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ABSTRACT

Continuous monitoring of cough may provide insights into the health
of individuals as well as the effectiveness of treatments. Smart-
watches, in particular, are highly promising for such monitoring:
they are inexpensive, unobtrusive, programmable, and have a va-
riety of sensors. However, current mobile cough detection systems
are not designed for smartwatches, and perform poorly when applied
to real-world smartwatch data since they are often evaluated on data
collected in the lab.

In this work we propose CoughWatch, a lightweight cough de-
tector for smartwatches that uses audio and movement data for in-
the-wild cough detection. On our in-the-wild data, CoughWatch
achieves a precision of 82% and recall of 55%, compared to 6%
precision and 19% recall achieved by the current state-of-the-art ap-
proach. Furthermore, by incorporating gyroscope and accelerome-
ter data, CoughWatch improves precision by up to 15.5 percentage
points compared to an audio-only model.

Index Terms— audio classification, cough detection

1. INTRODUCTION

Coughing is a common reflex that can sometimes indicate illness or
worsening health. In individuals with lung disease, for example, an
increase in coughing frequency may be associated with the onset of
an episode, or general worsening, of their disease [1]. Therefore,
continuously monitoring coughs could be highly valuable for mon-
itoring the health of people prone to, developing, or suffering from
lung disease [2, 3]. Similarly, cough monitoring could have a role
in COVID-19 detection and monitoring since coughing is a common
symptom [4]. For healthy individuals, cough monitoring could pro-
vide a baseline for health and indicate changes from this baseline.

Unfortunately, current mobile cough detection systems used by
the medical community rely on either manual cough counting [5] or
specialized, standalone hardware [6, 7] making them burdensome to
use. Recently, the European Respiratory Society has stated that there
is an urgent need for continuous cough detection systems [8].

The popularity of commodity mobile devices has given rise to
a potential alternative: these lightweight, ubiquitous, inexpensive,
and unobtrusive devices can be used as sensing platforms for cough
detection. However, while there has been some work on using mo-
bile phones and smartwatches for cough detection [9, 10, 11], that
work is usually developed and evaluated using in-lab data, due to
the lack of public, high-quality, labeled real-world datasets. In-the-
wild data collected from smartwatches is quite different from lab
data: audio is noisy, its properties change with the environment, and
microphone position is affected by arm movements [12]. Further-
more, collecting in-the-wild data is challenging and labelling partic-
ularly so [13]. The difference between coughs recorded in an in-lab
setting and those recorded in an in-the-wild setting is illustrated in
Figure 1(a) and Figure 1(b). This results in cough detectors devel-
oped on in-lab data not transferring well to data collected in the wild,
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Fig. 1. While in-lab audio is clear (a), in-the-wild audio is often
noisy (b), negatively impacting performance of existing cough detec-
tors (c), even when designed for in-the-wild audio [15] or retrained
on our own in-the-wild dataset [14, 10].

even when retrained on in-the-wild data. For example, Figure 1(c)
shows the difference in I score for three existing works [14, 10, 15]
when trained and evaluated on in-lab data compared to in-the-wild
data. Despite having 9 X more data in the wild dataset, SymDet and
DNN16 models have a 3.2 and 4.7 times lower F; score, with Ubi-
coustics scoring even lower.

We propose CoughWatch: a cough detector designed to run on
smartwatches and operate on real world data, enabling continuous
and unobtrusive cough monitoring. We use smartwatches to collect
and label 97 hours of continuous, in-the-wild audio and motion data
from 16 participants, and show that CoughWatch achieves 5.7 to 6.7
times higher F score on in-the-wild data than existing cough de-
tectors. We also demonstrate the feasibility of running CoughWatch
continuously on a smartwatch for a full day.

2. DATA COLLECTION AND PREPARATION

To develop and evaluate our model, we collected two datasets: a
large in-the-wild dataset for developing models, and a smaller in-lab
dataset for comparisons to existing work. All studies were approved
by the University Health Network Research Ethics Board (REB 15-
9068 and 18-5462).

