity of the first
class loaded by its class loader. While a regular AOT method
refers to a class loader by the class chain of the 1st class that
it loaded, a serialized AOT method refers to it by the name of
the first class that it loaded. We maintain the 3-way mapping
between a class loader and the name and the class chain of the
first class that it loaded, in each client JVM. We update this
mapping at runtime when the JVM loads or unloads classes
and creates or destroys class loaders.

The identification heuristic can fail in edge cases described
below, however, that does not affect the correctness of com-
piled code. While we observed no class loader identification
failures in our evaluation, they are still possible in rare cases.

Assume that in the compilation environment, RAMClass
C1 is the first one loaded by L1. Cached methods that refer
to L1 identify it by the name of C - the ROMClass that C1 is
based on. In the load environment, RAMClass C2’ is the first
one loaded by L2’ - a different class loader, and then later
RAMClass C1’ is the first one loaded by L1’ (the correct class
loader matching the compilation environment) from the same
ROMClass C. As a result, loading a cached method can result
in using a wrong RAMClass (one loaded by the incorrectly
guessed L2’). However, RAMClass pointers are only used
directly in generated code in guards as described above. A
mismatching RAMClass pointer can only affect performance
(execution will take the slow path of making a virtual call)
while correctness is preserved. In other types of relocations,
RAMClass addresses are not present in the native code, and
are only used to verify class chains and locate RAMMethods,
which are shared by both RAMClasses. Another possibility
is that L1’ might load a different class first, and in this case
cached methods that refer to it simply will not be loaded.

JVM Environment Compatibility Each AOT method is
implicitly associated with an AOT header - a data structure
that describes the compilation environment: CPU features,
JVM configuration, etc. Local SCC stores a single instance of
this structure. All JVM instances that store or load AOT code
in the SCC must have a matching configuration. Serialized
AOT methods store the AOT header of the JVM that it was
originally compiled for. To serve a client compilation request
from the cache, the server looks up a serialized method with
a compatible AOT header.

Storage and Transfer Optimizations In order to make the
serialized AOT method representation more compact for op-
timal storage and transfer, we store serialization records at
the server separately from method bodies, and serialized AOT
methods refer to them by unique IDs. When responding to

a client compilation request with a cached serialized AOT
method, the server sends the serialized method body along
with all the serialization records it refers to that the client has
not yet received. In order to reduce network traffic and dese-
rialization overhead, the client caches serialization records
received from the server, and the server keeps track of the
record IDs that are already cached at the client.

The size of a populated JITServer cache of compiled meth-
ods is ~30-130 MB in our experiments depending on the
application, which is smaller than the pre-populated local
SCC (~65-170MB) since the JITServer cache only stores
ROMClass hashes instead of full class metadata. Since the set
of compiled method varies across multiple clients (even run-
ning the same application), the JITServer cache accumulates a
larger number of methods compared to the local SCC which is
only populated once. The cache size can be reduced by prun-
ing the "tail" of less popular methods, e.g. ones that do not
get reused within a certain time period. In our experiments,
7-12% of cached methods were never reused.
End-to-End Example We provide a simple example that
illustrates how a compiled method body is serialized by the
JITServer and later deserialized and loaded by a client JVM.
Consider the following Java code:
a b s t r a c t c l a s s A {

a b s t r a c t vo id m1 () ;
}
c l a s s B e x t e n d s A {

vo id m1 () { . . . }
}

c l a s s C {
s t a t i c vo id m2(A o) {

o . m1 () ; / / i n l i n e d
} / / as B . m1 ()

}

Assume that the JIT has inlined the call to o.m1() in
C.m2() as a devirtualized call to B.m1() as profiling showed
that the runtime class of o is normally B. The inlined body of
B.m1() (see pseudo-assembly below) is preceded by a guard
that checks that the RAMClass of o is indeed B, otherwise it
jumps to the slow path that makes a virtual call.

cmp rax , r amc las s_B ; rax c o n t a i n s RAMClass o f o
j n e s l o w _ p a t h ; ramclass_B i s hard−coded
. . . ; i n l i n e d body o f B.m1 ()

. s l o w _ p a t h : . . . ; v i r t u a l c a l l t o o.m1 ()

Figure 2 illustrates the entities described below. The meta-
data of the dynamically AOT-compiled method C.m2() con-
tains a relocation record for class B that will be used to patch
the RAMClass address in the comparison instruction in the
guard when the method is loaded in another JVM. This record
stores the SCC offset of the class chain for B, and the SCC
offset of the class chain identifying its class loader L. This
identifying class chain is the one for the first class that was
loaded by L. Assume that this class was Object, i.e. L is the
bootstrap class loader. The class chain for B is a list of SCC
offsets of ROMClasses B, A, Object. The class chain iden-
tifying L is a single SCC offset of ROMClass Object. The
SCC offsets are only valid for the client JVM that originally
requested this compilation.

To serialize C.m(), the server creates the following records
corresponding to the relocation record for class B:

USENIX Association 2022 USENIX Annual Technical Conference 875

Serialization records

…

Loader record for B

“Object” - 1st class
loaded by L

Offset to relocation
record field

…

Class chain record B
Offset to relocation

record field
“B”

SHA(B)
“A”

SHA(A)
“Object”

SHA(Object)

AOT method C.m2()

Native code

Metadata

Validation records

Relocation records

Record for B

Off. identifying
loader L

Class chain off.

...

...

Client SCC

…

…

ROMClass Object

ROMClass A

ROMClass B

…

Class chain Object

Offset to Object

Class chain B
Offset to B
Offset to A

Offset to Object

Figure 2: Serialization records for method C.m2()

• Class loader serialization record identifying L by the name
of the first class it loaded - "Object".

