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The Effect of Contention on the Scalability of
Page-Based Software Shared Memory Systems

Eyal de Lara

Abstract

We demonstrate the profound effects of contention on the performance of page-based
software distributed shared memory systems, as such systems are scaled to a larger
number of nodes.

Programs whose performance scales well experience only minor increases in mem-
ory latency, do not suffer from contention, and show a balanced communication load.
In contrast, programs that scaled poorly suffered from large memory latency increases
due to contention and communication imbalance.

We use two existing protocols, Princeton’s home-based protocol and the TreadMarks
protocol, and a third novel protocol, Adaptive Striping. For most of our programs, all
three protocols were equally affected by latency increases and achieved similar per-
formance. Where they differ significantly, the communication load imbalance, which
is caused by the read accesses to pages that have multiple readers following one or

more writers, is the largest factor accounting for the difference.
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Chapter 1

Introduction

Beginning with Li and Hudak [14] in 1985, designers of software distributed shared
memory (DSM) protocols have focused much of their efforts on reducing the number
of messages to maintain memory consistency. Indeed, protocol comparisons on small
networks with eight to sixteen nodes have consistently shown a strong correlation
between the execution time of a program and the number of messages exchanged
by the protocol. This thesis shows that for many programs, on larger networks, the
distribution of the messages is no less important than the number of messages. In
other words, which node sends or receives a message and when it sends or receives
that message have dramatic effects on the program’s execution time.

Ideally, messages should be distributed uniformly in time and across nodes. Thus,
avoiding contention for a node that consumes its processing time, delaying other
computation, or contention in the network that delays message delivery. In some
sense, a good distribution does not improve performance. It simply enables the nodes
and the network to perform as one would expect under a simple performance model,
in which, latencies for similar messages do not vary. A bad distribution creates load
imbalance at the nodes and in the network that results in delays of computation and
communication, adversely affecting execution time.

This thesis explores experimentally the relationship between the distribution of
messages and performance on a network of thirty-two nodes for three page-based,
multiple-writer protocols implementing Lazy Release Consistency (LRC) [11]. We
use two existing protocols, Princeton’s home-based protocol [20] and the TreadMarks

protocol [12], and a third novel protocol, Adaptive Striping. Adaptive Striping is a



simple extension of the TreadMarks protocol. Its goal is to eliminate load imbalance
(within the protocol) at the nodes automatically.

We evaluate these protocols using a suite of five programs. They are Barnes-Hut
from the SPLLASH suite [18]; ILINK, which is a computational genetics code [9]; 3D
FFT from the NAS benchmarks suit [3]; Gaussian Elimination and Red-Black SOR,
which are small kernels. The communication in Red-Black SOR is balanced. The
remaining programs exhibit common sharing patterns that lead to communication
imbalances. We perform the evaluation on a switched, full-duplex 100Mbps Ethernet
network of thirty-two 300 MHz Pentium Il-based uniprocessors running FreeBSD
2.2.6.

This work has four specific conclusions. First, we show that for every program
except SOR the time spent updating memory increases dramatically as the we extend
the size of the cluster. In one case, it increases by 380%. This dramatic increase is
not due to a growth in the number of messages, but the increasing time that each
request for data takes. The result is poor scalability for these programs.

Second, we show that communication imbalance is the main factor responsible for
this contention, especially with data strucutres with multiple readers.

Third, we found the performance of the home-based and TreadMarks protocols to
be similar for all but two programs, where communication imbalance is the largest
factor accounting for the difference. The imbalance is caused by the read accesses to
pages that have multiple readers following one or more writers. For these programs,
we found that the Adaptive Striping protocol achieved performance equal to, or better
than, the home-based protocol without requiring the manual assignment of homes.

Fourth, the results for Adaptive Striping show that the distribution of the mes-
sages is no less important than the number of messages. For example, for Barnes-Hut,
Adaptive Striping and the home-based protocol transfer roughly equal amounts of
data and have identical message distributions. Although Adaptive Striping sends 12

times more messages than the home-based protocol, they achieve the same speedup.



The rest of this thesis is organized as follows. Chapter 2 provides an overview of
Lazy Release Consistency and the TreadMarks and Princeton multiple-writer pro-
tocols. Chapter 3 introduces contention, protocol load imbalances and describes
the Adaptive Striping protocol. Chapter 4 presents the results of the evaluation
of TreadMarks, the home-based protocol, and Adaptive Striping. It also includes
details on the experimental platform that we used and the programs that we ran on

it. Chapter 5 discusses related work. Chapter 6 summarizes our conclusions.



Chapter 2

Background

2.1 Lazy Release Consistency

Lazy release consistency (LRC) [11] is an algorithm that implements the release con-
sistency (RC) [8] memory model. RC is a relaxed memory model in which ordinary
accesses are distinguished from synchronization accesses. There are two types of
synchronization access: acquire and release. Roughly speaking, acquire and release
accesses are used to implement the corresponding operations on a lock. In general, a
synchronization mechanism must perform an acquire access before entering a critical
section and a release access before exiting. Essentially, the benefit of RC is that it
allows the effects of ordinary memory accesses to be delayed until a subsequent release
access by the same processor is performed.