In-the-wild Dataset: We recruited 16 participants who had a
chronic lung disease (4 female, 12 male, mean age 69.3), for a 3-
month in-the-wild study. Each participant was given a smartwatch
and a smartphone equipped with our data collection applications.
As part of informed consent, participants were made aware of the
data being collected by the smartwatch application and shown how
to use various privacy features built in to the app. Participants went
about their normal lives, wearing the smartwatch during the day
and charging it at night. While charging, data was relayed by the
smartphone to our server.

In-lab Dataset: For the in-lab portion, we recruited an additional 13
participants with the same chronic lung disease (exact selection cri-
teria listed onour ClinicalTrials.gov entry NCT03857061).
To match existing works [10, 11], we record audio data from the
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smartphone rather than a smartwatch. Participants either held the
smartphone or placed it on the table in front of them. The participant
is guided through several exercises, tests and tasks, such as speaking,
walking, lung function tests, and voluntary coughing.

Audio Preprocessing and Labelling: To label our data, we first
remove silence by applying A-Weighting filter [16], squaring the
result, applying a low pass filter, and thresholding on 0.5 second
windows. These non-silent segments are then labelled by paid an-
notators. Each segment is labeled as having a cough or not having
a cough. We labelled 10% of non-silent segments twice (different
annotators) to allow us to compute inter-rater agreement.

Resulting Datasets: We collected 4225 hours of sensor and audio
data from the in-the-wild study. Of the 4225 hours of audio, 1726
(41%) hours were non-silent. To date we have labelled 97 hours
(2.3% of total), identifying 912 positive (cough) and 65, 062 nega-
tive examples (1:72 class balance) with an inter-rater agreement of
95%. The in-lab study resulted in a total of 12 hours of in-lab audio
of which 5.8 hours (48%) were non-silent. We labelled all 5.8 hours,
resulting in 288 positive and 6, 779 negative examples (1:23 class
balance). The proportion of coughs in the in-lab dataset is much
higher than in-the-wild dataset because the in-lab study contained a
voluntary coughing session, a common practice in existing a work.

3. COUGHWATCH

We define the following classification task: given a 10 second audio
segment (and, potentially, corresponding accelerometer and gyro-
scope measurement), determine whether the segment contains a
cough. We build two cough detection models for this task: Cough-
Watch Audio Only (AO) relies solely on audio data, while the
CoughWatch Sensor Fusion (SF) also uses data from IMU sensors
(gyroscope and accelerometer).

Input Data: As input, we use smartwatch audio, accelerometer and
gyroscope data. Audio is sampled as 16-bit monochannel PCM at 16
kHz, and is divided to 10-second clips (zero-padded as needed). Au-
dio clips are pre-processed using a 24-length gammatone filterbank
applied to 20ms frames and converted into a spectrogram. These fea-
tures were described and extensively evaluated for cough detection
by Saba [17]. Accelerometer and gyroscope data is sampled at 20
Hz, and is fed into the models without any preprocessing, similar to
how previous work has used IMU data for machine learning [18].

Data Augmentation: We augment the audio data in two ways.
First, we drop every second audio sample and linearly interpolate
the dropped samples. We apply this interpolation-based augmenta-
tion method twice, once dropping even samples and once dropping
odd samples. The second augmentation method adds white Gaus-
sian noise, scaled such that the amplitude of the noise is 1% the
amplitude of the original audio. Combining these two augmenta-
tion methods quadruples the size of our training data. We found that
varying parameters of an augmentation or applying it repeatedly did
not improve performance. IMU data is not augmented.

