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Abstract— Chronic obstructive pulmonary disease
(COPD) is one of the leading causes of human mortality
worldwide. Traditionally, estimating COPD severity has
been done in controlled clinical conditions using cough
sounds, respiration, and heart rate variability, with the
latter reporting insights on the autonomic dysfunction
caused by the disease. Advancements in remote monitoring
and wearable device technologies, in turn, have allowed
for remote COPD monitoring in daily life conditions. In
this study, we explore the potential for predicting COPD
severity and exacerbation using a low-cost wearable device
that measures heart rate and activity data. We collected
smartwatch sensor data from 35 COPD patients over a
period of three months. Our evaluation shows that future
trajectory of the disease can be predicted using only the
first few days of continuous unobtrusive wearable data
collected from COPD patients. Using features extracted
from wearable device an Isolation Forest was able to
predict exacerbation with an area under curve (AUC)
0.69 thus showing improvement over a random choice
classifier.

I. INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is
one of the leading causes of death worldwide [1]. The
disease is characterized by a progressive blockage of
airways leading to shortness of breath and decreased
quality-of-life for affected individuals [2]. Exacerbation
of these chronic conditions often leads to frequent hospi-
talizations and increased healthcare costs. Recent focus
towards remote monitoring of the disease has shown
reduced costs with improvements in patient quality-of-
life [3]. Additionally, focus towards remote monitoring
of chronic disease patients has received a renewed
push due to the recent COVID-19 pandemic, which has
greatly burdened the healthcare systems worldwide [4].
Remote health monitoring is further enabled by recent
advances consumer sensing technologies for wearable
devices allowing for long-term, unobtrusive, and contin-
uous acquisition of biomedical data [5].

As a result, several studies have made use of wearable
devices to monitor COPD. These include smartphones
for monitoring coughing, lung sounds, respiratory rate
and also for gait and activity sensing [6]. Heart rate
(HR) and Heart Rate Variability (HRV) measured using
smartwatches and/or chest-straps [6]–[8] have also been

a popular tool for COPD monitoring [6] . HRV, com-
puted as the variability of the inter-beat interval (RR)
series, measures the autonomic dysfunction caused by
COPD [8], [9]. HRV has traditionally been quantified
using time- and/or frequency-domain features computed
from the RR time series [10]. Additionally, the existence
of myocardial infarction as a co-morbidity with COPD
makes it an important modality for measurement [3].
HRV measurements have traditionally been conducted
on short term 5-minute RR time series for various
applications [10]. However, shorter duration segments
have been used in other wearable applications [11].

However, these studies have been conducted in con-
trolled laboratory environments [6] using instantaneous
RR information available from the unprocessed physio-
logical signals [6], [7]. Further, the experiments relied
on presence of a physician when collected in hospital
settings [7]. Such data collection methods often try to
remove effects of activity such as movement artefacts,
light and temperature, the circadian cycle, and other
confounding variables [12], as well as experimental
noise during data collection. Hence, when used “in-the-
wild” these methods perform very poorly, if at all [13].
Additionally, instantaneous HR might not be available
for wearable devices for long-term monitoring. Here,
HRV calculated from low-resolution HR data provided
by commercially available devices is used and may not
be comparable to raw signals, thus further decreasing
performance [14].

In this work, we propose the use of smartwatch data
collected in-the-wild for prediction of COPD severity
levels and exacerbation. We show that a combination of
activity and HRV features give the best performance by
using the first few days of each subject data for training.
To our knowledge, this is the first long-term study
conducted in an in-the-wild setting showing the potential
for remotely predicting COPD symptoms/severity using
commercially available smartwatches.

II. MATERIALS AND METHODS

A total of 35 (18 females, mean age: 69.9 ± 9.05) par-
ticipants with COPD were recruited for a three month,

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

978-1-7281-1179-7/21/$31.00 ©2021 IEEE 7450

20
21

 4
3r

d 
A

nn
ua

l I
nt

er
na

tio
na

l C
on

fe
re

nc
e 

of
 th

e 
IE

EE
 E

ng
in

ee
rin

g 
in

 M
ed

ic
in

e 
&

 B
io

lo
gy

 S
oc

ie
ty

 (E
M

B
C

) |
 9

78
-1

-7
28

1-
11

79
-7

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

EM
B

C
46

16
4.

20
21

.9
62

99
49

Authorized licensed use limited to: The University of Toronto. Downloaded on April 24,2022 at 12:56:27 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
LIST OF SYMPTOMS IN THE DAILY QUESTIONNAIRE

Major worsening breathlessness, change in sputum
colour, increased sputum amount

Minor a cold (runny or blocked nose), increased wheeze
or chest tightness, sore throat, worsening cough

Fig. 1. Distribution of symptom scores across all participants

ethics review board (ERB) approved study. The partic-
ipants were given a smartwatch and a smartphone with
the data collection application pre-installed. Participants
first gave informed consent regarding the type of data
being collected and were instructed about the in-built
privacy features. The participants were then asked to
wear the watch during their daily activities and charge
the watch at night. However, eight participants dropped
out early on due to either personal reasons or difficultly
in using the data collection application. The dropped out
set still consented for the use of their data.