• Class chain serialization record for B.
• Class serialization records for B, A, Object. Each record

contains the hash of the ROMClass and its name.
When a different client JVM receives this serialized

method, it performs deserialization as follows:
1. Find the class loader L’ as the one that had a class with

the name "Object" as the first class that it loaded. In this
case it will be the bootstrap class loader.

2. Lookup RAMClass B’ by name "B" in the class loader L’.
3. For each class in the class chain (i.e. B’, A’, Object),

compute the hash of the ROMClass and compare it with
the hash stored in the corresponding serialization record.

4. Update the values of the SCC offset fields in the valida-
tion record. The class chain offset will now point to the
class chain for B’ stored in the local SCC, and the loader
identifying offset will point to the class chain for Object.

Assuming no failures, the method is now deserialized - all
its validation and relocation records point to valid SCC enti-
ties - and can be stored in the local SCC for future reuse. The
client then relocates the method body by patching the RAM-
Class address in the comparison instruction in the inlining
guard so that it points to the RAMClass B’, and installs it in
the JVM code cache. The compiled native code of C.m2()
can now be executed correctly in this JVM.

4 Evaluation

Our evaluation answers the following research questions:
• Is remote JIT compilation efficient without caching?
• How does remote JIT compilation affect start-up and warm-

up times and memory footprint of application instances
with different CPU and memory constraints?

• What is the effect of caching on the overall cluster-wide
resource usage and application density?

• Can remote JIT improve performance if the client JVM
already has a pre-populated local SCC (see Section 2.2)?

• What is the effect of remote JIT and caching on the laten-
cies of compilation requests, compared to local JIT?

Name Framework Database Methods compiled
Start Total

AcmeAir Open Liberty MongoDB ~3,000 ~11,000
DayTrader DB2 ~5,000 ~25,000
PetClinic Spring H2 (in-memory) ~5,000 ~6,000

Table 1: Application benchmarks

Type CPU Memory Storage
A 16-core AMD EPYC 7302P 256 GB 2× NVMe RAID0
B 14-core Intel Xeon E5-2680 128 GB SSD

Table 2: Hardware configuration

• How does caching affect the scalability of JITServer (i.e.
how many clients can it effectively serve at the same time)?

• Does caching allow JITServer to handle higher latency?

Applications We used the following 3 applications in our
experiments: AcmeAir [1] - an airline booking system, Day-
Trader [8] - a stock trading platform, and PetClinic [15] -
an animal hospital information system (the de-facto main
benchmark for the popular Spring framework). All 3 are web
applications; information about them is summarized in Ta-
ble 1. We used Apache JMeter to generate the workload for all
the applications. These applications are multi-tier, end-to-end
benchmarks that are more representative of cloud workloads
than benchmarks like SPECjvm2008 [14], SPECjbb2015 [12],
and SPECjEnterprise2018 [13] typically used for JVM per-
formance evaluation. Individual benchmarks in the SPECjvm
suite are essentially microbenchmarks from the JIT perspec-
tive with a small number of JIT-compiled methods. SPECjbb
and SPECjEnterprise are heavy, long-running (over 2 hours)
workloads unsuitable for analyzing cold start performance.
Moreover, DayTrader is a comprehensive JavaEE benchmark
that uses most of the same technologies as SPECjEnterprise.

Experimental Setup We ran the experiments on a cluster
of 11 machines as described in Table 2: 8 machines of type A
and 3 slightly less powerful machines of type B. All machines
run Ubuntu 18.04 and are connected with a 10 GBit/s Ethernet
network (used in all experiments unless specified otherwise)
and a 100 GBit/s Infiniband network.

Type A machines run the instances of the application, the
database, and the JITServer, while type B machines run JMe-
ter instances (one per application instance) that generate the
load. We use a single JITServer instance running on a ded-
icated machine in all experiments. While co-locating JIT-
Server instances with application JVMs is a viable deploy-
ment option, we evaluate JITServer in the fully remote setting
to show "worst case" performance. Application instances run
in Docker containers with 1 CPU and 1 GB of memory, unless
specified otherwise. This container size is roughly equivalent
to an AWS EC2 t2.micro instance which is commonly used for
modern cloud workloads [3]. The number of JMeter threads is
chosen to saturate the throughput of the application instance.
The number of database instances is chosen for each bench-
mark such that the DB is not a bottleneck. The JVMs are
configured to use the default heap size and GC policy. Each

876 2022 USENIX Annual Technical Conference USENIX Association

XS S M L
AcmeAir cold: Container size

0

10

20

30

St
ar
tt
im

e,
se

c

XS S M L
AcmeAir cold: Container size

0

100

200

W
ar
m
-u
p
tim

e,
se
c

XS S M L
AcmeAir cold: Container size

0

200

400

M
em

or
y
us

ag
e,

M
B

XS S M L
AcmeAir warm: Container size

0

10

20

30

St
ar
tt
im

e,
se
c

Local JIT
Remote JIT
Remote JIT + cache

XS S M L
AcmeAir warm: Container size

0

100

200
W
ar
m
-u
p
tim

e,
se
c

XS S M L
AcmeAir warm: Container size

0

200

400

M
em

or
y
us
ag

e,
M
B

Figure 3: AcmeAir performance: (a) cold; (b) warm

data point is averaged over 5 runs, unless specified otherwise;
the error bars on the graphs represent standard deviation.