Audio Only Model: For CoughWatch AO, we use a convolutional
neural network (CNN) as shown in Figure 2(a). The audio spec-
trogram is passed through three convolutional sets with the final set
connecting to a flatten layer. Each convolutional set consists of a
convolutional layer, a batch normalization layer, and a max pooling
layer. The flattened output of the convolution is passed to a dense
network with three layers of 128, 64, and 32 neurons each. To re-
duce overfitting, we add dropout layers with rate of 0.2 between ev-
ery dense layer, as well as the start and end of the dense network.
The final dropout layer connects to the output layer where we have
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Fig. 2. Cough detection models.

two nodes corresponding to our prediction. All layers use rectified
linear activations except the output layer, which uses softmax. The
parameters for the model were chosen using a systematic hyperpa-
rameter optimization procedure on a small subset of the data using
standard grid search.

Sensor Fusion Model: CoughWatch SF consists of three sub-
networks that feed into a single dense network as shown in Fig-
ure 2(b). The audio sub-network is identical to the trained Cough-
Watch AO model, and its weights are frozen during training of the SF
model. Freezing the weights allows the AO subnetwork to be used
independently. This opens the possibility of dynamically switching
between the AO and SF models during execution to save battery life
by turning off IMU sensors, or to avoid accuracy degradation when
a distribution shift is detected in IMU data (e.g., due to physical
activity or travel). We feed the accelerometer and gyroscope data
into two identical networks, consisting of a convolutional set, a
flatten layer, and a dense layer with dropout. The output of all three
networks is then concatenated and passed through two more dense
layers with dropout, before the final output layer. The structure of
the output layer, the activation function, and the optimization are the
same as CoughWatch AO.

4. EVALUATION

Our main method of comparison is through precision-recall curves.
Previous works [14, 15], which relied on data collection in controlled
settings has often relied on ROC curves or overall accuracy, both of
which are poor indicators of performance in completely wild settings
where data classes are heavily imbalanced. To allow comparision
with previous works, we do also present ROC curves.

We train models using adaptive moment estimation [19] (Adam)
with Ir = 0.001, 51 = 0.9, B2 = 0.999 and decay of 0. We
reduce the learning rate by a factor 10 if validation loss does not
decrease for 3 epochs. We also use early stopping: if validation
loss has not decreased for 15 epochs. Our models generally train for
fewer than 30 epochs. We use stratified Monte Carlo cross validation
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Model Parameters FLOPS AUC F

DNNI16 [14] 0.04M 0.5M  0.759 0.095
Ubicoustics [15] 72M  1082M  0.504  0.010
Coughwatch AO 0.5M 8M 0.835 0.638
Coughwatch SF 0.6M I9M 0.855 0.550

Table 1. Performance of CNN-based models on in-the-wild data.
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Fig. 3. P-R curve for in-lab and in-the-wild data.

with 5 rounds. In each round, we use a 64:16:20 train, validate,
test split, with each set preserving the proportion of coughs. We
use the procedure proposed by Forman and Scholz [20] to aggregate
multiple rounds of training into a single precision-recall curve.

4.1. Cough Detection Accuracy

We evaluate the performance of CoughWatch AO and CoughWatch
SF on our labeled datasets, and compare it to three state-of-the-
art cough detectors. The first is SymDetector [10], which com-
putes features on an audio segment and uses a support vector ma-
chine (SVM) to detect coughs. We found that replacing the SVM
with a gradient-boosted tree [21] resulted in better performance, and
we therefore also compare against a version of SymDetector with
XGBoost (SymDet XG). The second model, denoted DNN16 [14],
uses short-time Fourier transforms and a CNN-based architecture.
We implement these models as closely as possible based on details
from their respective works, as the implementations were not pub-
licly available. We validated our implementation by comparing the
ROC curve and ROC AUC score of the CNN model proposed in
DNN16 [14]. The ROC curves for all models are shown in Figure 5.
The third model we compare to is Ubicoustics [15]. It was trained
using public datasets, including AudioSet [22], and claims to work
off-the-shelf for in-the-wild cough detection. Thus, we used the pre-
trained model for evaluation. Table 1 shows the size, complexity and
performance of these models. CoughWatch is an order of magnitude
smaller and faster than the SotA [15], with superior performance.

