
Shepherd: Seamless Stream Processing on the Edge
Brian Ramprasad∗, Pritish Mishra∗, Myles Thiessen∗, Hongkai Chen∗, Alexandre da Silva Veith∗, Moshe Gabel∗

Oana Balmau†, Abelard Chow‡, Eyal de Lara∗

‡Huawei abelard.chow@huawei.com
†McGill University oana.balmau@cs.mcgill.ca

∗University of Toronto {brianr,pritish,mthiessen,chk,aveith,mgabel,delara}@cs.toronto.edu

Abstract—Next generation applications such as augmented/vir-
tual reality, autonomous driving, and Industry 4.0, have tight
latency constraints and produce large amounts of data. To
address the real-time nature and high bandwidth usage of
new applications, edge computing provides an extension to the
cloud infrastructure through a hierarchy of datacenters located
between the edge devices and the cloud.

Outside of the cloud and closer to the edge, the network
becomes more dynamic requiring stream processing frameworks
to adapt more frequently. Cloud based frameworks adapt very
slowly because they employ a stop-the-world approach and it can
take several minutes to reconfigure jobs resulting in downtime.

In this paper, we propose Shepherd, a new stream processing
framework for edge computing. Shepherd minimizes downtime
during application reconfiguration, with almost no impact on
data processing latency. Our experiments show that, compared
to Apache Storm, Shepherd reduces application downtime from
several minutes to a few tens of milliseconds.

Index Terms—stream processing, reconfiguration, late binding,
hierarchical edge computing, seamless

I. INTRODUCTION

Next generation applications such as autonomous driv-
ing, augmented/virtual reality, smart technologies, interactive
games, and Industry 4.0 produce massive scales of data that
must be analyzed in a timely fashion [1]. Stream processing
frameworks are often used to address this need [2].

Stream processing applications are often structured as a
dataflow graph. Vertices can be sources that generate streams
of data tuples, or operators that execute a function over
incoming data streams. Sinks, are a special type of vertices that
consume the processed data but are terminal and represent the
end of the flow. Traditionally, all application components are
placed in the cloud to take advantage of powerful datacenters.
Unfortunately, this approach is not compatible with next
generation applications, since sending data over wide-area
links to the cloud results in high bandwidth usage and high
application latency.

Edge computing expands cloud computing with a hierarchy
of computational resources located along the path between
the edge and the cloud [1], [3]. In this paper, we argue
that efficient use of edge computing for stream processing
requires support for seamless reconfiguration and deploy-
ment of application operators without disrupting application
execution. In particular, throughput should be stable, and
latency should not spike during the reconfiguration. Seamless
reconfiguration is required to enable efficient resource sharing

F O A
Cloud

City 1 City 2 City 3

Region 1 Region 2

(a) (b) F O A

F1

(c) F O A (d) F O A

F1

F2 F2 F3

Fig. 1. Seamless Reconfiguration: A video analytics service is dynamically
reconfigured to adapt to the change in workload at the edge of the network.
This makes more efficient use of the network by reducing the number of video
frames transmitted over the WAN.

between applications running on edge datacenters. The smaller
size of an edge datacenter, leads to higher costs for storage and
computation relative to the cloud (e.g., AWS Wavelength [4]
is 40% more expensive than EC2). It is therefore impractical
(and may not be even possible due to limited resources) to run
all applications continuously on the edge.

Figure 1 illustrates the benefits of dynamic reconfiguration
for an application running on a hierarchy of edge datacenters
with three levels: cloud, region, and city. The application
provides analytics about traffic on city roads by performing
object detection on video frames produced by a network of
motion-activated street cameras. The application consists of a
sequence of three operators: [F], a frame filter operator that
removes frames that do not significantly change compared
to the previous frame; [O], an object detector operator; and
finally, [A], an aggregation operator that computes statistics.

Initially, all operators are deployed on the cloud as the
number of active cameras is small, and the network cost of
transmitting the raw images to the cloud is low (Figure 1a). As
more cameras become active in cities [1,2] located in Region
1, network traffic grows and it becomes more cost-effective to
filter frames closer to the source by deploying operator [F1]

40

2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)

978-1-6654-8611-8/22/$31.00 ©2022 IEEE
DOI 10.1109/SEC54971.2022.00011

in Region 1 (Figure 1b). The original [F] operator continues
to run in the cloud, where it processes traffic from Region
2. Similarly, operators [O] and [A] are not replicated and
continue to run only on the cloud. Operator [O] is CPU
intensive and benefits from the cheaper cloud cycles. Operator
[A] aggregates data across regions and has to run on the cloud,
where it has a global view. As traffic continues to grow in
City 1, the application adapts by creating a new replica of the
operator [F2] in this city (Figure 1c). This process is repeated
with the creation of [F3] as more cameras become active in
City 2. Finally, the [F1] operator in Region 1 is removed as
it no longer necessary (Figure 1d).

State-of-the-art frameworks, such as Apache Flink [5],
Apache Spark [6], and Apache Storm [7] do not support
seamless application reconfiguration. These frameworks were
designed to run on the cloud, where application reconfiguration
is rare. It is therefore not surprising that reconfiguration in
these frameworks is implemented as a high-latency, system-
wide stop-the-world event that involves expensive coordi-
nation, often in the form of a global barrier. Global co-
ordination is required because these frameworks use early-
binding routing, where upstream and downstream operators
have direct socket connections. Our experiments show that
even for a small deployment of a few nodes, the stoppage
time (the interval where the application stops processing data)
is measured in tens of seconds and grows with the size of
the deployment. Such an approach is incompatible with edge
applications, which often have real-time requirements and
where reconfiguration is a common occurrence.

This paper introduces Shepherd, a stream processing frame-
work for edge networks. Shepherd enables seamless applica-
tion reconfiguration with minimal stoppage time. Shepherd’s
architecture uses a network of software routers to transfer
data tuples between operators. Shepherd implements a late-
binding approach to routing, where an operator does not need
to know the location of the next operator that will consume the
tuples that it produces. Instead, tuples are shepherded to their
destination. This approach allows for flexible reconfiguration
with minimal stoppage time and without requiring global
coordination. As an optimization, Shepherd uses direct net-
work connections (bypassing the router) to transfer messages
between operators deployed in the same datacenter; however,
this is done without compromising reconfigurability.

We evaluated Shepherd on a hierarchical edge network
composed of several Amazon datacenters geographically dis-
tributed across North America. Shepherd reduces stoppage
time by up to 97.5% compared to Apache Storm. Moreover,
in contrast to Apache Storm, Shepherd’s stoppage time does
not increase with the number of datacenters in the network,
network latency, or application size.

In summary, this paper makes the following contributions:
• A stream processing framework for the edge that lever-

ages late binding routing to enable seamless application
reconfiguration. We plan to open source the Shepherd
implementation;

• A mechanism that mitigates operator slow start;

• An evaluation on an emulated edge network using real-
world wide area links.

This paper is structured as follows: Section II provides
background on existing stream processing systems focusing on
their reconfiguration mechanisms; Sections III, IV and V de-
scribe the design and implementation of Shepherd; Section VI
presents our experimental evaluation; Sections VII and VIII
discuss related work and present our conclusions.

II. MOTIVATION AND BACKGROUND

We first discuss how cloud-based stream processing frame-
works (e.g., Apache Storm, Apache Flink) handle reconfigura-
tion. We then discuss previous edge-based stream processing
efforts and their limitations.

A. Cloud Frameworks

Stream processing frameworks use a dataflow programming
model where an application is represented as a direct acyclic
graph (DAG). A DAG consists of vertices that represent oper-
ators and edges that represent data streams between operators.
Operators can be data sources, sinks, or user-defined functions,
such as filtering, aggregation, convolution. Data tuples are
produced by data sources and consumed by operators until the
data reaches a sink. In edge computing, data sources are often
sensors, while data sinks can be placed on cloud datacenters
as well as actuators at the network edge.

An application submitted by a user is called a logical plan.
The stream processing framework transforms the logical plan
into a physical plan that contains the number of physical
instances of each logical operation, and their mapping to
computing devices. Reconfiguration changes the physical plan
by modifying the number of operator replicas or their mapping
to devices. Reconfiguration is typically triggered by changes
in the application’s workload and is intended to improve
performance metrics such as cost, bandwidth, latency and may
reduce CO2 emissions [8].