The LRC algorithm [11] further delays the propagation of modifications to a pro-
cessor until that processor executes an acquire. Specifically, LRC insures that the
memory seen by the processor after an acquire is consistent with the happened-
before-1 partial order [1], which is the union of the total processor order of the mem-
ory accesses on each individual processor and the partial order of release-acquire
access pairs. Vector timestamps are used to represent the partial order [11]. When
a processor executes an acquire, it sends its current vector timestamp in the acquire
request message. In the reply message, granting the lock, the releaser includes a set
of write notices. These write notices detail which shared data were modified prior to
the acquire according to the partial order. These shared data modifications must be

reflected in the memory as seen by the acquirer. In this paper, we consider invalidate



protocols, in which the arrival of a write notice causes the corresponding page to be
invalidated. On a subsequent access miss to an invalid page, the page is updated

by requesting and applying all modifications described by the write notices for that

page.

2.2 Multiple-Writer Protocols

Multiple-writer protocols were developed to address the false sharing problem. With
a multiple-writer protocol, two or more processors can simultaneously modify their
copy of a (shared) page. In accordance with RC’s requirements, their modifications
are merged at the next synchronization operation. By delaying the merger of the
modifications, the ill effects of false sharing are reduced because the page will not
ping-pong between the writers.

The first implementation of a multiple-writer protocol appeared in the Munin
system [5]. Munin, however, used a form of eager RC that is generally inferior to
LRC [10]. Since then two multiple-writer protocols that are compatible with LRC
have been developed: the TreadMarks (Tmk) protocol [11] and the Princeton home-
based (HLRC) protocol [20].

Some aspects of these protocols are the same. In particular, modifications to
(shared) pages are detected and captured using twinning and diffing. Briefly, the
implementation works as follows. A page is initially write protected, so that a pro-
tection fault occurs at the first write. The system then makes a copy of the page, the
twin, and removes the write protection so that further writes to the page can occur
without any additional overhead. The twin and the current copy are later compared
to create a diff, a run-length encoded record of the modifications to the page.

The protocols differ, however, in the location where updates are kept and in the
way that a processor updates its copy of a page. In Tmk, processors update a page
by fetching diffs from the last writer, or writers to the page. In HLRC, every page

is statically assigned a home processor by the program where writers flush their



modifications at release time. To update a page a processor requests the home node

for a brand new copy of the page.

2.3 Comparing Tmk and HLRC

Both protocols have strengths and weaknesses when compared to each other. For
migratory data, the TreadMarks protocol uses half as many messages, because it
transfers the diff(s) directly from the last writer to next writer. (The current im-
plementation of the TreadMarks protocol avoids the problem of diff accumulation
through the methods described by Amza et al. [2].) For producer/consumer data, the
two protocols use roughly the same number of messages. Any difference in favor of
the home-based protocol is a result of data aggregation. If a consumer is the home for
several pages written by a producer, the producer can easily aggregate multiple diffs
in a single message to the consumer/home. Any difference in favor of the Tread Marks
protocol is typically a result of the producer and/or consumer changing, such that
neither the producer nor the consumer are the home. For data in a falsely shared
page, that is written by multiple processors and then read by multiple processors, the
difference between the protocols is the greatest. The home-based protocol uses signifi-
cantly fewer messages as the number of readers and writers increases. Specifically, for
R readers and W writers, the home-based protocol uses at most 2W + 2R messages
and the TreadMarks protocol uses at most 2W R messages. If, however, there are
multiple writers followed by a single reader, then the number of messages is basically
the same.

Regardless of the sharing pattern, the assignment of pages to homes is extremely
important to the performance of the home-based protocol. A poor assignment can
increase the number of diffs created, messages passed, and bytes transferred by an
order of magnitude. On the other hand, a good assignment can have benefits that are
not possible with the TreadMarks protocol. For example, in the case of a multi page

data structure that is read by multiple readers following a single writer, HLRC can



lower the communication load on the writer as well as achieve better communication
load balancing by selecting the homes for the pages among the readers. On the other
hand, the TreadMarks protocol has its share of advantages: it typically (1) transfers
less data because it uses diffs to update faulting processors and (2) creates fewer diffs

because their creation is delayed until they are requested by a reader.



Chapter 3

Contention, Protocol Load, and Adaptive Striping

In this chapter we introduce the concepts of contention and protocol load imbalance.
We give some intuition on the characteristics of Tmk and HLRC that may lead to
contention and protocol load imbalance. Finally, we introduce Adaptive Striping:
an improvement to the Tmk protocol that automatically reduces protocol imbalance
by redistribing updates for multi-paged data structures that are single writer and

multiple reader.

3.1 Contention

We define contention as simultaneous requests on a node. In our experience contention
can be attributed to limitations in the processor or the network. In the former case,
the time that the node requires to process a request is longer than it takes for the
next request to arrive. In the latter case, the node fails to push out responses fast
enough due to limitations in the network. Most systems, under this condition, just
wait for the interface to vacate enough buffer space.

We characterize contention based on the size of the set of pages referred to by the
simultaneous requests. Contention is said to be single-paged, when all requests are
for the same page, or multi-paged, when various pages are being requested.

Although contention happens at the node holding the updates, its effects are felt
on the requestor. As most DSM systems handle requests in the same order in which
they arrive, the service time for a request that arrives at a node with n outstanding

request 1s augmented by the time required to process all preceding requests.



3.2 Protocol Load Imbalance

We refer to the work performed to propagate updates as protocol load (PL). Under
TreadMarks, PL reflects time spent servicing requests. For HLRC, it also includes
pushing modifications to home nodes. We then define PL. imbalance as the difference
in PL across the nodes of the system.