We compare application performance in three JIT compila-
tion modes: local; remote without caching, and remote with
caching. Depending on the experiment, we deploy applica-
tion instances without a pre-populated local SCC (cold runs -
default unless specified otherwise), or with an SCC populated
by only starting an application instance (warm-start runs),
or by also applying load to it (warm runs). While JITServer
supports sharing the cache of compiled code across applica-
tions, in this paper we focus on the very common use case of
multiple instances of the same application. We do not com-
pare with static AOT compilation in HotSpot and GraalVM.
Such direct comparison would not be fair since OpenJ9 is a
different JVM, and static AOT only supports a subset of Java.
We are unable to compare against the remote JIT compiler
in [26] since its implementation has not been made available.

4.1 Application Performance and Footprint
We measure how remote JIT compilation (with and without
caching) affects the start-up and warm-up performance and
memory footprint of a JVM instance. We run the applications
in Docker containers of the following sizes: XS (0.5 CPU,
512 MB of memory); S (1 CPU, 1 GB); M (2 CPUs, 2 GB);
and L (4 CPUs, 4 GB). When JITServer cache is enabled, it
is populated by a single run of the application. We define the
performance metrics as follows:
• Memory usage - peak resident set size (RSS) of the JVM.
• Start time - time since the start of the JVM process until

the application is ready to handle client requests.

XS S M L
DayTrader cold: Container size

0

20

40

St
ar
tt
im

e,
se
c

XS S M L
DayTrader cold: Container size

0

500

1000

W
ar
m
-u
p
tim

e,
se
c

XS S M L
DayTrader cold: Container size

0

200

400

600

M
em

or
y
us
ag

e,
M
B

XS S M L
DayTrader warm: Container size

0

20

40

St
ar
tt
im

e,
se
c

Local JIT
Remote JIT
Remote JIT + cache

XS S M L
DayTrader warm: Container size

0

500

1000

W
ar
m
-u
p
tim

e,
se
c

XS S M L
DayTrader warm: Container size

0

200

400

600

M
em

or
y
us
ag

e,
M
B

Figure 4: DayTrader performance: (a) cold; (b) warm

• Warm-up time - time from the moment the load is applied
until the application reaches 90% of its peak throughput.

Figures 3(a), 4(a), and 5(a) show results for cold runs of
AcmeAir, DayTrader, and PetClinic respectively. Remote JIT
without caching reduces memory footprint by up to 68%, start
time by up to 40%, and warm-up time by up to 80% compared
to local JIT. The addition of caching reduces start and warm-
up times even further (especially for smaller container sizes
since they have less CPU available for local JIT): by up to
58% and 87% for start and warm-up respectively. There is still
a non-negligible number of compilations (including heavy
recompilations at high optimization levels) during warm-up
that are not served from the JITServer cache: 24-32% depend-
ing on the application, compared to only 7-15% during the
start phase. As a result, the effect of caching on warm-up time
is relatively smaller compared to start time.

Figures 3(b), 4(b), and 5(b) present results for warm runs
where the local SCC is pre-populated by a previous full run of
the application. JITServer still significantly reduces warm-up
time (up to 79%) and peak memory footprint (up to 61%), but
has no effect on start time since almost all methods compiled
during start-up are stored in the SCC and thus do not need to
be compiled in a warm run.

Remote JIT with caching is more effective than only using
a pre-populated SCC for reducing memory usage and warm-
up time. Moreover, these improvements come "for free" as
JITServer caching is transparent for the application developer,
unlike using the SCC (see section 2.2). Besides, these results
represent the advanced and most optimal way to use the SCC
which requires very significant developer effort and is rarely

USENIX Association 2022 USENIX Annual Technical Conference 877

XS S M L
PetClinic cold: Container size

0

20

40

St
ar
tt
im

e,
se

c

XS S M L
PetClinic cold: Container size

0

50

100

W
ar
m
-u
p
tim

e,
se
c

XS S M L
PetClinic cold: Container size

0

200

400

600

M
em

or
y
us

ag
e,

M
B

XS S M L
PetClinic warm: Container size

0

20

40

St
ar
tt
im

e,
se

c

Local JIT
Remote JIT
Remote JIT + cache

XS S M L
PetClinic warm: Container size

0

50

100
W
ar
m
-u
p
tim

e,
se
c

XS S M L
PetClinic warm: Container size

0

200

400

600

M
em

or
y
us
ag

e,
M
B

Figure 5: PetClinic performance: (a) cold; (b) warm

done in practice. Caching (local or remote) does not eliminate
the need for a JIT compiler. Remote JIT compilation is still a
win even with a pre-populated SCC as not all compilations
can be cached, and JITServer can make better use of resources,
reducing CPU contention and memory footprint.

Application instances reach equivalent peak throughput
with local and remote JIT in all the experiments, which is
expected since JITServer uses the same set of optimizations
and heuristics as the local JIT compiler. The reduction in start
and warm-up times is due to the higher degree of parallelism
of JIT compilations since the server runs on an additional
machine. Arguably, these results do not represent a fair com-
parison to local JIT as the extra CPU and memory resources
used by the JITServer could be used to run other application
JVMs instead. In the next subsection we consider overall
system-wide resource usage, including the JITServer itself.

4.2 Overall System Efficiency
We evaluate the effect of remote JIT compilation (with and
without caching) on the system-wide resource usage by emu-
lating a cloud deployment where many application instances
are brought up and down over a 1 hour period. 64 applica-
tion slots (one per CPU) are spread evenly across 4 machines.
Each slot is used to run a sequence of application instances
that execute for a fixed duration (2, 5, or 10 minutes) and stop
to be replaced by the next instance. The starting moments of
the sequences are staggered with a 10 second interval. We run
a single JITServer instance on a separate machine in remote
JIT experiments. Each experiment is repeated 3 times.