Reconfigurations can cause significant disruptions to the
applications’ throughput and latency. To demonstrate this
phenomenon, we perform an experiment using a state-of-
the-art stream processing framework (Apache Storm) with
an application that performs Twitter sentiment analysis. The
application consists of six operators [P, F, S, T, C, E] and
was deployed on an emulated 2-level edge network consisting
of a cloud datacenter and five edge datacenters. Attached to
each edge is a group of Twitter users, that collectively produce
400 messages per second. Each emulated datacenter runs on a
separate virtual machine (VM), collocated in a single Amazon
datacenter, with no extra network latency added.

Figure 2 shows the physical plan at the start of the exper-
iment (a), with all operators [P,F,S, T, C, E] deployed on the
cloud. Operators [P, F] are deployed on Edge 1 which has
the only active data source. In a second stage (b), the data
source attached to Edge 2 becomes active and the application
is reconfigured by deploying additional replicas of operators
[P, F] on Edge 2. This process is repeated 3 more times until

41

(a) (b)Cloud

Edge 1

S T C E

P F

P F

Edge 2 Edge 3 Edge 4 Edge 5

Cloud

P F P F

S T C EP F

Fig. 2. Operators at the Edge: Multiple changes to the physical plan are
needed in the Twitter Sentiment Analysis application to maintain quality of
service. Replicas of [P,F] are deployed closer to the users location, to reduce
bandwidth.

all 5 sources are active and replicas of the [P, F] operators are
running on all edges.

0 100 200 300 400 500 600 700
Execution Time (seconds)

0

2.5K

5K

7.5K

10K

Th
ro

ug
hp

ut
 (t

up
le

s/
se

co
nd

)

Apache Storm

Fig. 3. Job Disruption: During a reconfiguration to add the [P,F] replica set
to each edge, the Apache Storm job incurs a stop to apply the changes and
this results in disruptions to the throughput.

Figure 3 shows the application throughput in Apache Storm.
The throughput increases as more data sources become active;
however, each reconfiguration results in significant throughput
fluctuations due to stoppage time, as the application stops
processing messages with each triggered reconfiguration.

Reconfiguration is a high-latency operation because cloud
stream processing frameworks implement a stop-the-world
approach via a global barrier. During reconfiguration, stream
processing frameworks empty all queues, wait for all operators
to reach a stable state, make all changes, and finally restart.

Such global coordination is required because these frame-
works exploit early-binding routing, where upstream and
downstream operators have direct socket connections; during
a reconfiguration, all socket connections are recreated. Note
that long reconfiguration times are acceptable when this event
is rare, such as a typical cloud environment. In contrast,
reconfiguration is frequent in edge computing applications,
which often have real-time requirements and cannot tolerate
long stoppage times.

B. Static-Partitioned Edge Frameworks

Applying existing stream processing frameworks to edge
computing is difficult because their architectures do not in-
corporate features to handle the high variation in latency and
bandwidth. To achieve good throughput, users need to con-
figure multiple heartbeat values and set the size of low-level
network parameters, such as the TCP window size. Moreover,

typical flow control in cloud-based stream processing relies
on the next operator explicitly requesting the next items, one
at a time. This type of flow control is severely obstructed by
high-latency reconfigurations.

Previous efforts at enabling stream processing on edge
networks have focused on adapting existing frameworks to
operate over high latency links [9]–[11]. These approaches
statically partition an application into sub-applications, where
each sub-application comprises a set of operators and is placed
in a different datacenter. The communication between sub-
applications happens using a queueing system, such as Apache
ActiveMQ, RabbitMQ, or Apache Kafka to transfer tuples
from one datacenter to another.

In general, the static-partitioned approach complicates the
design and deployment of stream processing applications, as
it requires application developers to manually build multiple
different sub-applications. In addition, this approach makes
reconfiguration slower by requiring coordination between the
sub-applications, each of which has to execute its own stop-
the-world event.

III. SHEPHERD

The Shepherd framework transparently deploys and re-
configures latency-sensitive stream processing applications to
meet tight SLA guarantees by significantly reducing disrup-
tions caused by job downtime. For ease of use, Shepherd
provides a familiar DAG-based dataflow programming model.

A. Overview

Shepherd takes an alternative approach to existing stream
processing system design and decouples the transport layer
from the processing layer. Existing systems often tightly
integrate the communication logic and the runtime logic,
which makes it difficult to modify either one without causing
a disruption. Shepherd’s transport layer is malleable so that
quick changes can be made without impacting the processing
of tuples.

Figure 4 shows an example application deployment in
Shepherd, consisting of three operators [F, O, A]. Our design is
based on a hierarchical edge network where nodes communi-
cate through interconnected routers that form a router-network
that provides a pathway from the edge to the cloud. The
computing hierarchy is organized as a tree, with a traditional
wide-area cloud datacenter at its root and an arbitrary number
of additional layers of datacenters.

Shepherd uses a master worker architecture where the mas-
ter runs at the root of the tree and the workers can be deployed
anywhere in the hierarchy. Tuples are produced by users on
the edge, and are forwarded by the router-network towards
the cloud. The framework deploys a minimum of 1 instance
of each operator on the cloud datacenter so that the tuples that
are propagated to the cloud can always be processed. A tuple
is consumed by the first compatible operator along this path. If
none are deployed along the path, a tuple is consumed by the
cloud replica. For instance, in Figure 4a, a tuple that needs to
be processed by operator [F] is sent to the Cloud datacenter.

42

Cloud

City 1

City 1

Region 1

Region 1

F

O

A

Router

App-F

App-O

App-A

Router

Router

Tuples
{"App","F",1e10},{[payload]}

F

O

A

Router

App-F

App-O

App-A

Router

Router

App-F F

(a)

(b)

{"App","F",1e10},{[payload]}

{"App","F",1e10},{[payload]}

{"App","F",1e10},{[payload]}

{"App","O",1e10},{[payload]}

{"App","O",1e10},{[payload]}

Worker

Worker

WorkerMaster

Worker

Worker

Worker

Master

Cloud

Fig. 4. Late Binding Approach to Stream Processing: Shepherd operators are
deployed as a tree along a geo-distributed network hierarchy. The framework
uses a late-binding design that enables operators to be seamlessly added
and removed at runtime without global knowledge of existing upstream or
downstream operators.

In contrast, in Figure 4b, this same tuple is consumed earlier,
as an operator replica for [F] is placed in City 1.

Assumptions and limitations. Shepherd provides at-most-one
tuple delivery semantics (i.e., a tuple is delivered only once
or not at all). If an operator or router fails, it is restarted and
any tuples in flight are dropped. Shepherd, however, provides
resiliency to intermittent network failures which are common
on the edge. Adding fault tolerance support to Shepherd is the

subject of our future work. Moreover, Shepherd currently only
supports the reconfiguration of stateless operators. This is not
a significant limitation for a wide range of edge computing
applications as the operators that benefit the most from run-
ning close to the edge (e.g., parsing, filtering, threshold) are
typically stateless. Relaxing this limitation, however, is the
subject of our future work.

B. Architecture

Shepherd has two major subsystems: the Cloud Master and
the Worker, shown in Figure 5. The Master is deployed only
at the root of the tree (the cloud) and the Workers can be
deployed anywhere (including the cloud). The Shepherd Cloud
Master has three major components: (1) The Job scheduler
which is responsible for accepting user codes and translating
it into physical plans, (2) the Reconfiguration Engine which
is responsible for triggering re-configurations by generating
new physical plans, and (3) the Metrics Monitor that receives
profiling information from across the cluster. This profiling
information is used to drive the decisions made by the Recon-
figuration Engine.