As Tmk and HLRC differ in the location where updates are kept, the protocols
may have a different effect on the PL balance. To illustrate the difference, consider a
multi-page data structure that has a single writer followed by multiple readers. Both
Tmk and HLRC handle each page of the data structure in roughly similar ways. Each
reader sends a request message to the processor holding the latest copy of the page.
That processor sends back a reply message containing either the changes to the page
in Tmk, or a complete copy of the page in HLRC. Where the protocols differ is in the
location of the updates. In Tmk, the last writer is the source of the updates, while
in HLRC the updates are kept at the home nodes. Hence, Tmk places the load of
distributing multiple copies of the entire data structure on the last writer. In contrast,
in HLRC, a clever home assigment may result in a more balanced distribution of the
load among the nodes.

PL imbalances tend to increase with the number of nodes. Simply put, as we
increase the number of readers of a page, the load on the processor servicing the
update requests grows.

Finally, we have observed a relationship between PL imbalance and contention;
where higher imbalance tends to translate into higher contention. This conclusion is
intuitive since it is to be expected that when the proportion of updates coming out
of any given node grows, the likelihood of simultaneous requests on that node would

increase.
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3.3 Adaptive Striping

Adaptive Striping is a simple extension of the Tmk protocol. Its goal is to automat-
ically alleviate some protocol load imbalances. In particular, those that result from
multi-paged data structures that are single writer but multiple reader.

Adaptive Striping reduces contention at the writer by evenly distributing the
modifications to the other processors at the next global synchronization point. As
a result, the writer’s effort on behalf of each page that it off-loads is limited to
constructing and sending the diff to a single processor. The processor receiving this
diff is then responsible for servicing the requests from all of the consumers. Overall,
neither the number of messages nor the amount of data transferred is reduced, but
the average time that a reader waits for its requested diff drops.

Multiple-page data structures produced by a single processor and consumed by
multiple processors are easy to recognize at a global synchronization point, such as a
barrier. Specifically, each processor counts the number of pages modified by itself and
the other processors that are (1) currently single-writer and (2) previously multiple-
reader. If a majority of such pages come from a minority of processors, then we
redistribute the modifications to those pages.

We could have, instead, initiated stripping only when all modifications, made in
an interval, were performed by a single processor. This heuristic would, in fact, serve
well our benchmarks. However, this simple mechanism is ineffective for more complex
sharing patterns where there might be a few producers which service updates to
several consumers. This is an important concern for large scale systems as it becomes
clear that the contention in a 64 node cluster were 2 writers, serve each, updates to
31 other readers is, as severe as, the contention that occurs in a 32 nodes cluster,
where a single writer serves 31 readers. Finally, by requiring that the pages must
show multiple-reader behavior, we avoid false positives for programs that initialize

large amounts of data on one processor at the beginning of a program.
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Pages are assigned to processors using a weighted distribution. Specifically, we
try to assign to each processor a group of pages that are expected to have the same
number of read requests. In other words, one processor may be assigned fewer pages
than another processor if those pages have a larger number of expected readers. Thus,
the number of requests that each processor services will be roughly the same if the
degree of read sharing for each page does not change. Since every processor has
complete information regarding modifications at a global synchronization point, it is
not necessary to communicate any information about where to find changes. They

can compute it.
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Chapter 4

Experimental Evaluation

In this section we first show that applications that exhibit good scalability do not
suffer from increases in memory latency. We then argue that applications that scale
poorly do so because of increases in memory latency that result from contention
and imbalances in protocol load. Furthermore, we show that there is a relationship
between protocol imbalance, contention, and memory latency, whereas higher imbal-

ances tend to aggravate contention, which in turn increases memory latency.

4.1 Platform

Our experimental environment consist of a switched, full-duplex 100Mbps Ethernet
network of thirty-two 300 MHz Pentium II-based computers. Each computer has
a 512K byte secondary cache and 256M bytes of memory. All of the computers
run FreeBSD 2.2.6 and communicate through UDP sockets. On this platform, the
round-trip latency for a 1-byte message is 126 microseconds. The time to acquire
a lock varies from 178 to 272 microseconds. The time for a 32-processor barrier is
1,333 microseconds. The time to obtain a diff varies from 313 to 1,544 microseconds,

depending on the size of the diff. The time to obtain a full page is 1,308 microseconds.

4.2 Programs

We use five programs: Red-Black SOR and Gaussian Elimination are small kernels

that are distributed with TreadMarks; 3D FFT is from the NAS benchmark suite [3];
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Barnes-Hut is from the SPLASH benchmark suite [18]; and ILINK is a production
computational genetics code [6, 13, 9].

Table 4.1 lists the problem size and the sequential execution time for each program.
Sequential execution times were obtained by removing all TreadMarks calls from the
programs. These times are used as the basis for computing the speedups reported in
this paper.

Red-Black SOR is a method for solving partial differential equations by iterat-
ing over a two-dimensional shared array. Each processor is assigned a band of rows.
Communication is limited to the elements in boundary rows. In every iteration pro-
cessors update each of their elements to the average of the element’s four nearest
neighbors.

Gauss implements Gaussian Elimination with partial pivoting on linear equations
stored in a two-dimensional shared array. The computation on the rows is distributed
across the processors in a round-robin fashion in order to maintain a good load balance
as elimination proceeds. In addition to the shared array for storing the coefficients of
the equations, an index variable storing the pivot row number is also shared.