Figure 6 shows total CPU cost and memory usage (lower

is better) in cold runs. We define CPU cost (measured in
milliseconds per request) as the amount of total CPU time
used by all JVM instances and the JITServer, divided by the
number of JMeter requests served (i.e. useful work done) by
all application instances. We use total CPU time instead of e.g.
aggregate throughput to account for the fact that the JITServer
runs on an additional machine that could be used to run more
application instances. Total memory usage includes the peak
RSS of the the JITServer and all concurrent JVM instances.

Remote compilation without caching results in up to 21%
increase in CPU cost compared to local JIT. On the other hand,
caching compiled code at the server effectively amortizes
the CPU cost over many clients and results in up to 77%
reduction compared to local JIT. The effect is larger for shorter
application lifespans since the start-up and warm-up phases
with high JIT activity take a bigger portion of the run time. We
expect application run times in the cloud to be on the lower
end. The CPU cost improvements for PetClinic are relatively
smaller since it has fewer methods compiled during warm-
up (see Table 1). Remote JIT with caching also significantly
reduced start times in these experiments - by 32-58%.

Remote JIT delivers benefits in terms of memory footprint:
it reduces total memory usage by up to 62% compared to local
JIT compilation. Peak total memory footprint is smaller with
JITServer because memory usage spikes caused by heavy
compilations from multiple clients are unlikely to align at the
server. The 2-minute DayTrader runs are the exception; the
extra memory footprint is due to faster heap expansion caused
by higher allocation rates since the application reaches higher
throughput compared to other JIT compilation modes.

The results for warm-start runs (with a pre-populated SCC)
are shown in Figure 7. Remote JIT without caching can still
have higher CPU cost (e.g. by 9% for 2-minute PetClinic
runs) than local JIT with SCC, while JITServer with caching
matches or surpasses the performance of local JIT with SCC.
Remote JIT still achieves lower (by up to 45%) total memory
usage. JITServer not only achieves better resource utilization
than using a pre-populated local SCC, but does it transpar-
ently without the additional developer effort associated with
managing the SCC (see Section 2.2). The two approaches can
be combined, in which case adding JITServer reduces CPU
cost by up to 53% compared to local JIT.

The main implication of these results for cloud computing
is that remote JIT with caching allows to increase application
density, even after accounting for the resources used by the
JITServer. We can fit more application instances into the same
amount of hardware resources since each instance requires
less memory and uses the CPU cycles to do more useful
computation. With caching, JITServer does not simply move
the overhead around - it uses the resources more efficiently.

4.3 Compilation Request Latencies
We measure two compilation latency metrics: (i) compilation
time taken to serve the request either locally or remotely, and

878 2022 USENIX Annual Technical Conference USENIX Association

2 min 5 min 10 min
AcmeAir: Application lifespan

0.0

0.5

1.0

1.5

CP
U

co
st
,m

se
c/
re
q

2 min 5 min 10 min
AcmeAir: Application lifespan

0

10

20

30

To
ta
lm

em
.u

sa
ge

,G
B

2 min 5 min 10 min
DayTrader: Application lifespan

0

5

10

15

CP
U
co

st
,m

se
c/
re
q Local JIT

Remote JIT
Remote JIT + cache

2 min 5 min 10 min
DayTrader: Application lifespan

0

10

20

30

40
To
ta
lm

em
.u

sa
ge

,G
B

2 min 5 min 10 min
PetClinic: Application lifespan

0.0

0.1

0.2

0.3

CP
U

co
st
,m

se
c/
re
q

2 min 5 min 10 min
PetClinic: Application lifespan

0

5

10

15

20

To
ta
lm

em
.u

sa
ge

,G
B

Figure 6: Overall efficiency in cold runs (lower is better)

(ii) total queuing time - from the moment the compilation
is first scheduled by the JVM (e.g. the method reached its
invocation threshold) until its completion. Figure 8 shows the
resulting CDF (using a logarithmic scale on the X axis) for
the AcmeAir benchmark when the JITServer is given all the
resources of its host. Figure 9 represents the configuration
with equal CPU resources: 2 CPUs for local JIT, and 1 CPU
each for the JITServer and the client JVM. The results for
other benchmarks are very similar and thus omitted.

The results show that individual remote compilations take
longer than the local ones, unless the JITServer has more CPU
resources. In the latter case, longer (more CPU-intensive)
compilations take less time at the JITServer thanks to ample
CPU resources, while cheaper compilations take longer than
locally - their latency is dominated by communication. Total
queuing times are still shorter than with local JIT even with
limited JITServer CPU due to increased parallelism: the CPU
work is overlayed with waiting for the network. Caching com-
piled code at the JITServer dramatically reduces compilation
request latencies, thanks to the 68-76% cache hit rate.

4.4 Scalability
In order to determine how caching affects JITServer perfor-
mance with an increasing number of clients, we run a variable
number - between 1 and 64 (80 for PetClinic) - of application
instances that use the same JITServer instance. Application
JVMs start simultaneously and without a pre-populated local
SCC, in order to maximize the load on the server. We mea-
sure the full warm-up time (sum of start and warm-up times)
averaged over all concurrent JVM instances. Remote JIT is

2 min 5 min 10 min
AcmeAir: Application lifespan

0.0

0.5

1.0

1.5

CP
U

co
st
,m

se
c/
re
q

2 min 5 min 10 min
AcmeAir: Application lifespan

0

10

20

30

To
ta
lm

em
.u

sa
ge

,G
B

2 min 5 min 10 min
DayTrader: Application lifespan

0

5

10

15

CP
U
co

st
,m

se
c/
re
q Local JIT

Remote JIT
Remote JIT + cache

2 min 5 min 10 min
DayTrader: Application lifespan

0

10

20

30

40

To
ta
lm

em
.u

sa
ge

,G
B

2 min 5 min 10 min
PetClinic: Application lifespan

0.0

0.1

0.2

0.3

CP
U

co
st
,m

se
c/
re
q

2 min 5 min 10 min
PetClinic: Application lifespan

0

5

10

15

20

To
ta
lm

em
.u

sa
ge

,G
B

Figure 7: Overall efficiency in warm-start runs (lower is better)

more efficient than local for a given number of clients only
if the full warm-up time is lower. When the server becomes
overloaded, the clients accumulate a backlog of compilation
requests, which results in slower warm-up.