The Worker contains 2 primary components: (1) the Job
Manager and the (2) Router. The Job Manager receives
instructions from the Master to add and remove new operator
instances. Jobs deployed on the Shepherd framework have the
full application running in the cloud and can process tuples
that are not handled by operators running on a lower layer
of the edge hierarchy. The Router provides reliable transport
over WANs and for this reason it is preferred over simple ssh
socket connections which have no built-in resiliency. Once the
Job Manager receives an instruction to update the physical
plan, it unpacks the payload which contains the user code
and allocates a slot on one of its machines in that datacenter.
A slot is a unit of compute which is a CPU core and the
Job Manager is aware of how many slots it can allocate to
ensure the slots are not over-provisioned. The operator code
(a Task) is then started and makes a connection to the router
that will persist for the life of the operator. In the case where
the instruction from the Shepherd Cloud Master is to remove

Fig. 5. The Shepherd Architecture: Users submit their application and
reconfiguration rules to the Master which then deploys the program as a set
of tasks running on the Worker nodes. Tasks can communicate using direct
links or between datacenters via the router-network.

43

a replica, a signal is sent to terminate the operator and clean
up the queues if there is no longer any replicas of that type
in the datacenter.

C. The Data Model API

Shepherd provides familiar API features of state-of-the-art
stream processing frameworks through a new Java API. This
API is part of the Client API and it is the mechanism for
users to define and submit a logical plan as a DAG to the
Job Scheduler. The DAG is composed of a list of source and
destination operators, where the user provides a pair of source
and destination operators individually, as shown in Listing 1.

ArrayList<Pair> dag = new ArrayList<>();
dag.add(new Pair<>("OpF","OpO"));
dag.add(new Pair<>("OpO","OpA"));
dag.add(new Pair<>("OpA","NONE"));
submit(dag);

Listing 1. Submission of the logical plan in Shepherd.

The user must also provide user-defined functions written in
Java for each one of the operators, as depicted in Listing 2. The
operators extend the class ShepherdOperator, and the business
logic that needs to be applied to incoming tuples is invoked
when the processTuple function is called.

public class OpF extends ShepherdOperator{
public OpF(){

\\Constructor
}
public void processTuple(Tuple tuple){

\\User-defined functions
}

}

Listing 2. Operator code in Shepherd.

IV. SEAMLESS RECONFIGURATION

Seamless reconfiguration in Shepherd is made possible by a
new late-binding routing design, an easy to use reconfiguration
API and a novel warm up system that collectively reduces
disruptions caused by global job reconfiguration events.

A. Late Binding Routing System

Late-binding routing allows the connections between oper-
ators to be adaptive and dynamic, where operator replicas can
be added or removed without stopping the application flow to
(re)create the links between source and destination operators.
To make a stream processing system adaptive, producers and
consumers need to come and go as needed with the expectation
that removing or adding operators will not break the stream
processing job. Late binding makes it possible to indepen-
dently deploy operators without having global knowledge of
where producers and consumers are physically located.

To late bind a replica, routing information is needed from
incoming tuples. In Shepherd, a tuple carries a header and a
body. The header contains base attributes such as the type of
tuple (type_id), the topology_id, and the timestamp
of when the tuple was created in the data source. The body

comprises the payload, which is the application data (e.g., a
sensor reading or image frame as a byte array).

Using the topology_id and the type_id, Shepherd
finds an online operator that can consume the data. The Router
searches for an operator by reading the topology_id and
type_id and determining if there is a local operator installed
in its datacenter that can consume the tuple. Otherwise, the
tuple is pushed up to its parent. The decision to route local
or up to the parent is the only decision made by the Router
whenever any tuple arrives at a given datacenter.

For instance, looking again at Figure 4a, a pipeline appli-
cation named App contains operators [F, O, A] and is initially
deployed in the Cloud. Before the reconfiguration occurs, the
[F] tuples are sent to the cloud. After the reconfiguration as
depicted in Figure 4b, the [F] tuples get consumed at the City
level and the resulting [O] tuples get routed up to the Cloud
where they are consumed.

B. The Router: A Modifiable Transport Layer

Routing within the datacenter. The key to the success of
the late binding system is that Shepherd performs all the steps
required to bring an operator online, and then a final action
is triggered to redirect tuples to the new operator replica. To
do this, we created a modifiable transport layer that could be
manipulated independently of the data processing layer where
the tuple processing takes place.

Figure 5 illustrates the deployment process. The Job Man-
ager launches the operators and from this point on, its only
function is to decommission the operator if needed. The
operators are autonomous, consuming data and publishing
metrics directly to a separate data stream that sends metrics
data to the cloud. The key point of this design is that the
Router can setup complex queue structures around the live
stream and only introduce this new structure to the tuple flow
when all operator code has been downloaded and the operators
have acknowledgement back to the Job Manager that they are
ready to receive tuples from the router. Current state-of-the-
art frameworks deactivate the topology from the moment the
reconfiguration is triggered and therefore they incur downtime
that consists of downloading the user code, standing up the
operator instance and finally activating the network layer to
let tuples flow between operators.

Routing between datacenters. Network latency can differ
significantly between the cloud datacenter and the edges,
depending on the distance in between. Stream processing
frameworks that operate within datacenters do not have to deal
with this problem because LAN latency is sub millisecond.
However, WAN latency can be dozens of milliseconds and
this has an impact on the ability to process tuples at high
throughput and the network latency can impact the time it
takes to stand up new nodes in the network because large
amounts of code must be delivered to the target datacenter.
To mitigate this problem, Shepherd can change the number
of TCP connections at run-time when sending data over the
Internet to other datacenters. This allows more packets to be

44

in flight at once and can be customized per link depending on
the amount of latency and available bandwidth on the link.

C. Reducing Operator Cold Start

A common issue with all VM-based programming lan-
guages, such as Java, is that they suffer from a cold start
because the code is lazily optimized based on how often a
particular branch of code is invoked. During the cold start
phase the CPU utilization spikes because the Just-In-Time
(JIT) compiler is trying to optimize the code [12]. This leaves
fewer resources to make progress on the tuple stream and
results in longer processing time and fewer tuples processed.
This causes the throughput to drop until the JIT compiler
has finished optimizing the code. This disruption presents a
serious problem for stream processing systems that cannot
accept sudden variations and increases to tuple latency because
a new cold replica was allowed to process tuples. Shepherd
uses a novel warm-up technique to overcome this problem
that uses a sample of the live stream of tuples to warm up
the operator code before the operator starts to participate in
contributing to the processing of tuples for the job.

Fig. 6. Cold Operators: A sample of the tuple stream is used to warm up the
cold operator to reduce the impact of cold start on the live data stream. The
dual route ensures that during the warm-up phase, the live stream continues
to flow between datacenters.

Figure 6 illustrates the warming process for a new [F]
operator replica that is added to the edge datacenter. The
router is reconfigured to provide a sample of the data stream
to the operator for a configurable period of time. Once this
time elapses, it is assumed that the code inside the operator
is now ‘hot’. A reset tuple is injected into the data stream
and the flow is released behind the reset tuple. When the reset
tuple arrives inside the operator, the reset() method is called
and the operator begins processing live tuples. The inject and
switch operations have minimal impact on the tuple latency
and finish in under 20 ms. This feature supports chained warm-
ups as part of a multiple replica reconfiguration in the same
datacenter.

Stream consistency is maintained during the transition into
and out of the warm-up phase by using network queues
that preserve ordering. Stream correctness is maintained by
using the brief pause periods (20ms) to modify the tuple flow
path. This ensures tuples are only transferred to the intended
destination once the tuple flow path is un-paused, thus avoiding
the chance of duplication.

D. The Reconfiguration API

Shepherd provides an API that allow users to write custom
reconfiguration triggers that define scheduling policies that
are used to update the physical plan of a running job. The
Reconfiguration API is part of the Client API and the custom
rules defined by the user can be sent to the Master by invoking
the submit() operation which uploaded the trigger logic along
with the logical plan. The Reconfiguration Engine inside the
Master uses these custom rules to monitor and reconfigure the
job by updating the physical plan as defined by the rules and
implements the changes by calling the Schedulers deploy()
operation. For example, in Figure 4 a trigger was activated
in the cloud in response to increased traffic at the edge and
as result, a replica of type [F] was deployed. The trigger was
fired based on the metrics data (e.g., operator replica metrics
– latency, throughput, arrival rate, departure rate, and queue
size – or computing/network metrics – memory, CPU, and
bandwidth) that is transmitted back to the cloud from all
the child datacenters. The reconfiguration instructions come
strictly from the Shepherd framework instance running in the
cloud. One or more triggers can be defined as a package to
deploy multiple changes in parallel in the case where many
datacenters need to be reconfigured at once. Triggers are
defined by the user and are submitted to the framework along
with the user code as a package. Each user defined trigger can
contain any type of rule which is called in a feedback loop to
check whether the current state of the edge hierarchy requires a
reconfiguration. Listing 3 shows an example of programming
code that extends class ReconfigurationTrigger to construct
a user-defined reconfiguration trigger (ruleTriggered) and a
custom scheduling policy (getExecutionPlans). The Recon-
figurationStats and DataCenterManager objects contain the
collected performance metrics from all datacenters.