Detection Performance: Figure 3 shows the precision-recall curve
for both the in-lab and in-the-wild datasets. For each curve, we find
the point that maximizes F score and find that CoughWatch sub-
stantially outperforms existing cough detection systems on both our
in-the-wild data and in-lab data. On the in-lab dataset, CoughWatch
AO achieves a maximum F} score of 0.773 with a precision of 0.838
and recall of 0.717, higher than DNN16 (£} = 0.466), Ubicoustics
(F1 = 0.09), SymDetector (F1 = 0.124) and SymDetector with
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Fig. 4. Learning curves with and without augmentation.

XGBoost (F1 = 0.352). On the in-the-wild dataset, CoughWatch
SF achieves a maximum Fi score of 0.660 (precision of 0.820 and
recall of 0.552), 5.7 times higher than SymDetector with a maxi-
mum F} score of 0.111, 6.7 times higher than DNN16 with a max-
imum £} score of 0.095 and substantially higher than Ubicoustics
which had a maximum £ score of 0.01. CoughWatch AO is also su-
perior to prior work, achieving a maximum F} score of 0.638 (0.743
precision and 0.559 recall). Ubicoustics is a general sound activ-
ity detector, rather than a cough detector, and is designed to work
out-of-the-box for in-the-wild data. We hypothesize that this, along
with their slightly more controlled data collection process, is why it
achieved a high precision, but low recall and F score on our dataset.

Effect of IMU Data: As shown in Figure 3 the CoughWatch SF
model, which combines audio data with accelerometer and gyro-
scope data, outperforms the audio-only model. To better quantify
this difference, we compare the precision of CoughWatch SF and
CoughWatch AO models at the same recall. Between 40% and 70%
recall, we observe a 4 to 15.5 percentage point increase in precision
when using the IMU data. While the difference in the precision-
recall curve may seem small, because coughing is a rare event, the
increase in precision becomes substantial. For instance, at 50% re-
call, the audio only model would have 11.7 false positives in a day
whereas CoughWatch would have 5.6.

Effect of Data Augmentation: Figure 4 shows how precision and
recall grow when we increase the size of the training set, with and
without data augmentation. Data augmentations boosts precision
and recall substantially: it yields 3.5 to 6.2 times higher precision
than when using un-augmented data. Similarly, augmented data re-
sults in between 1.3 to 4.3 times higher recall. Additionally, we
observe that precision and recall scores have not plateaued with the
amount of annotated data, implying that additional training data is
likely to yield further improvements.

4.2. Running on a Smartwatch

CoughWatch is designed to run on smartwatches, which are battery-
and CPU-constrained. To evaluate how well-suited CoughWatch is
to continuous monitoring, we implement it on a smartwatch, and
measure runtime and the effect on battery life. In our testing, we use
three Android Wear smartwatches representing three generations of
wearable processors: LG Urbane (Snapdragon 400), Huawei Watch
2 (Snapdragon 2100) and Misfit Vapor X (Snapdragon 3100).

We modify the application used for in-the-wild data collection to
run continuously instead of with a duty cycling scheme. The cough
detector first pre-processes the audio data, converting it into a gam-
matone spectrogram using a cross-compiled gammatone library [23]
and JTransforms [24]. The spectrogram and IMU data, is fed into
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Fig. 6. Runtime of running our system on three smartwatches (a),
and resulting battery life on LG Urbane under different operating
modes (b). Error bars show standard deviation.

the CoughWatch SF CNN built with TensorFlowLite 2.1.0.

First, we evaluate whether the pre-processing and CNN can run
in real time on a smartwatch. We run our application and log the start
and end timestamp of the pre-processing calculation and the CNN
inference on 10 second data. We collected at least 2000 runs for each
watch. The mean and standard deviation of the runtime for all three
of our watches is shown in Figure 6(a). We observe that all watches
are able to run our cough detection system in real time, taking 1.5 to
2.3 seconds to process 10 seconds worth of data. Interestingly, the
CNN is much faster than computing the spectrogram — accounting
for only 3-10% of the overall runtime.