3D FFT solves a partial differential equation using three-dimensional forward and
inverse FFT. The program has two shared data structures, an array of elements and
an array of checksums. False sharing only happens on the checksum page. The
computation is decomposed so that every iteration includes local computation and a

global transpose.

Program Size, Iterations | Seq. Time (sec.)
Red-Black SOR 8kx4k , 20 72.23
3D FFT x7x7 , 10 109.50
Gauss 4096 , 10 649.29
Barnes-Hut 65536 , 3 125.69
ILINK CLP 276.27

Table 4.1 Program Characteristics
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Barnes-Hut performs an N-body simulation using the hierarchical Barnes-Hut
method. There are two shared data structures: a tree used to represent the recursively
decomposed subdomains (cells) of the three-dimensional physical domain containing
all the particles; and an array of particles corresponding to the leaves of the tree.
Every iteration rebuilds the tree on a single node followed by a parallel force evaluation
of the particles, during which most of the tree is read by all nodes. Updates to the
particle array are characterized by a high degree of false sharing.

ILINK performs genetic linkage analysis. It is widely-used to locate a specific
disease gene on a chromosome. ILINK implements the parallel algorithm described
by Dwarkadas et al. [7]. The main shared data structure is a pool of genarrays with
probabilities of specific genotypes for the individuals in a family tree. Updates to each
individual’s genarray are parallelized. For example, to update a parent’s genarray, the
master processor assigns the elements in the parent’s genarray to itself and multiple
slave processors in a round-robin fashion. This round-robin assignment results in
a high degree of false sharing for the pages among the processors, but results in
significantly better load balance. Each processor works on its share of the genarray.
This requires reading the relevant elements of its spouse’s and childrens’ genarrays
(falsely shared) from previous updates, as well as reading the summary for those
updates from the master. After all of the processors complete their updates to the
genarray, the master processor sums up the contributions of each of the processors
and stores the summary in some portion of the genarray.

For every program, the (static) assignment strategy of pages to homes was selected
through considerable experimentation. The results in this paper reflect the strategy
which wields the best performance. For Red-Black SOR, 3D FFT, Barnes-Hut, and
ILINK, the best assignment follows a block distribution over each of the major data
structures. In other words, each of the shared data structures was divided into equal-

sized groups of consecutive pages, according to the number of processors; and each



15

processor is assigned a single group. For Gauss, the best assignment follows a cyclic

(or round-robin) distribution.

4.3 Results

In this section we present the results of running the programs on 8, 16, and 32
processors. Figures 4.1 through 4.13 present the speedup and a breakdown of the
execution time. Tables 4.2 through 4.6 show the variations in average response time.
They also provide the average, per node, number of messages sent, the total data
transfered, and the global message count. Finally, figures 4.2 through 4.15 present
the response time and protocol load histograms.

The breakdown of the execution time for each program (figures 4.1b through 4.13b)
has three components: memory is the time spent waiting to update a page; synchro
is time waiting for synchronization to complete; and computation includes all other
time.

The response time histograms plot the time necessary to fulfill every request sent
by every node in the system. On the horizontal axis is the time in hundreds of
microseconds to complete a request. On the vertical axis is the percentage of requests
sent by all nodes that required a certain amount of time to be completed.

The protocol load histograms plot the time spent servicing remote requests by
every node. Each bar is composed of three elements: communication corresponds to
time spent receiving and decoding requests, as well as sending replies; diff corre-
sponds to time spent building diffs; and wait corresponds to time spent waiting for
the network interface to vacate I/O buffers. For Gauss, the protocol load histograms
reflect only the time elapsed during the 8th iteration, instead of the entire execution.
This finer resolution is necessary to show the imbalance in protocol load that occurs
during a iteration.

Red-Black SOR is included as a control program. It is a program that achieves
good scalability (with a speedup of 25.7 on 32 processors) and does not suffer from
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increases in response time; as can appreciated by the small memory component in
figure 4.1b as well as by the minor variations in the response time histograms of
figure 4.2. Furthermore, it exhibits little contention and has a good balance of protocol
load; which is evident in the similar size of the bars of the histograms in figure 4.3.
For the rest of this section we will use the Red-Black SOR response time and protocol
load plots of figure 4.2 and figure 4.3 to illustrate how response time and protocol load
histograms should look in the absence of contention and protocol load imbalances.
The rest of this section is divided into four parts. First, we discuss the execution
time breakdowns. Second, we talk about the various types of contention exhibited
by our programs and how they increase the latency of individual requests. Third,
we present our results on protocol load imbalance. Finally, we quantify the effect
that contention has on the programs’ speedups by eliminating contention manually

or estimating its cost analytically.

4.3.1 Execution Time Breakdown

All of the programs, except for SOR, exhibited significant increases in access miss time

as the number of processors increased. Gauss was affected the most. As figure 4.7b

Avg. resp. | Avg. per node Data

Nodes | time (sec.) requests | (Mbytes) | Messages

Tmk 8 1592.33 100 5.6 2135
16 1625.89 116 12.0 4879

32 1668.53 125 27.0 10367

HLRC 8 1400.43 83 6.7 2135
16 1409.80 99 15.0 4878

32 1474.77 106 34.0 10366

Table 4.2 Response time is almost unchanged for Red-Black SOR. The
table shows the average response time, average number of requests per node,
total data transfered and total message count of Tmk and HLRC.
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Avg. resp. | Avg. per node Data