Shepherd reconfiguration actions are minimally disruptive,
Shepherd only contacts datacenters involved in the reconfig-
uration. Shepherd performs the reconfiguration by computing
the difference between the previous physical plan and the new
physical plan to reduce the number of impacted datacenters.

public class UserTrigger extends
ReconfigurationTrigger{
public UserTrigger(String triggerID,
String topologyID) {

//Constructor
}
@Override
public boolean ruleTriggered(
ReconfigurationStats reconfigurationStats){

//User-defined trigger
}

@Override
public ArrayList<ExecutionPlan>
getExecutionPlans(DataCenterManager
dataCenterManager){

//Scheduling policy
}

}

Listing 3. Example of a custom reconfiguration trigger and scheduling policy.

45

V. IMPLEMENTATION

We implemented a prototype of Shepherd as a Java ap-
plication that makes use of Apache ActiveMQ Artemis [13]
which is an off the shelf message broker. This broker provides
Shepherd with the building blocks necessary to construct our
modifiable transport layer. Artemis was chosen over other
widely available messaging systems such as RabbitMQ [14]
and Kafka [15] because Artemis is optimized for WAN based
communication. The processing layer is implemented as Java
processes running inside Docker containers.

A. Transport Layer Implementation

The Shepherd Router relies on the Artemis broker to estab-
lish an interconnected network that spans the hierarchy from
cloud to edge. Message brokers typically implement a variety
of queuing structures that can be used to create complex
routing paths and mechanisms to adjust the configuration at
run-time. Shepherd uses the broker network to transport both
user data and management messages.

Separate communication paths are established for user data,
restricting management channels for Shepherd only. This
ensures that tuples from different domains and data from
multiple running jobs are not mixed. User data is transported
inside Shepherd tuples, which are then wrapped in the broker
messaging protocol to make our tuples compatible with the
broker’s network stack. This wrapper contains its own header
that is used to route messages in the broker network.

The information in the ShepherdTuple header can be ex-
tracted and exposed to the broker network message header
to route tuples based on user-defined (key, value) pairs.
This allows the Shepherd Router to consider tuple metadata
appended by the operator when making routing decisions.
Rationale for Artemis broker. Artemis is a good choice
for creating an edge computing network layer because it
has built in support for resilient communication (timeout and
automatic retry mechanisms) when working with unstable and
high latency links. Most importantly, it supports duplicate
checking, which helps ensure correctness in Shepherd. Artemis
also supports very large messages (GB) which helps Shepherd
to deploy large amounts of user code.

In addition, Artemis provides bridges to interconnect
brokers, which provides Shepherd with the ability to setup
multiple connections to overcome WAN latency. Security in
the transport layer is also provided out of the box (encryption,
credentialed access, etc) and any incoming tuples that do not
belong to a topology are routed to a dead-letter-address in the
cloud for further review. Tuples are only routed to operator
instances if the data source (IoT device) can authenticate to
the broker and has the unique topology_id. Essentially,
Artemis functions as proxy for data to reach Shepherd.

B. Intra-Datacenter Communication Optimization

In our initial design of the framework, we used the broker
for all communication between operators. This approach has
two drawbacks. First, it creates a lot of load on the router.

Second, the extra communication adds to the overall end-to-
end latency of the application. Since edge computing appli-
cations are already subject to fixed high network latency, we
optimized our design to reduce the communication overhead
when operators in the same datacenter need to communicate.
ZeroMQ [16], a lightweight message passing library, is used to
enable direct point-to-point communication between operator
containers collocated on the same datacenter; however, this is
done without compromising reconfigurability.

Fig. 7. Optimizing Operator Communication: To improve performance
between co-located operators, we designed a Hybrid ZeroMQ and ActiveMQ
Artemis approach. Direct connections are used between operators yet they
retain the flexibility to be bound late to the router via a dual connectivity
pattern.

Operators are implemented as Java applications running
inside Docker containers. As shown in Figure 7, operators are
simultaneously connected to Artemis and the other operators
via ZeroMQ. This dual connectivity pattern allows Shepherd
to retain its flexibility to late bind operators because adding
the operator to the Artemis broker does not interrupt the
stream processing job or the flow of tuples moving through the
broker. Since operators can be added or removed at anytime,
an important point to note is that when we late bind an
operator to an existing deployment, an extra step is needed
if the predecessor operator is currently writing its output to
the broker. Looking again at Figure 7 the [F] operator would
have been sending its output to the broker if the [O] operator
was not installed. When the [O] operator is added at a later
date, it goes through 2 steps to become an active participant
in the topology. First, the new replica gets its warm up tuples
directly from the [F] operator via special sockets that provide
a copy of [O] tuples that it is producing. Second, after the
warm-up phase, the [O] operator automatically detaches from
the warm-up socket, attaches itself to the live output socket of
[F], sends a message to the [F] operator via the management
channel to stop sending tuples to the broker and instead send
its output to the new [O] replica. The new [O] replica then
becomes responsible for writing out to the broker. This switch
takes about 10ms to occur.

VI. PERFORMANCE EVALUATION

In this section, we conduct an experimental comparison of
Shepherd with Apache Storm on emulated edge environments
using open source benchmarks and applications. First, we
provide a costing analysis that measures the financial benefits
of deploying applications with Shepherd. We next empirically
evaluate reconfiguration in low network latency scenarios.

46

Then we measure the effect of WAN latency on reconfiguration
events. Next, we examine the reconfiguration performance of
existing datacenters as opposed to adding new ones. Also, we
evaluate the performance of Shepherds new warm up feature
which mitigates the drawbacks caused by Java cold start.
Lastly, we compare the performance ActiveMQ vs ZeroMQ to
demonstrate the benefits of our hybrid approach for operator
communication.

A. Experimental Setup

We conducted our evaluation using an emulated distributed
edge network consisting of virtual machines running on 4
Amazon datacenters (N. California, Oregon, Ohio, and Vir-
ginia), which we organized as a 2-level hierarchy with N.
California as the root and the other 3 datacenters configured
as edge nodes as depicted in Figure 8. The figure also
shows the measured average round trip times (RTTs) between
datacenters.

Northern
California

Oregon Ohio Virginia

22.94 62.62
52.22

RTT (ms)

Fig. 8. Experimental Topology: The 2-tier network infrastructure with Oregon,
Virginia, Ohio as edges, and the cloud is N. California. The network latencies
are the average round trip times (RTTs).

All VMs used in the experiments are of the type m5.2xlarge
and have 32 GB of RAM with 8 vCPU/Threads from a 3.1
GHz Intel Xeon R© Platinum 8175M processor. All clocks are
synchronized using Amazons NTP time service, which is the
best practice for time keeping on the AWS infrastructure.

B. Benchmark Applications

To the best of our knowledge, there is no current standard
benchmark for stream processing in edge networks. Instead,
we use in our evaluation three applications that we believe
are representative of functionality that is likely to leverage
edge streaming: data filtering, natural language processing, and
object recognition. The applications have different workload
profiles, code sizes and latency requirements. The code sizes
for each application are listed in Table I.