Figure 10 shows the full warm-up times for each number
of instances (normalized to the local JIT configuration). We
see that JITServer caching dramatically improves scalability:
given the same amount of resources available to the server
instance, it can sustain load from a larger number of clients,
while improving their start-up and warm-up performance. The
cost of JIT compilation is reduced and effectively amortized
over a large number of concurrent clients by avoiding the
majority of repeated compilations with caching.

These results represent JITServer performance in a worst
case scenario. In a real deployment, we expect client JVM
starts to be staggered, providing more opportunities for sta-
tistical multiplexing, which in turn should allow JITServer
to handle an even larger number of clients without saturat-
ing. Additional JITServer instances can be brought up on
demand, allowing linear horizontal scaling since JITServer
only maintains soft state - the cache of compiled methods.

4.5 Effect of Network Latency
To determine how caching affects JITServer performance
with increasing network latency, we run a single application
instance with varying values of round-trip network latency
between the client JVM and the JITServer. We measure the
full warm-up time (start + warm-up) and compare it with
using local JIT compilation: remote compilation improves
performance if it results in faster warm-up. As latency grows,

USENIX Association 2022 USENIX Annual Technical Conference 879

10
−1 10

1
10

3

Compilation time, ms (log scale)

0.00

0.25

0.50

0.75

1.00

CD
F

10
0

10
2

10
4

Total queuing time, ms (log scale)

0.00

0.25

0.50

0.75

1.00

CD
F

Local JIT
Remote JIT
Remote JIT + cache

Figure 8: Compilation latencies: unlimited JITServer resources

10
−1 10

1
10

3

Compilation time, ms (log scale)

0.00

0.25

0.50

0.75

1.00

CD
F

10
0

10
2

10
4

Total queuing time, ms (log scale)

0.00

0.25

0.50

0.75

1.00
CD

F
Local JIT
Remote JIT
Remote JIT + cache

Figure 9: Compilation latencies: equal JIT CPU resources

each compilation request takes more time, and the server
eventually becomes unable to compile methods faster than
the local JIT compiler. We used the 100 Gbit/s Infiniband
network for the smallest latency value - 15 microseconds. The
10 Gbit/s Ethernet network has a latency of 45 microseconds.
We emulate the additional latency for subsequent data points
using the netem module in the Linux kernel.

Figure 11 shows the results for latencies up to over 8 mil-
liseconds. We can see that caching allows JITServer to toler-
ate higher network latencies (~4-8 ms, compared to ~2-4 ms
without caching) since cache hits only incur a single round-
trip. Caching compiled code reduces the average number of
messages per compiled method by ~54% (from ~42-47 to
~19-22 depending on the application), and the total amount
of data transferred per client by ~30% (from ~190-800 MB to
~140-580 MB depending on the application). On the other end
of the spectrum, bringing the latency down to microseconds
only slightly improves performance. JITServer performs very
well for latencies in the hundreds of microseconds which are
typical in cloud datacenters. Performance in high-latency sce-
narios can be further improved by increasing the maximum
number of client compilation threads (see Section 3.1). In our
future work, we plan to investigate using remote JIT compila-
tion in high-latency environments such as edge computing.
Summary of Results Our evaluation shows that:
• Remote JIT cannot be fully efficient without caching - it

often increases total system-wide CPU cost (by up to 21%).
• Caching compiled code allows JITServer to reduce cluster-

wide resource usage (by up to 77% for CPU and up to 62%
for memory) and increase application density.

• JITServer significantly reduces application start-up and
warm-up times (by up to 58% and 87% respectively) and
memory footprint, especially in smaller containers.

• Caching dramatically improves JITServer scalability and
allows it to effectively handle more concurrent clients and
tolerate significantly higher network latency (up to 8 ms).

0 20 40 60
AcmeAir: Number of instances

0.00

0.25

0.50

0.75

1.00

1.25

Fu
ll
w
ar
m
-u
p
tim

e

0 20 40 60
DayTrader: Number of instances

0.00

0.25

0.50

0.75

1.00

Fu
ll
w
ar
m
-u
p
tim

e

0 20 40 60 80
PetClinic: Number of instances

0.00

0.25

0.50

0.75

1.00

Fu
ll
w
ar
m
-u
p
tim

e

Local JIT
Remote JIT
Remote JIT + cache

Figure 10: Scalability
(lower is better)

0 2000 4000 6000 8000
AcmeAir: Latency, microsec

0

100

200

Fu
ll
w
ar
m
up

tim
e,

se
c

0 2000 4000 6000 8000
DayTrader: Latency, microsec

0

200

400

Fu
ll
w
ar
m
up

tim
e,

se
c

0 2000 4000 6000 8000
PetClinic: Latency, microsec

0

50

100

Fu
ll
w
ar
m
up

tim
e,

se
c

Local JIT
Remote JIT
Remote JIT + cache

Figure 11: Effect of network
latency

5 Conclusion and Future Work

In this paper we explored JIT compiler disaggregation as a
means to improve the performance and memory utilization
of JVMs running in the cloud. We described JITServer, our
disaggregated JIT compiler implementation in a production
grade JVM, which supports the caching and reuse of compiled
code across JVMs running on different hosts, and effectively
amortizes JIT compilation costs over many client JVMs.