Nodes | time (sec.) requests | (Mbytes) | Messages

Tmk 8 2017.00 4041 265 65785
16 2449.40 2169 284 74003

32 2963.19 1125 295 90514

HLRC 8 1988.77 4041 265 65093
16 2412.35 2169 285 70365

32 2918.72 1125 297 73997

Table 4.3 Response time increases for 3D FFT. Response time increased
by 47% for both Tmk and HLRC. The table shows the average response
time, average number of requests per node, total data transfered and total

message count of Tmk and HLRC.
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Figure 4.5 Response time histograms of Tmk and HLRC for 3D FFT. The
Tmk and HLRC graphs show a significant degradation of response time. The
higher latency leads to plots with shorter bars that are shifted to the right
and spread out.
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Avg. resp. | Avg. per node Data

Nodes | time (sec.) requests | (Mbytes) | Messages

Tmk 8 2595.65 8065 357 200683
16 4848.49 8441 766 429915

32 8954.12 8929 1581 887995

HLRC 8 2882.89 8065 562 200669
16 4909.63 8441 1236 429882

32 8640.11 8929 2586 887922

Table 4.4 Response time increases for Gauss. Response time increases by
245% for Tmk and by 200% for HLRC. The table shows the average response
time, average number of requests per node, total data transfered and total

message count of Tmk and HLRC.
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Avg. resp. | Avg. per node Data

Nodes | time (sec.) requests | (Mbytes) | Messages

Tmk 8 1630.94 2442 130 144038
16 2756.69 2154 247 441679

32 5534.01 2026 488 | 1535326

HLRC 8 1655.81 2072 154 34306
16 1825.95 1964 2178 64726

32 2033.12 1930 529 128790

Table 4.5 Response time increases for Barnes-Hut. There is a significant

difference between the response time increase of Tmk and HLRC (239% vs.
23%). The table shows the average response time, average number of requests
per node, total data transfered and total message count of Tmk and HLRC.

Tmk 2 Tmk 16
a0 a0
2 20 4 2 201
) )
z z
Bgm— Bgm—
0 n-mrﬂnmﬁﬂmmmmm
— 0y ol o [l -— o LY w I ) ol o =
— [ B ] =t [Tyl — [ B ] =t Lo
tirme (100 us) time (100 us)
HLRC & HLRC 16
a0 a0
o o
T 20 T 20
2 2
] ]
10 10
= =
I 04
— OO w0 [ny I ] (] = — oo w0 [ny I ] (] =
—_ [ B ) =t 'yl —_ [ B ) =t ')
tirme {100 us) time (100 us)

Tk 32
a0
2 20
z
z
- 10 A
0 —m-lnmmﬂulul]hmﬂﬁ'ﬁﬂmm'rm
-— [un] 'yl [l (=3} w o [l
— [ [nd] [ns] =t [Tyl
tirme {100 us)
HRC 32
30
ol
T 20 A
Z
z
10 A
=
04
— [un] o [l [=7] [{m] (] =
— [ [} o =t 'yl
tirme {100 us)

Figure 4.11 Response time histograms of Tmk and HLRC for Barnes-Hut.
The Tmk plots show a siginifican degradation of response time, while HLRC
plots show little change. The higher latency in Tmk leads to plots with
shorter bars that are shifted to the right and spread out.
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Figure 4.12 Protocol load histograms of Tmk and HLRC for Barnes-Hut.
The high load imbalance in Tmk is attributed to the distribution of updates
for the tree. On the 32 node cluster, protocol load accounts for 35.6% of
total execution time of Tmk. Of that 50.42% is spent blocked waiting for the
network interface to clear space in the I/O buffers. HLRC’s protocol load is
balanced.

24



25

shows, on 32 processors, under any of the protocols, access miss time accounts for

65% of the execution time.

4.3.2 Contention

We argue that the increase in access miss time experienced by our programs is not
solely the result of an increased number of request messages. It is instead largely a
result of the increase in latency for individual requests due to contention.

This trend is most evident for 3D FFT and Gauss. In 3D FFT, the average number
of requests per node drops significantly as the size of the cluster increases. In Gauss,
it increases moderately (4.7%). Both programs, however, experience sharp increases
in response time. The average request latency increases for 3D FFT and Gauss by
46% and 245%, respectively (tables 4.3 and 4.4). The increase in request latency is
also evident in the response time histograms (figures 4.5 and 4.8). The higher latency
leads to plots with shorter bars that are shifted to the right and spread out. These
plots stand in sharp contrast with the response time histograms for SOR (figure 4.2)
where the plots remain mostly unchanged.

3D FFT suffers from multi-page contention. In 3D FFT. processors work on a
contiguous band of elements from the shared array. Since HLRC home assignment is
done in blocks, in both protocols the processor modifying the band will be the one
hosting the update. The computation on the 3D arrays is partitioned along one axis
among the processors. As a result, the global transpose leads to all processors trying
to read some pages from processor 0 first, and then some pages from processor 1, and
so on, resulting in a temporal contention at a single processor at a time. The effects
of contention are visible in the plots of figure 4.6.