TABLE I
THE SIZE OF THE APPLICATION’S EXECUTABLE

Application Size in MB

Object Detection - Lite 305
Object Detection - Full 1002
Twitter Sentiment Analysis 54
ETL 54

Object Detection [17], [18]. This application uses video
cameras and OpenCV [19] to track vehicles for smart traffic

monitoring [20], [21]. The data set used in these experiments
is a camera feed of city road traffic obtained from Urban
Tracker [22]. The Object Detection application pipeline con-
sists of a chain of 3 operators: frame filter [F] removes frames
that are not significantly different from the previous frame;
object detection [O] uses a pre-trained YoloV3 [23] model to
detect objects in the image frame; car counter [A] aggregates
statistics. The [O] operator is CPU intensive and can process
just a few frames per second. The Obj Detection app has
two versions. The Lite version does not embed the OpenCV
library into the application executable, which was done to
reduce the payload size of the user executable. Instead, the
OpenCV library is pre-loaded directly into Storm’s classpath
in all datacenters. The Obj Detection Full version embeds the
OpenCV library with the executable. The purpose of creating
2 versions of this application was to measure the impact of
the executable size on the overall reconfiguration time.
Twitter Sentiment Analysis [24]. This application applies
NLP to text-based tweets to analyze the polarity of tweets
by counting positive and negative words and computing the
difference. The Sentiment Analysis application represents a
class of applications that produce small tuples at a very
high frequency. The tweets are JSON dictionaries, each tweet
corresponding to a tuple. The application pipeline consists
of a chain of 6 operators: parsing [P], English filtering [F],
lowercase and symbol removal [S], remove stop words [T],
word counter [C], and positive or negative word score [E].
The data set that we used contains real tweets collected from
the global public Twitter API. The regional nature of news
broadcasting makes Twitter an interesting application because
the geographic context of a Tweet adds to its meaning. For
example, recent work has shown that deploying Twitter on the
edge can enable location-based top-k popular topic queries and
return the result with lower latency as compared to offloading
the processing to the cloud [25].
Extraction, Transform and Load (ETL) [26]. This pre-
processing application consumes data from smart building
environmental sensors to be used in analytics applications that
are used to optimize building maintenance and energy usage.
The dataset for this experiment is from Sense Your City [27].
The sources are sensors that emit JSON tuples. Processing
this information earlier at the edge can reduce the time to find
anomalous readings in the data stream. The following pipeline
processes the tuples: two filters, range [R] and Bloom [B] filter
outliers, interpolation [I] predicts the values that fall within a
range and lastly, annotation [A] adds additional meta-data into
the observed fields of the tuple. This application has smaller
payloads as compared to the Twitter application (integer data
vs text data) but has similar data production patterns.

C. Benefits of Dynamic Reconfiguration
We illustrate the benefits of reconfiguration using the object

detection application. In this scenario, the application con-
sumes video frames (i.e., standard definition – dimensions
884x498 pixels and average size of 130 KB) from five motion-
activated cameras spread across multiple streets in a large

47

0 100 200 300 400 500 600
Execution Time (minutes)

50

100

150

200
Fr

am
es

 p
er

 S
ec

on
d

Fig. 9. Application Workload: The workload pattern of 5 different cameras
deployed in a large North American city shows large variation across the day.

0 100 200 300 400 500 600
Execution Time (minutes)

150

200

250

300

M
on

th
ly

 C
os

t (
$)

Cloud Only Edge Only Adaptive Edge

Fig. 10. Monthly Cost: The adaptive edge strategy leverages both the cloud
and edge, which results in the lowest monthly average cost as compared to
cloud or edge only.

North American city. Each camera emits video frames at
different rate as some streets are constantly busy, some are idle,
and some are busy on specific hours. Figure 9 demonstrates the
skewness of the combined production rate, where the number
of active cameras varies over time.

The service provider pays for data transfers and the utiliza-
tion of computing resources. The communication cost is based
on AWS PrivateLink [28] that charges users by bandwidth
usage, and the computation cost is priced according to AWS
Wavelength [4] for edge datacenters and AWS EC2 for cloud
datacenters. Deploying VMs on AWS Wavelength increases
the cost by approximately 40%.

We consider three deployment options: Cloud Only, Edge
Only, and Adaptive Edge, which dynamically adapts the place-
ment of operators based on the workload. The application has
a significant data reduction after the object detection operator
[O], which decreases transferred data by over 80%.

Figure 10 shows that deploying the application on Cloud
Only, the traditional method, results in the highest cost given
the high communication cost of sending data over AWS
PrivateLinks when there is high demand. In contrast, Edge
Only reduces cost overall, but is more expensive than Cloud
Only when the frame rate is low as the AWS Wavelength
cost dominate. Adaptive Edge achieves the lowest cost by

leveraging the edge on high demand times and the cloud on
low demand periods. This adaptive approach reduces the costs
by over 13% and 3% when compared to Cloud Only and Edge
Only, respectively. The savings are more significant when there
is a high fluctuation in the production rate, numerous cameras
involved, or dataframes with higher resolution (e.g., HD, 4K,
and 8K).

D. Shepherds background reconfiguration time

Shepherd reconfigures in the background before making
changes to the running job. The time to reconfigure a job
does not cause downtime. Figure 11 is an analysis of the
timing of each background step when adding new replicas to a
datacenter for the Twitter application and the Object Detection
Full Size. These two applications represent small code and
larger code bases respectively to show the difference.

0

500

Fir
st

77 112 115 117

Twitter
Warm up Time (Seconds)
Task Setup Time (Seconds)

142
336

604 655
Obj. Detec.-Full

N. C
ali.

Oreg
on Ohio

Vir
gin

ia
0

500

Ad
di

tio
na

l

35 42 42 42

N. C
ali.

Oreg
on Ohio

Vir
gin

ia
35 42 42 42

Fig. 11. Reconfiguration Time: Shepherd reconfigures in the background
because the warm-up time and task setup time do not cause downtime when
reconfiguring. The 30-second warm-up time shown here is configurable. The
results for ETL (not shown) are similar to Twitter.

Task setup time is the time it takes for the operator code
to be downloaded into the new datacenter and for the oper-
ator to come online. The results show that Shepherds task
setup time within the same datacenter (N. California) takes
107 seconds when installing the first operator and additional
reconfigurations take a maximum of 42 seconds to complete
in any datacenter. The warm-up time is constant at 30 seconds
and it is set by the user but it is a configurable value to
allow for longer warm ups if necessary. The framework only
incurs a minor disruption of 20ms to update the physical plan
once the task setup and warm-up steps have been completed.
This transition time is less than 20ms because Shepherd
performs reconfigurations in the background before applying
the changes to the job.

E. Low Latency Case

We evaluated the effect that reconfiguration has on the
performance of the Twitter Sentiment Analysis application
when running on top of Shepherd and Storm. We run this
application on an emulated 2-level edge network consisting of
a cloud datacenter and 5 edge datacenters. Attached to each
edge is a separate data source that produces 600 messages
per second when active, and 0 otherwise. Each emulated

48

TABLE II
STORM: DOWNTIME, RECOVERY TIME, AND NUMBER OF SLA

VIOLATIONS (LATENCY > 100 MS) FOR RECONFIGURATIONS INSIDE A
LAN

2nd 3rd 4th 5th

Downtime (seconds) 9.1 8.6 8.2 8.3
Recovery Time (seconds) 3 3 3 3
Number of SLA Violations 11404 15929 18074 22778

datacenter runs on a separate virtual machine (VM). Since
reconfiguration time is affected by high network latency, we
consider an idealized best-case scenario where all VMs are
collocated in a single Amazon datacenter (N. California).

The reconfigurations were triggered in Storm using the
re-balance command. We created a custom Storm scheduler
by extending the IScheduler class that can react to the
throughput increases and create new physical plans. Likewise,
in Shepherd, triggers were created to react to the increase in
traffic load and to deploy a new physical plan.

0 100 200 300 400 500 600 700
Execution Time (seconds)

0

2.5K

5K

7.5K

10K

Th
ro

ug
hp

ut
 (t

up
le

s/
se

co
nd

)

Apache Storm
Shepherd

Fig. 12. Effect on Throughput: Shepherd incurs no throughput drops when
reconfiguring to add new replicas [P, F] to each edge in response to increased
Twitter traffic. Storm incurs downtime of several seconds, with throughput
spikes after each reconfiguration.