The experimental results showed excellent improvements
in start-up time, warm-up time and memory footprint: JIT-
Server is able to speed-up JVM start-up by as much as 58%
and to reduce warm-up times by up to 87%, without a degra-
dation in peak throughput. Moreover, the overall system-wide
peak memory footprint is reduced by up to 62%, which should
make it possible to reduce operational costs by increasing ap-
plication density. Caching and reusing compiled code allows
JITServer to reduce overall CPU cost by up to 77%, showing
that JITServer enables cloud users to do more useful compu-
tation with less resources.

Our future work will explore prefetching of server-cached
code and predicting hot methods to hide compilation latency
and further reduce cold start times. We will study the trade-
off between the performance of relocatable code and the JIT-
Server cache hit rate. We will investigate ways to improve
the JIT compiler in the disaggregated setting, e.g. utilizing
profiling data from many clients, efficiently sharing compiled
code across applications, and automatically sizing and scaling
compilation resources. We plan to apply JITServer to other
workloads such as FaaS, microservices, and data analytics.

880 2022 USENIX Annual Technical Conference USENIX Association

A Artifact Appendix

Abstract
We provide the open source implementation of JITServer
(as part of the OpenJ9 project), as well as the automated
benchmarking platform that we used in our experimental
evaluation. Our results have been successfully reproduced in
artifact evaluation.

Scope
Our artifact can be used to run all the experiments described
in Section 4 in order to validate the main claims in our paper,
most importantly:
• JITServer can reduce application start time and warm-up

time and system-wide CPU and memory usage for JVM-
based applications running in containers with limited re-
sources (which are common in the cloud).

• Caching dynamically compiled code at the JITServer is
necessary to fully achieve the reduction in overall CPU
usage and application start time.
Note that the experimental results are expected to be

slightly different from the ones reported in this paper (even
on the same hardware) since the OpenJ9 implementation has
evolved since we conducted those experiments. However, the
main conclusions should still hold.

Contents
The artifact consists of two parts:
1. The open source implementation of our system, which

has been contributed to the OpenJ9 project. JITServer is
implemented in ~25 KLOC of C++. The code is integrated
into the rest of the OpenJ9 code base.

2. A set of scripts (Python, shell scripts, and Docker files)
that automate the benchmark runs used in our evaluation
and generate the resulting graphs. We also provide the logs
generated by running the full set of experiments reported
in this paper.

Hosting
All the parts of our artifact are open source and are hosted on
GitHub. The OpenJ9 code base (including JITServer) is split
across three separate repositories:
• Eclipse OpenJ9:
https://github.com/eclipse-openj9/openj9;

• Eclipse OMR: https://github.com/eclipse/omr;
• OpenJDK extensions for OpenJ9 (we used JDK 8 in our ex-

periments; newer JDK versions are also available): https:
//github.com/ibmruntimes/openj9-openjdk-jdk8.
The source code of our automated benchmarking platform

is available at https://github.com/AlexeyKhrabrov/
jitserver-benchmarks

Stable forks or branches of these repositories based on the
0.32.0 OpenJ9 release (with minor changes required by our

benchmarking platform, e.g. collecting additional statistics)
that were used for artifact evaluation are available as follows:
• OpenJ9:
https://github.com/AlexeyKhrabrov/openj9/
tree/atc22ae (commit 724db2932e5f0abb);

• OMR: https://github.com/AlexeyKhrabrov/omr/
tree/atc22ae (commit ab24b66665961405);

• JDK: https://github.com/AlexeyKhrabrov/openj9-
openjdk-jdk8/tree/atc22ae
(commit 0b8b8af39a5f1f2f);

• Benchmarks: https://github.com/AlexeyKhrabrov/
jitserver-benchmarks/tree/atc22ae
(commit 8360d90b89744ad1)

Requirements
While JITServer supports a wide range of Linux platforms,
our benchmarking setup assumes Ubuntu 18.04 as the OS. It
should be possible (although not necessarily easy) to tweak it
to work on other Linux distributions. Newer Ubuntu versions
might require downgrading to an older GCC version (OpenJ9
currently officially supports GCC 7, but should also support
GCC 10). Different Linux distributions will need more tweaks,
namely different ways of installing prerequisite packages.

Running the largest experiments reported in this paper re-
quires a cluster of 11 machines with 16 CPU cores each,
connected with a 10 Gbit/s network (or at least 1 Gbit/s) with
round-trip latency between machines in the low hundreds of
microseconds or less. Alternatively, the experiments can be
run in a public cloud such as AWS on a cluster of virtual
instances with roughly equivalent resources. The benchmark
setup requires sudo permissions on all the machines. The
required amount of storage space is approximately 30 GB on
each node (not including the OS).

The hardware and software environment that we used in
the experimental setup in our evaluation is described briefly
in Section 4 and in more detail in the README document:
https://github.com/AlexeyKhrabrov/jitserver-
benchmarks/tree/atc22ae#environment-used-in-
our-evaluation.