The participants filled out a daily questionnaire re-
garding their health using a smartphone application. The
symptom questionnaire, scoring system, and exacerba-
tion definition are adapted from [15]. They were asked to
select symptoms that were “worse than usual” from a list
of given symptoms (Table I). Each symptom is weighted
as 1 (minor) or 5 (major), and the sum of weights is the
daily total symptoms score; Fig. 1 gives the distribution
of the symptoms scores. Additionally, an exacerbation
is defined as two consecutive days with symptoms score
of 6 or above – indicating two consecutive days with at
least one major and one minor symptom.

A. Wearable Sensors

Each participant was given an Android Wear Smart-
watch (Samsung Galaxy Watch, 42mm or 46mm) and
a Samsung Note 9 smartphone. The smartwatch records
audio data (from microphone), activity (from gyroscope
and accelerometer), and HR (from photoplethysmogra-
phy, PPG, at a sample rate of 100 Hz) information. To
preserve the battery life of the device, we use a 20%
duty cycle: 2 minutes continuous collection followed by

Fig. 2. Representative PPG and HR provided by the smartwatch

Fig. 3. Distribution of lengths of usable HR segments

8 minutes of inactivity. During the collection periods,
the smartwatch provides HR values every second. The
device also contains an internal quality metric for PPG
signals and when segments are deemed “too noisy,”
the HR data is not recorded. Activity information is
provided by the watch as total steps and the duration
for the activity along with the hour in which the activity
was recorded. For this paper, we only focus HR and
activity information provided by the smartwatch.

B. Pre-processing

PPG data collected in-the-wild can have added noise
due to several sources, including motion artifacts, tight-
ness of watch, and environmental light [16]. Figure 2
shows an example PPG signal (bandpass filtered: 0.4-
5Hz) with clean PPG and motion artifact regions cap-
tured by the smartwatch, along with the heart rate
provided by the watch’s internal PPG detection algo-
rithm. As a result, the HR information provided by the
smartwatch may have missing values, which can greatly
impact the calculation of the HRV metric [17]. In order
to ensure the quality of the HRV metric calculated,
segments with more than 10 continuous seconds of
missing HR information are discarded as unusable.

Fig. 3 shows the distribution of lengths of usable
segments. Most of the usable segments are between 40-
60 seconds in length and only a few segments being
a full 2 minutes of PPG recording. Short-term HRV
analysis has been generally conducted with 5 minute
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TABLE II
BENCHMARK HRV FEATURES EXTRACTED

Type Features

Time meanRR, standard deviation (sdRR), coefficient
of variation, rmsdd, pNN50, pNN20

Frequency High frequency power (HF), normalized HF,
Low frequency power (LF), normalized LF, very
low frequency power, total power, LF/HF

windows, as recommended by [10]. However, smaller
segments referred to as ultra-short term HRV have been
tested in various domains [11]. We only considered
HR segments with lengths > 45s for HRV calculation
in order to preserve the low frequency (0.04-0.15 Hz)
component of the HRV signal [11]. Before HRV feature
calculation, the HR segments were converted to RR val-
ues and a range-based filter was applied to remove any
outliers. The range-based filter removes physiologically
impossible values detected by the smartwatch algorithm
by removing values below 350ms and above 1200ms.

C. Feature Extraction

1) HRV Features: We extract standard time- and
frequency-domain HRV metrics; a complete list can be
found in Table II. A majority of these features have been
shown in the literature to correlate with COPD severity
levels [6], [7]. Complete details about these measures
can be found in [10].

HRV features were first extracted for each segment.
Next, features were aggregated over a window of the
last 12 or 24 hours before the survey was answered,
to capture the long duration variability of HRV. The
aggregation was done using the following statistical
functionals: mean, standard deviation, min, max, skew-
ness, and kurtosis. This resulted in a total of 78 (13×6)
HRV features.

2) Activity Features: Physical activity is among the
strongest predictor of mortality in COPD patients [18]
and increased activity is known to improve COPD
symptoms [19]. We used activity data provided by the
smartwatch to derive several activity features to measure
this change. These features were calculated based on
the activity levels in the 12- or 24-hour window before
survey was answered. The features correspond to the
total steps taken, the total activity time, number of
active hours, and number of inactive hours, all computed
over the analyzed window. A total of 82 features (78
aggregated HRV and 4 activity features) per 12h or 24h
window are available for prediction.