Results Figure 12 is a comparison between Storm and Shep-
herd depicting 4 reconfiguration events at intervals of 200
seconds. The physical plan at the start of the experiment has
operators [S, T, C, E] deployed on the cloud, and operators [P,
F] deployed on edge 1 which has the only active data source.
After 200 seconds, the Twitter traffic at edge 2 increases and
the application is reconfigured by deploying additional replicas
of operators [P, F] on edge 2 (see Figure 2b). This process is
repeated 3 more times in response to the increased traffic at
each edge and replicas of the [P, F] operators are running on all
edges. At each reconfiguration event, Storm stops processing
tuples for several seconds and the throughput goes to zero.
Throughput is the number of tuples that have arrived at the sink
(measured per second). In contrast to this downtime, Shepherd
continues to process the tuples and the reconfiguration event
has little to no impact on the throughput.

Table II shows detailed results for Storm. Downtime is
defined as the amount of time that has elapsed since the frame-
work has stopped processing tuples; SLA violations measure
the number of tuples during the experiment that arrived at the

sink with an end-to-end latency of greater than 100 ms; and
recovery time reflects the time period in which the framework
is working through the backlog of the tuples. Shepherd does
not incur enough disruption (>100 ms), and therefore all
values for these metrics are zero and not shown in the table for
brevity. In contrast, every reconfiguration call in Storm causes
a backlog that grows while the framework is in the process
of building a new physical plan, uploading operator code to
the target worker machines and standing up the operators.
This is what causes the throughput spikes and the late tuples
measured as SLA violations in Storm. The more edges there
are, the larger the number SLA violations occur and they will
continue to grow because the Downtime will likely grow as
more worker nodes take longer to synchronize when they are
added to the Storm cluster.

F. The Effect of WAN Latency

We next asses the effects of WAN latency on application
reconfiguration for both Apache Storm and Shepherd. Apache
Storm’s Zookeeper and Nimbus run in an isolated VM in N.
California. In each edge datacenter, a data source produces
400 (Twitter and ETL) or 2 (Object Detection) messages per
second when active, and 0 otherwise. When a data source
becomes active, a reconfiguration is called to add [P, F] for the
Twitter Sentiment Analysis application, [F, O] for the Object
Detection, and [P, R] for the ETL to the same datacenter as
the data source.

At the beginning of each the experiment all operator in-
stances are in the cloud and there are no sources. We then
add 3 sources, 1 at a time and with 200 seconds in-between
to let the system stabilize. The addition of a source triggers
a reconfiguration each time. We measure then measure the
downtime, recovery time and number of SLA violations caused
by each of these reconfiguration events.

Sh
ep

he
rd

(Any
) ET

L

(St
orm

)

Tw
itte

r S
. A

.

(St
orm

)

Obj.
 Dete

c.-
Lit

e

(St
orm

)

Obj.
 Dete

c.-
Ful

l

(St
orm

)

Application

0

500

1K

Do
wn

tim
e

 in
 S

ec
on

ds

50
 m

s
50

 m
s

50
 m

s

Oregon Ohio Virginia

Fig. 13. Downtime: Shepherd downtime is always <50ms when reconfiguring
over the WAN, while for Storm the impact of user executable code size and
network latency causes downtime of up to many minutes.

WAN Downtime Results Figure 13 shows the downtime
measured in seconds of each framework when reconfiguring
the job by adding replicas to new edge datacenters. The results
show that neither the network latency nor the application
sizes affect Shepherd’s downtime (less than 50 ms and a 99%

49

improvement over Apache Storm). This is because the bulk
of the reconfiguration process in Shepherd happens in the
background. In contrast, for Apache Storm, network latency
and the application size have a large impact on downtime.
The more interesting result is seen with the OBJ-Lite and
OBJ-Full applications, where the differences in downtime are
significant. The Twitter application and ETL application have
the same size of executable and therefore incur the same
downtime.

Sh
ep

he
rd

(Any
) ET

L

(St
orm

)

Tw
itte

r S
. A

.

(St
orm

)

Obj.
 Dete

c.-
Lit

e

(St
orm

)

Application

10

100

1K

Re
co

ve
ry

 T
im

e
 in

 S
ec

on
ds

0 0 0

Oregon Ohio Virginia

Fig. 14. Recovery Time: Shepherd needs no time to recover after a
reconfiguration over the WAN because it incurs <50ms of downtime. Storm
spends several minutes in recovery, trying to clear the backlog of tuples.

Sh
ep

he
rd

(Any
) ET

L

(St
orm

)

Tw
itte

r S
. A

.

(St
orm

)

Obj.
 Dete

c.-
Lit

e

(St
orm

)

Application

0

5K

10K

Nu
m

be
r o

f V
io

la
tio

ns

0 0 0

Oregon Ohio Virginia

Fig. 15. SLA Violations: Shepherd has no SLA violations (defined as latency
> 1 second) after reconfiguring on the WAN, while Storm experiences large
numbers of SLA violations (late tuples) because of its long recovery time.

WAN Recovery Time and SLA Results. Figure 14 captures
the recovery time in seconds when adding new replicas to
each of the edge datacenters. Recovery time is the duration
that tuples are being delivered late according to a specified
SLA threshold, in this case 1 second. The results show that
Shepherd does not incur a recovery time penalty. Figure 15
captures the number of late tuples during the recovery time
and the results demonstrate that for Shepherd all tuples are
delivered under the SLA threshold of less than 1 second. In
contrast, the recovery time for Apache Storm is significant in
a geographically distributed environment. The recovery time
is a consequence of the downtime, as many tuples pile up
during the reconfiguration. Depending on the application, this

recovery time is longer if the processing time is large and
the operators cannot clear the backlog fast enough to make
progress on the tuples that arrived after the reconfiguration.
For example, the Object Detection application has a machine
learning operator that requires at least 250 ms of compute time
to detect objects. The 2, 13, and 16 minute recovery time for
the OBJ-lite application likely is not an acceptable amount of
downtime under any practical scenario when reconfiguring to
any of the three edge datacenters. The amount of late tuples
is excessive and grows at similar rate to the LAN experiment,
and is further amplified by the WAN latency. These violations
can be a deal breaker as many applications cannot afford to
deliver late tuples.

G. Moving One Operator Closer to the Edge

This experiment evaluates the impact of a reconfiguration
of a job in an existing datacenter rather than the addition
of replicas to new datacenters which was evaluated in the
previous section. The purpose of the experiment is to highlight
the fact that even when Storm has all the user code already pre-
loaded in a given worker node, adding one more operator still
incurs a bit of downtime and some late tuples. The experiment
starts with having the Parser operator running on the Oregon
datacenter (edge), and the rest of the operators placed to
the N. California datacenter. Then, at mark 110 seconds, a
reconfiguration pushes down the Range Filter to the edge.

TABLE III
WHEN RECONFIGURING AN EXISTING DATACENTER, SHEPHERD DELIVERS
ALL OF ITS TUPLES ON TIME, WHEREAS STORM STILL HAS LATE TUPLES

EVEN WHEN THE RECONFIGURATION DOWNTIME IS VERY SHORT

Shepherd Apache Storm

Recovery Time (seconds) 0 2.6
Downtime (seconds) .05 2
Number of SLA Violations 0 106

The impact of the reconfiguration between Storm vs Shep-
herd is depicted in Table III where we measure the recov-
ery time, downtime and number of SLA violations for this
simple reconfiguration. Shepherd outperforms Apache Storm
by reducing the downtime by 97.50%. This also reduces the
recovery time and the number of SLA violations, showing that
Shepherd can meet tight SLA latency requirements that Storm
cannot.

H. Operator Warm-up

This set of experiments demonstrates the value of having
the warm-up feature in Shepherd. The experiment scenario
begins with the Twitter Sentiment Analysis application entirely
deployed on the N. California cloud datacenter, and at the 120s
mark, the [F] operator is migrated to the Ohio datacenter.
Figure 16 captures the disruptions to the throughput when
there is a reconfiguration event and contrasts the performance
when the warm-up feature is turned on.