Usage
Detailed instructions describing how to set up and run the
benchmarks and generate the results can be found in the
README of the artifact repository: https://github.com/
AlexeyKhrabrov/jitserver-benchmarks

Acknowledgements

We thank the anonymous reviewers and the shepherd for their
feedback that helped us improve the paper, as well as the
anonymous AEC members for their help in identifying and
resolving issues in our artifact submission. We are grateful to
the OpenJ9 developer community for their help in contributing

USENIX Association 2022 USENIX Annual Technical Conference 881

https://github.com/eclipse-openj9/openj9
https://github.com/eclipse/omr
https://github.com/ibmruntimes/openj9-openjdk-jdk8
https://github.com/ibmruntimes/openj9-openjdk-jdk8
https://github.com/AlexeyKhrabrov/jitserver-benchmarks
https://github.com/AlexeyKhrabrov/jitserver-benchmarks
https://github.com/AlexeyKhrabrov/openj9/tree/atc22ae
https://github.com/AlexeyKhrabrov/openj9/tree/atc22ae
https://github.com/AlexeyKhrabrov/omr/tree/atc22ae
https://github.com/AlexeyKhrabrov/omr/tree/atc22ae
https://github.com/AlexeyKhrabrov/openj9-openjdk-jdk8/tree/atc22ae
https://github.com/AlexeyKhrabrov/openj9-openjdk-jdk8/tree/atc22ae
https://github.com/AlexeyKhrabrov/jitserver-benchmarks/tree/atc22ae
https://github.com/AlexeyKhrabrov/jitserver-benchmarks/tree/atc22ae
https://github.com/AlexeyKhrabrov/jitserver-benchmarks/tree/atc22ae#environment-used-in-our-evaluation
https://github.com/AlexeyKhrabrov/jitserver-benchmarks/tree/atc22ae#environment-used-in-our-evaluation
https://github.com/AlexeyKhrabrov/jitserver-benchmarks/tree/atc22ae#environment-used-in-our-evaluation
https://github.com/AlexeyKhrabrov/jitserver-benchmarks
https://github.com/AlexeyKhrabrov/jitserver-benchmarks

our code to the OpenJ9 project. This research was supported
in part by IBM CAS Canada and an NSERC CRD grant.

References

[1] AcmeAir sample and benchmark. https://github.
com/blueperf/acmeair-monolithic-java.

[2] AdoptOpenJDK OpenJ9 official image - Docker Hub.
https://hub.docker.com/_/adoptopenjdk.

[3] Amazon EC2 T2 instances. https://aws.amazon.
com/ec2/instance-types/t2/.

[4] Apache OpenWhisk runtimes for Java. https://
github.com/apache/openwhisk-runtime-java.

[5] Azul cloud native compiler. https://www.azul.com/
products/intelligence-cloud/cloud-native-
compiler/.

[6] Eclipse OpenJ9. https://www.eclipse.org/
openj9/.

[7] GraalVM native image. https://www.graalvm.org/
reference-manual/native-image/.

[8] Java EE7: DayTrader7 sample. https://github.com/
wasdev/sample.daytrader7.

[9] JEP 295: Ahead-of-time compilation. https://
openjdk.java.net/jeps/295.

[10] JEP 410: Remove the experimental AOT and JIT com-
piler. https://openjdk.java.net/jeps/410.

[11] Open Liberty official image - Docker Hub. https://
hub.docker.com/_/open-liberty.

[12] SPECjbb2015 benchmark. https://www.spec.org/
jbb2015/.

[13] SPECjEnterprise2018 Web Profile benchmark. https:
//www.spec.org/jEnterprise2018web/.

[14] SPECjvm2008 benchmark. https://www.spec.org/
jvm2008/.

[15] Spring PetClinic sample application. https://github.
com/spring-projects/spring-petclinic.

[16] D. Bhattacharya, K. B. Kent, E. Aubanel, D. Heidinga,
P. Shipton, and A. Micic. Improving the performance of
JVM startup using the shared class cache. In 2017 IEEE
Pacific Rim Conference on Communications, Computers
and Signal Processing (PACRIM), PACRIM, pages 1–6,
2017.

[17] Guangyu Chen, Byung-Tae Kang, Mahmut Kandemir,
Narayanan Vijaykrishnan, Mary Jane Irwin, and Ra-
jarathnam Chandramouli. Studying energy trade offs
in offloading computation/compilation in Java-enabled
mobile devices. IEEE Trans. Parallel Distrib. Syst.,
15(9):795–809, September 2004.

[18] Guilin Chen, Byung-Tae Kang, Mahmut T. Kandemir,
Narayanan Vijaykrishnan, Mary Jane Irwin, and Ra-
jarathnam Chandramouli. Energy-aware compilation
and execution in Java-enabled mobile devices. In 17th
International Parallel and Distributed Processing Sym-
posium (IPDPS 2003), 22-26 April 2003, Nice, France,
CD-ROM/Abstracts Proceedings, page 34. IEEE Com-
puter Society, 2003.

[19] Ben Corrie and Hang Shao. Class sharing in Eclipse
OpenJ9. https://developer.ibm.com/tutorials/
j-class-sharing-openj9/, 2018.

[20] Grzegorz Czajkowski, Laurent Daynès, and Nathaniel
Nystrom. Code sharing among virtual machines. In Pro-
ceedings of the 16th European Conference on Object-
Oriented Programming, ECOOP ’02, page 155–177,
Berlin, Heidelberg, 2002. Springer-Verlag.

[21] Bertrand Delsart, Vania Joloboff, and Eric Paire. JCOD:
A lightweight modular compilation technology for em-
bedded Java. In Proceedings of the Second International
Conference on Embedded Software, EMSOFT ’02, page
197–212, Berlin, Heidelberg, 2002. Springer-Verlag.

[22] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu
Yan, Chenggang Qin, Qixuan Wu, and Haibo Chen. Cat-
alyzer: Sub-millisecond startup for serverless computing
with initialization-less booting. In Proceedings of the
Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’20, page 467–481, New York, NY,
USA, 2020. Association for Computing Machinery.