The Tmk and HLRC plots show significant higher protocol loads for the two
leftmost processors, in particular for the 16 and 32 node clusters. The protocol load
imbalance is somehow surprising, since during the course of an iteration, all nodes

service the same number of request. The explanation to this discrepancy is found in
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Avg. resp. | Avg. per node Data
Nodes | time (sec.) requests | (Mbytes) | Messages
Tmk 8 1339.12 5598 105 124079
16 2577.59 5944 232 294347
32 5194.03 6131 513 684343
HLRC 8 2086.66 4879 346 110160
16 2475.15 5525 757 244063
32 3072.90 5904 1595 505418

Table 4.6 Response time increases for ILINK. There is a significant
difference between the response time increase of Tmk and HLRC (287% vs.
47%). The table shows the average response time, average number of requests
per node, total data transfered and total message count of Tmk and HLRC.
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Figure 4.14 Response time histograms of Tmk and HLRC for ILINK. The
Tmk plots show a significan degradation of response time, while HLRC plots
show little change. The higher latency in Tmk leads to plots with shorter
bars that are shifted to the right and spread out.
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Figure 4.15 Protocol load histograms of Tmk and HLRC for ILINK. The

high load imbalance in Tmk is attributed to the distribution of updates for

the summaries. On the 32 node cluster, protocol load accounts for 37.9% of

total execution time of Tmk. Of that 35.11% is spent blocked waiting for the
network interface to clear space in the I/O buffers. The protocol load
imbalance in HLRC is attributed to the changing access pattern of the

application’s, as well as, the placement, on processor 0, of shared structures

that are smaller than a page.
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the order in which data is access. We mention earlier, that at the start of an iteration,
all processors, at once, try to fetch data from processor 0. The simultaneous request
create contention on this processor, as is evidenced by the high wait component
in the plots. However, as processor 0 services these request, it implicitly orders
communication, distributing replies over time. The distribution of replies, ensures
that the next round of communication will see requests that are more spread out,
producing less contention, as is evidenced by the smaller wait component of the next
processor. Processor 1, in turn, will further distribute replies, in effect slowing down
some nodes, and further limiting the number of simultaneous requests on the latter
accesses.

Gauss suffers from single-page contention. The access pattern for the pivot row
is single-writer /multiple-reader. There are only two such pages for our problem size,
but their producer changes on every iteration. The severity of contention in Gauss is
shown in the plots of figure 4.9. The large wait component in the Tmk and HLRC
plots results from the network interface inability to service requests, for the pivot row
and index, as fast as they arrive. The protocol load in the Tmk plot is concentrated
in processor 8, the last writer to the pivot row and pivot index. For HLRC, the load
is divided among processor 0, home for the index, and processor 8 home for the pivot
row.

Both Barnes-Hut and ILINK suffer from single and multi-page contention. The
tree and array of particle in Barnes, and the genarrays in ILINK suffer from single-
page contention when read in the same order by multiple nodes (i.e., the tree root for
Barnes, and the summaries for ILINK). Additionally, multi-page contention occurs
when updates for multiple parts of the data structures reside at any given node. For
both Barnes and ILINK there is a significant difference in the rate of latency increase
between Tmk and HLRC (tables 4.5 and 4.6). While the average response time for
HLRC increases slowly, it almost doubles with an increase in the number of nodes for

Tmk. This is supported by the rapid dispersion of the bars in the Tmk histograms
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(figures 4.11 and 4.14). We argue in the next section that differences in protocol load

balance, shown in figures 4.12 and 4.15, account for the disparity in response time.

4.3.3 Protocol Load Imbalance

We argue that imbalances in protocol load have the potential to aggravate contention
and increase request latency. Furthermore, we argue that protocol load imbalance
accounts for the difference in request latency experienced between Tmk and HLRC
for Barnes-Hut and TLINK.

We prove our claim by presenting results for Adaptive Striping. Adaptive Striping
is an improvement to the Tmk protocol that automatically reduces contention by
eliminating protocol imbalances created by multi-page data structures with a single
writer and multiple readers.

Figures 4.16 and 4.19 compare the speedup and breakdown of execution time
of Tmk, HLRC and Tmk with Adaptive Striping (Tmk/stripe) for Barnes-Hut and
ILINK. Tables 4.7 and 4.8 show the variations in average response time. They also
provide the average, per node, of the number of messages sent, the total data trans-
fered, and the global message count of Tmk/stripe for Barnes-Hut and ILINK. Finally,
figures 4.17 through 4.21 present the response time and protocol load histograms of
Tmk/stripe for Barnes-Hut and ILINK.

These results show that once the protocol imbalance is removed (compare fig-
ures 4.12 and 4.15 to figures 4.18 and 4.21), Tmk/stripe achieves speedups for Barnes-
Hut and ILINK that are comparable to and 46% higher than HLRC (figure 4.16
and 4.19), in spite of sending 12 and 1.35 times more messages. The difference in the
number of messages results from the different ways that the protocols handle false
sharing. All versions send about the same amount of data.

The high load imbalance in Tmk is attributed to the distribution of the updates for
the tree in Barnes, and the summaries in ILINK. In Tmk updates are always fetched

from the last writer, hence processor 0 has to supply all updates to the tree in Barnes-
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Hut and the summary data structures in ILINK. As processor 0 gets overwhelmed by
requests for updates to the tree, it has to spend an increasing portion of its execution
time servicing requests. Figures 4.12 and 4.15 show that on the 32 node cluster this
time accounted for 35.6% and 37.9% of the total execution time. Of that time, 50.42%
and 35.11% was spent blocked waiting for the network interface to clear space in the
I/0 buffers.

In contrast HLRC greatly alleviates the contention for reading the tree and sum-
maries by assigning the homes for these data structures across the processors. Specifically,
if the tree covers n pages and every processor reads the whole tree, then Tmk requires
processor 0 to service (p-1)*n page requests. HLRC instead distributes the tree in
n*(p-1)/p messages. After that the load of servicing the tree requests is evenly dis-
tributed.