The results show that when the warm-up feature is turned off
there is a large drop in the throughput even at the lower tuple

50

1K
2K
3K

12
00

 T
PS

Off On

0 50 100
1K
2K
3K

24
00

 T
PS

0 50 100

Execution Time (seconds)

Th
ro

ug
hp

ut
 (t

up
le

s/
se

co
nd

)

Fig. 16. Warm up Benefits: Without Shepherds warm up feature turned on,
the throughput drops are significant. The warm-up feature helps Shepherd
meet tight SLA guarantees by reducing disruptions that increase end-to-end
tuple latency.

rate of 1200 per second. We chose the rates of 1200 and 2400
because the CPU of the machine reached 80% usage at the
2400 rate. The warm-up feature becomes even more valuable
if we double the rate to 2400 because when the feature is
turned off there is a throughput drop of 73% and it takes a
longer time to return to normal processing levels. The warm-up
feature allows new operator replicas to warm-up before they
can accept live tuples, and therefore avoiding the cold-start
problem of JVMs.

I. Improving Communication within the Datacenter: Ac-
tiveMQ vs ZeroMQ

We evaluate the performance gains of using ZeroMQ as
compared to ActiveMQ for intra datacenter communication.
The ETL application is used in this experiment with three dif-
ferent ingestion rates (1200,1600 and 2000 tuples per second).
Figure 17 and Figure 18 show the benefits in terms of lower
latency and higher throughput when replacing ActiveMQ with
ZeroMQ for communication between operators in the same
datacenter. The benefits increase at higher throughput levels
as ActiveMQ begins to destabilize when the throughput hits
2000 tuples per second. Whereas, the two methods achieve
similar latency and throughput when the system is processing
a small number of tuples (1200). Even at the mid-range, the
results show that the latency of ActiveMQ is over 93% higher
than ZeroMQ when the production rate is 1600 tuples per
second. As previously discussed in the Implementation section
and shown in Figure 7, our use of ZeroMQ does not affect the
reconfigurability of the operators, as they remain connected to
the Shepherd Router and can benefit from the features of our
modifiable transport layer.

VII. RELATED WORK

Apache Flink [5], Apache Spark [6], and Apache Storm [7]
were designed to run on a single monolithic datacenter where
reconfigurations happen quite rarely. For this reason, classical
stream processing frameworks conduct reconfigurations by
using the stop-of-the-world approach [29] where the appli-
cation is paused, the new physical plan is deployed, and
then the application is resumed [30]–[33]. Unfortunately, this

0 50 100 150 200 250
Execution Time (seconds)

10

100

1K

10K

La
te

nc
y

(m
s)

ActiveMQ (1200)
ZeroMQ (1200)

ActiveMQ (1600)
ZeroMQ (1600)

ActiveMQ (2000)
ZeroMQ (2000)

Fig. 17. Tuple Latency Comparison: When comparing the performance
between ZeroMQ and ActiveMQ, we can see that using direct connections
between operators via ZeroMQ reduces latency because the broker has to
route fewer tuples between operators and therefore tuples spends less time
sitting in queues waiting to be processed.

0 50 100 150 200 250
Execution Time (seconds)

1.2K

1.4K

1.6K

1.8K

2K
Tu

pl
es

 (p
er

 se
co

nd
)

ActiveMQ (1200)
ZeroMQ (1200)

ActiveMQ (1600)
ZeroMQ (1600)

ActiveMQ (2000)
ZeroMQ (2000)

Fig. 18. Tuple Throughput Comparison: By using ZeroMQ as compared
to ActiveMQ, the same system resources yield a higher tuple throughput
when using ZeroMQ because buffers between operators are more efficiently
managed as opposed to the multiple buffer transfers that are needed when
sending the tuples through the brokers.

approach incurs high downtime since it requires synchroniza-
tion of barriers to maintain correctness. The stoppage times
become longer when such frameworks are deployed on an
edge computing infrastructure as they require several rounds
of communication to synchronize each step (e.g., all cluster
nodes enter in reconfiguration, the operator replicas are re-
assigned, and the operators’ connections are recreated). This
multi-round communication synchronization pattern leads to
stalls which could be minutes in duration. Prior works, such
as R-Storm [34], SpanEdge [35], EdgeWise [36], Trisk [37],
E2DF [38], and DART [2], are optimized to run on geograph-
ically distributed infrastructure. Some of these solutions also
introduce methods that reduce the amount of transferred data
to make the reconfiguration faster. However, reconfiguration in
these approaches remains a multi-second global operation that
requires barriers to synchronize the state of all cluster nodes.

Parallel track [39] arises as an attractive solution to execute
seamless reconfiguration. This method creates a new operator

51

instance that runs concurrently until it synchronizes the old and
the new operator replicas. However, the parallel track approach
has not been deployed on the WAN due to the challenges with
communication channel management and synchronization of
multiple physical locations. For example, ChronoStream [40]
and Gloss [41] use the parallel-track approach on a single
datacenter. The former addresses the reconfiguration without
accounting for the slow-start initialization of an operator
replica, and it requires that downstream operators control
duplicated messages by filtering them out. The latter looks at
the reconfiguration as a recompilation process by rebuilding
the whole DAG, running it concurrently for some time, and
controlling the discarding of duplicate messages – making the
reconfiguration more costly as it includes new operations. In
contrast, Shepherd’s design leverages a parallel track-inspired
solution for an edge computing resource-limited shared infras-
tructure that overcomes the slow-start initialization of a new
operator replica without creating the cost of duplicating the
whole application DAG.

Finally, this work builds on our workshop paper [42], which
first identified the challenges associated with stop-the-world
reconfiguration and proposed the use of late-binding routing
as an alternative. This earlier work did not provide a full
design or implementation, and as a result did not address real-
world issues, such as high latency links, operator warm-up,
and router overhead. In addition, the workshop paper only
presents results from a single experiment based on a simple
2-operator micro-benchmark that moves tuples around but did
not do any processing.

VIII. CONCLUSION

In this paper, we introduced Shepherd, a novel stream
processing framework for edge computing. Shepherd offers
efficient dynamic placement of operators along a hierarchy
of datacenters located between the edge devices and the
cloud. Through its novel late binding, hierarchical routing,
and warm-up techniques, Shepherd decreases downtime due to
reconfiguration from a few minutes to milliseconds. Shepherd
enables a wide-range of edge computing applications that rely
on stateless stream processing. In future work, we plan to
extend Shepherd with policies that automatically adjust the
parallelism degree of operators, as well as offering support
for stateful stream processing and fault tolerance.

REFERENCES

[1] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[2] P. Liu, D. D. Silva, and L. Hu, “DART: A scalable and adaptive
edge stream processing engine,” in 2021 USENIX Annual Technical
Conference (USENIX ATC 21). USENIX Association, Jul. 2021, pp.
239–252. [Online]. Available: https://www.usenix.org/conference/atc21/
presentation/liu

[3] B. Varghese, E. De Lara, A. Y. Ding, C.-H. Hong, F. Bonomi, S. Dustdar,
P. Harvey, P. Hewkin, W. Shi, M. Thiele et al., “Revisiting the arguments
for edge computing research,” IEEE Internet Computing, vol. 25, no. 5,
pp. 36–42, 2021.

[4] “Wavelength,” 2022. [Online]. Available: https://aws.amazon.com/
wavelength/

[5] “Apache Flink,” 2022. [Online]. Available: http://flink.apache.org/
[6] “Apache Spark,” 2022. [Online]. Available: https://spark.apache.org/

[7] “Apache Storm,” 2022. [Online]. Available: https://storm.apache.org/
[8] B. Ramprasad, A. da Silva Veith, M. Gabel, and E. de Lara,

“Sustainable computing on the edge: A system dynamics perspective,”
in Proceedings of the 22nd International Workshop on Mobile
Computing Systems and Applications, ser. HotMobile ’21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 64–70.
[Online]. Available: https://doi.org/10.1145/3446382.3448607

[9] Y. Fu and C. Soman, Real-Time Data Infrastructure at Uber. New York,
NY, USA: Association for Computing Machinery, 2021, p. 2503–2516.
[Online]. Available: https://doi.org/10.1145/3448016.3457552

[10] D. Battulga, D. Miorandi, and C. Tedeschi, “Fogguru: a fog computing
platform based on apache flink,” in 2020 23rd Conference on Innovation
in Clouds, Internet and Networks and Workshops (ICIN), 2020, pp. 156–
158.

[11] E. G. Renart, D. Balouek-Thomert, and M. Parashar, “An edge-based
framework for enabling data-driven pipelines for iot systems,” in 2019
IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), 2019, pp. 885–894.