[23] Vojislav Dukic, Rodrigo Bruno, Ankit Singla, and Gus-
tavo Alonso. Photons: Lambdas on a diet. In Proceed-
ings of the 11th ACM Symposium on Cloud Computing,
SoCC ’20, page 45–59, New York, NY, USA, 2020. As-
sociation for Computing Machinery.

[24] Kiyokuni Kawachiya, Kazunori Ogata, Daniel Silva,
Tamiya Onodera, Hideaki Komatsu, and Toshio
Nakatani. Cloneable JVM: A new approach to start
isolated Java applications faster. In Proceedings of
the 3rd International Conference on Virtual Execution
Environments, VEE ’07, pages 1–11, New York, NY,
USA, 2007. ACM.

882 2022 USENIX Annual Technical Conference USENIX Association

https://github.com/blueperf/acmeair-monolithic-java
https://github.com/blueperf/acmeair-monolithic-java
https://hub.docker.com/_/adoptopenjdk
https://aws.amazon.com/ec2/instance-types/t2/
https://aws.amazon.com/ec2/instance-types/t2/
https://github.com/apache/openwhisk-runtime-java
https://github.com/apache/openwhisk-runtime-java
https://www.azul.com/products/intelligence-cloud/cloud-native-compiler/
https://www.azul.com/products/intelligence-cloud/cloud-native-compiler/
https://www.azul.com/products/intelligence-cloud/cloud-native-compiler/
https://www.eclipse.org/openj9/
https://www.eclipse.org/openj9/
https://www.graalvm.org/reference-manual/native-image/
https://www.graalvm.org/reference-manual/native-image/
https://github.com/wasdev/sample.daytrader7
https://github.com/wasdev/sample.daytrader7
https://openjdk.java.net/jeps/295
https://openjdk.java.net/jeps/295
https://openjdk.java.net/jeps/410
https://hub.docker.com/_/open-liberty
https://hub.docker.com/_/open-liberty
https://www.spec.org/jbb2015/
https://www.spec.org/jbb2015/
https://www.spec.org/jEnterprise2018web/
https://www.spec.org/jEnterprise2018web/
https://www.spec.org/jvm2008/
https://www.spec.org/jvm2008/
https://github.com/spring-projects/spring-petclinic
https://github.com/spring-projects/spring-petclinic
https://developer.ibm.com/tutorials/j-class-sharing-openj9/
https://developer.ibm.com/tutorials/j-class-sharing-openj9/

[25] Joel Koshy, Ingwar Wirjawan, Raju Pandey, and Yann
Ramin. Balancing computation and communication
costs: The case for hybrid execution in sensor networks.
Ad Hoc Networks, 6(8):1185–1200, 2008.

[26] Han B. Lee, Amer Diwan, and J. Eliot B. Moss. Design,
implementation, and evaluation of a compilation server.
ACM Trans. Program. Lang. Syst., 29(4):18–es, August
2007.

[27] David Lion, Adrian Chiu, Hailong Sun, Xin Zhuang,
Nikola Grcevski, and Ding Yuan. Don’t get caught in
the cold, warm-up your JVM: Understand and eliminate
JVM warm-up overhead in data-parallel systems. In
Proceedings of the 12th USENIX Conference on Oper-
ating Systems Design and Implementation, OSDI’16,
pages 383–400, Berkeley, CA, USA, 2016. USENIX
Association.

[28] Matt Newsome and Des Watson. Proxy compilation of
dynamically loaded Java classes with MoJo. In Proceed-
ings of the Joint Conference on Languages, Compilers
and Tools for Embedded Systems: Software and Compil-
ers for Embedded Systems, LCTES/SCOPES ’02, page
204–212, New York, NY, USA, 2002. Association for
Computing Machinery.

[29] Radu Teodorescu and Raju Pandey. Using JIT com-
pilation and configurable runtime systems for efficient
deployment of Java programs on ubiquitous devices.
In Proceedings of the 3rd International Conference
on Ubiquitous Computing, UbiComp ’01, page 76–95,
Berlin, Heidelberg, 2001. Springer-Verlag.

[30] Kai-Ting Amy Wang, Rayson Ho, and Peng Wu. Re-
playable execution optimized for page sharing for a
managed runtime environment. In Proceedings of the
Fourteenth EuroSys Conference 2019, EuroSys ’19, New
York, NY, USA, 2019. Association for Computing Ma-
chinery.

[31] Christian Wimmer, Codrut Stancu, Peter Hofer, Vojin Jo-
vanovic, Paul Wögerer, Peter B. Kessler, Oleg Pliss, and
Thomas Würthinger. Initialize once, start fast: Applica-
tion initialization at build time. Proc. ACM Program.
Lang., 3(OOPSLA):184:1–184:29, October 2019.

[32] Xiaoran Xu, Keith Cooper, Jacob Brock, Yan Zhang, and
Handong Ye. ShareJIT: JIT code cache sharing across
processes and its practical implementation. Proc. ACM
Program. Lang., 2(OOPSLA):124:1–124:23, October
2018.

USENIX Association 2022 USENIX Annual Technical Conference 883

	Introduction
	Motivation and Related Work
	Static AOT Compilation in the JVM
	Sharing Compiled Code between JVMs
	Checkpointing and Reusing JVM Processes
	Remote JIT Compilation

	Design and Implementation
	Remote Compilation Mechanism
	Caching JVM Runtime Information
	Reliability and Security
	Reusing Dynamically Compiled Code
	Method Serialization Mechanism

	Evaluation
	Application Performance and Footprint
	Overall System Efficiency
	Compilation Request Latencies
	Scalability
	Effect of Network Latency

	Conclusion and Future Work
	Artifact Appendix