In Barnes-Hut, adaptive striping eliminates protocol load imbalance caused by
requests from multiple processors to processor 0 in order to obtain the tree data. In
ILINK, it reduces contention for reading the summary part of the genarrays. For
Barnes-Hut, Tmk/stripe achieves comparable protocol load imbalances as HLRC.
For ILINK, Tmk/stripe achieves four times lower protocol load on processor 0 than
HLRC.

When comparing the response time histograms for Barnes-Hut and ILINK under
Tmk/stripe (figures 4.17 and 4.20), we notice that they resemble the graphs for HLRC
(figures 4.11 and 4.14). For Barnes-Hut, Tmk/stripe achieves average response times
comparable to HLRC. For ILINK, Tmk /stripe response time is 28% lower than HLRC.
The lower response time results from Tmk/stripe sending diffs instead of full pages,
as well as from its better balance of protocol load.

These graphs demostrate that (for these applications, at least) there is a relation-
ship between protocol balance and response time. It is interesting to note that as

protocol imbalance grows, so does response time. This is an expected result, since it
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follows that when the proportion of updates coming out of any given node grows, the
likelihood of simultaneous resquests (i.e. contention) on that node would increase.

ILINK illustrates why dynamic striping can be better than the static striping that
is possible with HLRC. In ILINK, the multiple-reader pages fall into several groups
of consecutive pages. Each group of consecutive pages represents a single individual.
In the computation of each nuclear family, different groups are used. To optimally
stripe for the computation of a nuclear family, you must adapt the striping for the
groups used in that computation. With a single static striping over all of the groups in
the genarray, a particular nuclear family computation may use a collection of groups
that are not evenly striped. In other words, because of the combination of groups
used in that nuclear family computation, some processors service more pages than
others. For ILINK, Adaptive Striping does better than any static striping because it
performs the striping at the barrier immediately after the initialization by processor
0 that determines which groups will be used for that nuclear family computation. So,
it always evenly stripes the pages.

Nonetheless, Tmk/stripe and HLRC still suffer from contention, as shown by the
difference in average response time when compared to the control (1734.28 for Barnes
and 2192.22 for ILINK vs. 1474.77 for SOR). As some parts of the shared data
structures are traversed in the same order, and various parts reside in the same node,
simultaneous requests for updates may still reach the nodes. That is, the distribution
of updates to various processors does not eliminate contention for the data, it only

makes it less frequent on a particular node.

4.3.4 Quantifying the Effects of Contention on Speedup

In this section, we quantify the effects of contention on the execution time of our pro-
gram suite. For Barnes-Hut, ILINK, and Gauss, we estimate the effects analytically.

Our estimate is really an upper bound on the possible speedup without contention.
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Figure 4.16 Scalability comparison of Tmk, HLRC, and
Tmk with Adaptive Stiping for Barnes-Hut.

Avg. resp. | Avg. per node Data
Nodes | time (sec.) requests | (Mbytes) | Messages
Tmk 8 1510.39 2442 130 144038
16 1587.22 2154 247 441679
32 1734.28 2026 448 | 1535326

Table 4.7 Response time increases of Tmk with Adaptive Stiping for
Barnes-Hut. The table shows the average response time, average number of
requests per node, total data transfered and total message count.
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Figure 4.17 Response time histograms of Tmk with Adaptive Striping for
Barnes-Hut. The plots show little change in response time and are very
similar to the HLRC’s plots of figure 4.11.
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Avg. resp. | Avg. per node Data
Nodes | time (sec.) requests | (Mbytes) | Messages
Tmk 8 999.49 5598 105 124079
16 1339.23 5944 232 294347
32 2192.22 6131 513 684343

Table 4.8 Response time increases of Tmk with Adapative Stiping for
ILINK. The table shows the average response time, average number of

requests per node, total data transfered and total message count.
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Figure 4.20 Response time histograms of Tmk with Adaptive Stripe for

ILINK. The plots show little change in response time and are very similar to

the HLRC’s plots of figure 4.14.
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For 3D FFT, we modified the program to eliminate contention and measured the
results.

Table 4.9 summarizes the results for Barnes-Hut, ILINK, and Gauss. We limited
our analysis to HLRC because its use of full pages simplifies the analysis. (In contrast,
under Tmk, we would have to account for the variable size of the diffs.) We use the
execution time breakdown for the node that arrived last at the barrier most often. In
effect, this node is delaying the others, limiting the speedup. To estimate speedup in
the absence of contention, we first calculate the memory access time in the absence
of contention. This was done by multiplying the total number of page requests for
the node by the minimal page request latency (1308 microseconds). The contention
free execution time was then calculated by adding the synchro, computation and
contention free memory components of execution. The contention free speedup was
computed from the contention free execution time and the sequential execution time.

The contention in 3D FFT, however, can be eliminated by carefully restructuring
the transpose loop. By staggering the remote accesses of different consumers such
that they access pages on different producers in parallel, the speedup of 3D FFT is
improved from 14.14 to 16.74 on 32 PCs using Tmk.