[12] A. Khrabrov, M. Pirvu, V. Sundaresan, and E. de Lara, “JITServer:
Disaggregated caching JIT compiler for the JVM in the cloud,”
in 2022 USENIX Annual Technical Conference (USENIX ATC 22).
Carlsbad, CA: USENIX Association, Jul. 2022. [Online]. Available:
https://www.usenix.org/conference/atc22/presentation/khrabrov

[13] B. Snyder, D. Bosanac, and R. Davies, “Introduction to apache ac-
tivemq,” Active MQ in action, pp. 6–16, 2017.

[14] “RabbitMQ,” 2022. [Online]. Available: https://www.rabbitmq.com/
[15] “Apache Kafka,” 2022. [Online]. Available: https://kafka.apache.org/
[16] “ZeroMQ,” 2022. [Online]. Available: https://zeromq.org/
[17] X. Zeng, B. Fang, H. Shen, and M. Zhang, Distream: Scaling Live

Video Analytics with Workload-Adaptive Distributed Edge Intelligence.
New York, NY, USA: Association for Computing Machinery, 2020, p.
409–421. [Online]. Available: https://doi.org/10.1145/3384419.3430721

[18] A. Anjum, T. Abdullah, M. F. Tariq, Y. Baltaci, and N. Antonopoulos,
“Video stream analysis in clouds: An object detection and classification
framework for high performance video analytics,” IEEE Transactions
on Cloud Computing, vol. 7, no. 4, pp. 1152–1167, 2019.

[19] “OpenCV,” 2022. [Online]. Available: http://opencv.org/
[20] Q. Zhang, H. Sun, X. Wu, and H. Zhong, “Edge video analytics for

public safety: A review,” Proceedings of the IEEE, vol. 107, no. 8, pp.
1675–1696, 2019.

[21] G. Ananthanarayanan, P. Bahl, P. Bodı́k, K. Chintalapudi, M. Philipose,
L. Ravindranath, and S. Sinha, “Real-time video analytics: The killer
app for edge computing,” Computer, vol. 50, no. 10, pp. 58–67, 2017.

[22] J.-P. Jodoin, G.-A. Bilodeau, and N. Saunier, “Urban tracker: Multiple
object tracking in urban mixed traffic,” in IEEE Winter Conference on
Applications of Computer Vision, 2014, pp. 885–892.

[23] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
2018, cite arxiv:1804.02767Comment: Tech Report. [Online]. Available:
http://arxiv.org/abs/1804.02767

[24] M. V. Bordin, D. Griebler, G. Mencagli, C. F. R. Geyer, and L. G. L.
Fernandes, “Dspbench: A suite of benchmark applications for distributed
data stream processing systems,” IEEE Access, vol. 8, pp. 222 900–
222 917, 2020.

[25] A. Jonathan, A. Chandra, and J. Weissman, “Locality-aware load sharing
in mobile cloud computing,” in Proceedings of The10th International
Conference on Utility and Cloud Computing, ser. UCC ’17. New York,
NY, USA: Association for Computing Machinery, 2017, p. 141–150.
[Online]. Available: https://doi.org/10.1145/3147213.3147228

[26] A. Shukla, S. Chaturvedi, and Y. Simmhan, “Riotbench: An iot
benchmark for distributed stream processing systems,” Concurrency
and Computation: Practice and Experience, vol. 29, no. 21, p. e4257,
2017, e4257 cpe.4257. [Online]. Available: https://onlinelibrary.wiley.
com/doi/abs/10.1002/cpe.4257

[27] “Urban environmental monitoring project,” 2022. [Online]. Available:
http://map.datacanvas.org

[28] “AWS PrivateLink,” 2022. [Online]. Available: https://aws.amazon.com/
privatelink

[29] V. Cardellini, F. Lo Presti, M. Nardelli, and G. Russo Russo, “Optimal
operator deployment and replication for elastic distributed data stream
processing,” Concurrency and Computation: Practice and Experience,
vol. 30, no. 9, p. e4334, 2018, e4334 cpe.4334. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4334

52

[30] F. Kalim, L. Xu, S. Bathey, R. Meherwal, and I. Gupta, “Henge: Intent-
driven multi-tenant stream processing,” in Proceedings of the ACM
Symposium on Cloud Computing, 2018, pp. 249–262.

[31] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li, “Lavea: Latency-
aware video analytics on edge computing platform,” in Proceedings of
the Second ACM/IEEE Symposium on Edge Computing, 2017, pp. 1–13.

[32] L. Xu, B. Peng, and I. Gupta, “Stela: Enabling stream processing systems
to scale-in and scale-out on-demand,” in 2016 IEEE International
Conference on Cloud Engineering (IC2E). IEEE, 2016, pp. 22–31.

[33] L. Xu, S. Venkataraman, I. Gupta, L. Mai, and R. Potharaju, “Move
fast and meet deadlines: Fine-grained real-time stream processing with
cameo,” in 18th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21), 2021, pp. 389–405.

[34] B. Peng, M. Hosseini, Z. Hong, R. Farivar, and R. Campbell, “R-storm:
Resource-aware scheduling in storm,” in Proceedings of the 16th
Annual Middleware Conference, ser. Middleware ’15. New York,
NY, USA: Association for Computing Machinery, 2015, p. 149–161.
[Online]. Available: https://doi.org/10.1145/2814576.2814808

[35] H. P. Sajjad, K. Danniswara, A. Al-Shishtawy, and V. Vlassov,
“Spanedge: Towards unifying stream processing over central and near-
the-edge data centers,” in 2016 IEEE/ACM Symposium on Edge Com-
puting (SEC), 2016, pp. 168–178.

[36] X. Fu, T. Ghaffar, J. C. Davis, and D. Lee, “Edgewise: A better stream
processing engine for the edge,” in Proceedings of the 2019 USENIX
Conference on Usenix Annual Technical Conference, ser. USENIX ATC
’19. USA: USENIX Association, 2019, p. 929–945.

[37] Y. Mao, Y. Huang, R. Tian, X. Wang, and R. T. B. Ma, Trisk:
Task-Centric Data Stream Reconfiguration. New York, NY, USA:
Association for Computing Machinery, 2021, p. 214–228. [Online].
Available: https://doi.org/10.1145/3472883.3487010

[38] M. Nardelli, G. Russo Russo, V. Cardellini, and F. Lo Presti, “A
multi-level elasticity framework for distributed data stream process-
ing,” in Euro-Par 2018: Parallel Processing Workshops, G. Mencagli,
D. B. Heras, V. Cardellini, E. Casalicchio, E. Jeannot, F. Wolf, A. Salis,
C. Schifanella, R. R. Manumachu, L. Ricci, M. Beccuti, L. Antonelli,
J. D. Garcia Sanchez, and S. L. Scott, Eds. Cham: Springer International
Publishing, 2019, pp. 53–64.

[39] T. Heinze, L. Aniello, L. Querzoni, and Z. Jerzak, “Cloud-based
data stream processing,” in Proceedings of the 8th ACM International
Conference on Distributed Event-Based Systems, ser. DEBS ’14. New
York, NY, USA: Association for Computing Machinery, 2014, p.
238–245. [Online]. Available: https://doi.org/10.1145/2611286.2611309

[40] Y. Wu and K.-L. Tan, “Chronostream: Elastic stateful stream computa-
tion in the cloud,” in 2015 IEEE 31st International Conference on Data
Engineering, 2015, pp. 723–734.

[41] S. Rajadurai, J. Bosboom, W.-F. Wong, and S. Amarasinghe, “Gloss:
Seamless live reconfiguration and reoptimization of stream programs,”
SIGPLAN Not., vol. 53, no. 2, p. 98–112, mar 2018. [Online].
Available: https://doi.org/10.1145/3296957.3173170

[42] A. Tiwari, B. Ramprasad, S. H. Mortazavi, M. Gabel, and E. d. Lara,
“Reconfigurable streaming for the mobile edge,” in Proceedings of
the 20th International Workshop on Mobile Computing Systems and
Applications, ser. HotMobile ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 153–158. [Online]. Available:
https://doi.org/10.1145/3301293.3302355

53