Next, we evaluate the effect on battery life of running Cough-
Watch SF on a smartwatch. To do so, we configure our application
to run under four different modes. We conducted each mode six
times where we charged the watch to over 95% and then ran the ap-
plication continuously until the battery fully discharged. In the first
mode, idle, our application periodically records only battery levels.
In the IMU mode, our application records data from the accelerome-
ter and gyroscope. In the third mode, IMU+Mic, we record IMU and
audio data. Finally, the CW mode both collects and preprocesses the
data and then runs CoughWatch SF. Figure 6(b) shows the mean and
standard deviation of the battery life for these modes when running
continuously on the LG Urbane. We expect the other two watches to
have longer battery lives as they have larger batteries and newer pro-
cessors. In the idle condition, we measured the LG Urbane to have
a 25.7 hour battery life. Recording data from the IMU drops this
down to 16.9 hours and recording from the IMU and microphone

reduces battery life further to 10.2 hours. Running CoughWatch re-
duced battery life by a further 2.4 hours, showing that running the
model drains the battery 24% faster than simply recording the data.

Given that in our data collection studies we rely on duty cycling
(record data for a short time then sleep for a set time) to even sim-
ply record data, we wanted to estimate the battery life of running
cough detection in a duty cycling scheme. To do so, we follow the
simulation approach proposed in our prior work [18, 25]. The sim-
ulator starts at minute zero with a full battery, and estimates what
the battery level should be every minute by sampling from a normal
distribution described by the mean and standard deviation of the idle
condition, or the mean and standard deviation of the CW condition,
based on the duty cycle state. Based on 100 runs, we estimate that
running CoughWatch on a smartwatch with a 2 min record/8 min
sleep duty cycling scheme would provide 17.4 hours of battery life
(SD: 0.48 hours), which is enough to last a full day. Using silence
detection to reduce the number of times preprocessing and the CNN
have to run would likely result in additional battery life.

In summary, CoughWatch can run on a smartwatch in real-time.
Using a duty cycling scheme, which is already required for simply
recording data, CoughWatch can be run while still providing a full
day of battery life.

5. RELATED WORK

Beyond the three cough detection systems we previously dis-
cussed [10, 14, 15], many other cough detection systems have
been developed. Some systems, including Ubicoustics, have been
developed using publicly available audio clips of coughs [26, 22].
However, these models may not generalize to real-world applica-
tions; for example, the AudioSet dataset [22] contains dog coughs,
and may not be representative of real-world coughs. Other systems
have designed and conducted studies in order to collect datasets.
For instance, MobiCough [27] used a collar based microphone to
collect their data. Similarly, [11] and [28] used a neck-worn device
to record audio. While these ideally placed devices are better suited
to pick up cough sounds, they are less practical for long term use.
In our data collection study design, we used a smartwatch for cough
detection as smartwatches are unobtrusive, readily available and
have been shown to be a feasible method for monitoring [2].

In-the-wild data collection studies introduce many privacy con-
cerns. While IMU data has been used for in-the-wild clinical moni-
toring [18], audio, despite being a rich source of information, is un-
derused. One reason for this is that audio data contains sensitive in-
formation that impacts the privacy of the participants [29]. We have
shown that the trained model can run directly on the smartwatch,
eliminating the privacy concerns of uploading audio recordings to a
remote server. Alternatively, [11] and [9] have proposed solutions
for privacy-preserving cough detection when running the model on
a remote server is essential.

6. CONCLUSION

Our goal was to build a practical cough detection system. To achieve
this goal, we paid close attention to how the model would be de-
ployed. This led us to collect in-the-wild data from a smartwatch
with participants living their life as usual. We also designed the sys-
tem to be lightweight enough to run on the smartwatch. The resulting
system has a 5.7 to 6.7 times higher F score than prior work. Clos-
ing the loop, we show that running this model on a smartwatch is
feasible in terms of battery life and compute requirements.
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