Time (sec.) # of page Contention Free
Synchro | Memory | Comp. requests | Speedup | Memory | Speedup
Barnes-Hut 5.92 5.73 4.59 3068 7.73 4.01 8.65
ILINK 16.63 23.72 9.10 6080 5.59 7.95 8.20
Gauss 1.34 68.32 | 34.76 8929 6.22 11.68 13.59

Table 4.9 Quantifying the effects of contention on the speedup of
Barnes-Hut, ILINK, and Gauss on 32 nodes. “Synchro”, “Memory” and

“Computation” are taken from the execution time breakdowns for HLRC on
32 nodes. “Contention Free Memory” and “Contention Free Speedup” are
computed estimates.
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Chapter 5

Related Work

A large number of software shared memory systems have been built. Many of the
papers looking at the performance of software DSM on thirty-two or more proces-
sors have used SMP-based nodes [17, 19, 16]. Thus, the actual number of nodes on
the network is typically a factor of two to eight less than the number of processors.
Because requests for the same page from multiple processors within a node are com-
bined into one, the load on the processor(s) servicing the page may not be as high
as when the number of nodes in the network equals the number of processors. These
studies have ignored the effects of contention and protocol load imbalance, as these
become significant only on a network with a large number of nodes.

Two papers that look at large networks of uniprocessors are Zhou et al. [20] and
Bal et al. [4]. Zhou et al. evaluated the home-based lazy release consistency protocol
against the basic LRC protocol on an Intel Paragon. The relatively large message
latency, page fault, and interrupt times compared with memory and network band-
width, and the extremely high cost of diff creation on the Paragon architecture are
uncommon in modern parallel platforms and are biased towards the HLRC protocol.
The high diff cost, led the authors to conclude that the performance gap between
Tmk and HLRC results from the bast differences in message count. We show that
the performance gap results, instead, from the difference in protocol load balance.

Bal et al. evaluated Orca, an object-based distributed shared memory system, on
a Myrinet and a Fast Ethernet connected of 32 200MHz Pentium Pro computers. The
object-based DSM system decreases the number of messages and data from reduced

false sharing at the cost of the programmer’s extra effort to explicitly associate shared
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data structures with objects. Objects with low read/write ratio are stored in a single
processor, while those with high read/write ratio are replicated on all processors using
multicast.

Monnerat and Bianchini [15] uses a method similar to Adaptive Striping to update
consumers of producer/consumer pages after a barrier. It differs however in that
it updates all consumers instead of just one as is the case for adaptive striping.
Moreover, their objective was to reduce memory latency by selective update. In

contrast we aim to reduce the total bandwith requirement from any given node.
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Chapter 6

Conclusions

We evaluate the performance of three page-based, multiple-writer protocols imple-
menting Lazy Release Consistency (LRC) [11] on a network of 32 uniprocessors. We
use two existing protocols, Princeton’s home-based protocol [20] and the TreadMarks
protocol [12], and a third novel protocol, Adaptive Striping. Adaptive Striping is a
simple extension of the TreadMarks protocol. Its goal is to eliminate load imbalance
(within the protocol) at the nodes automatically.

In general, we show that memory latency increases due to contention and protocol
load imbalances are a significant obstacle to scalability. We argue that contention
reduction and protocol load balancing should be considered, in addition to message
reduction, by designers of scalable DSM system:s.

The results show that programs that exhibit good scalability experience minor
variations in memory latency (for example, only a 4.7% increase as we quadruple
the number of nodes), do not suffer from contention, and have a good balancing of
protocol load. In contrast, programs that scaled poorly suffered from large memory
latency increases (up to 280% higher) due to contention and protocol load imbalances.
Furthermore, the results show a relationship between contention and protocol load
balancing: Higher protocol load imbalances usually results in increased contention.
Intuitively, an increase in the proportion of data distributed from a node, increases
the likelihood of simultaneous requests to that node.

For most of our programs, Tmk and HLRC are equally affected by contention

and achieve similar performance. Where they differ significantly, the protocol load
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imbalance (caused by the read accesses to pages that have multiple readers following
one or more writers) is the largest factor accounting for the difference.

We described and evaluated Adaptive Striping. It is an extension to the Tread Marks
protocol that automatically alleviates contention by reducing protocol load imbalance
produced by multi-page data structures that are written by one node but read by mul-
tiple nodes. In our evaluation, we found that Adaptive Striping achieves performance
equal to or better than the best of the TreadMarks or the best tuned home-based
implementation without requiring the manual assignment of homes.

Furthermore, the results for Adaptive Striping show that the distribution of the
messages 1s no less important than the number of messages. For example, for Barnes-
Hut, Adaptive Striping and the home-based protocol transfer roughly equal amounts
of data and have identical message distributions. Although Adaptive Striping sends 12
times more messages than the home-based protocol, they achieve the same speedup.

Contention still, however, occurs in both Adaptive Striping and HLRC. The strip-
ing of updates for multi-page data structures that suffer from single-page contention,
whether it is by static home assignment as in HLRC or by dynamic placement as in
Adaptive Striping, does not eliminate contention for the data. It only makes con-
tention less frequent on a particular node.

There are still sources of contention that our protocol extensions do not address.
In 3D FFT, the contention was caused by multiple processors accessing different
single-writer/single-reader pages at the same time. By manually restructuring the
transpose loop, we found that the speedup could be improved from 14.14 to 16.74
on 32 processors. In Gauss, the contention is due to a single-writer/multiple-reader
sharing pattern, but two factors prevent our protocol extensions from helping. One
is that only two or three pages are read at a time, so Adaptive Striping can not help
much. The other is that each page is only read by each processor (other than its

producer) once. So, there is not a repeated pattern to trigger Adaptive Striping.
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