D. Prediction Pipelines

1) Symptom Score Prediction: Here, we made use
of a past-future model for evaluation. The models were

trained on the first X days (X = 7 to 14) of data for the all
subjects as the training set. The next 7 days of data (from
day X+1 to day X+7) from each subject was used as the
validation set for parameter tuning. The remaining days
were used for the test set. Subjects were only included
in the analysis if they had at least four weeks of data.
As a result, we evaluated 8 and 12 subjects for the 12-
and 24-hour feature aggregation settings, respectively.

Daily COPD symptoms scores were binarized using
a threshold of 3 into low and high severity levels and
a binary classification was performed on the labels.
Hence, a score with all four of the minor symptoms
or at least one major symptom are categorized as high
severity while anything less than that are considered low
severity. The models have a number of hyper-parameters
that need to be tuned. Optimal hyper-parameters were
searched on the validation dataset and used to make a
final predictions on the test set. We report these final
predictions as our result. Parameters searched include:

1) number of first X days (X = 7 to 14) to use for
each subject;

2) HRV features alone or combined HRV-activity;
3) feature set aggregation window: 12 and 24 hours;
4) classifier: SVM (with RBF kernal, class weight:

balanced), logistic regression, and a random forest
(with 20 trees). Default values were used for all
other parameters of the classifiers;

5) sampling, where two oversampling methods were
tested, including the standard oversampling strat-
egy and synthetic minority oversampling technique
(SMOTE). SMOTE is a data augmentation method
that creates new samples for the minority class
drawing new samples from the linear interpolation
between neighboring samples [20].

Training traditional machine learning classifiers with
a large number of features may lead to overfitting and
many features may exhibit high correlations amongst
them, thus not contributing to the prediction task. As
such, recursive feature elimination was performed with
a step size of 1 using the extra trees classifier for
feature ranking. Here, the top 10 features were selected
before prediction for each hyper-parameter setting. Due
the dataset imbalance (% imbalance: 0.19), balanced
accuracy (BACC), F1-score (F1) and Matthews correla-
tion coefficient (MCC) are used as figures-of-merit. An
MCC value of 0 represents random prediction while 1
represents perfect prediction and has been shown to be a
robust metric for imbalanced data [21]. Additionally, the
receiver operating characteristic (ROC) curve along with
the AUC value are also shown for the optimal setting.
The performance was also compared to a baseline classi-
fier that randomly chooses based on the class distribution
in the training test (called a random choice classifier).
The hyper-parameters were searched on the validation
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TABLE III
TOTAL DATA SUMMARY FOR 12- AND 24-HOUR AGGREGATION

SETTINGS

Hours Subjects Samples %Severe %Exacerbation

12 8 862 24% 15%
24 12 1393 22% 14%

dataset and optimal values chosen based on maximizing
the MCC metric.

2) Exacerbation Prediction: For prediction of exac-
erbation, an anomaly detection approach was used with
the exacerbation events treated as anomalies due to the
small number of such events in the dataset. An isolation
forest [22] with default parameters was used as the
classifier to train the normal samples of the training
data. For isolation forest, the measure of normality of
an observation given a tree is the depth of the leaf
containing this observation, which is equivalent to the
number of splittings required to isolate this point in the
feature space. An anomalous point lies closer to the
root of the tree resulting in smaller depth of the leaf.
Hence, the smaller the measure of normality the more
anomalous a given point is. Due to the small number of
exacerbation samples in both the training and validation
sets, no hyper-parameter search was performed in this
case. The optimal hyper-parameters selected for severity
prediction were used for prediction of exacerbation. The
same performance metrics used for severity prediction
have been used for this along with performance compar-
ison to a random choice classifier. The pipelines were
implemented using the scikit-learn [23] and imbalanced-
learn [20] libraries. Table III shows a summary of the
data and percentage of positive labels for severity and
exacerbation prediction.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Severity prediction

Table IV shows the results for the proposed severity
predictor along with a random choice classifier. Fig-
ure 4, in turn, shows the corresponding ROC curve.
We observe that the performance is better than chance
level for all metrics. The 24-hour aggregation mod-
els, combination of both HRV and activity features,
SMOTE oversampling strategy, random forest classifier,
and using X=9 initial days of data were the optimal
hyperparameters found. Overall, we see improvements
of 0.15 in MCC, 0.09 in BACC and 0.08 in F1 over the
random choice baseline.

An analysis of the top-10 features selected showed
that two functionals of meanRR appear in the top
feature set. A decreased meanRR is an indicator of
sympathetic dominance caused by COPD [24]. Also

TABLE IV
PERFORMANCE ON SEVERITY PREDICTION

BACC F1 MCC

Proposed 0.61 0.41 0.19
Random Choice 0.52 0.33 0.04

Fig. 4. ROC curve for severity prediction

sdRR and coefficient of variation appear as top features.
They have been used as an indicator of improvements in
COPD condition with physical activity [19]. A decreased
sdRR may also suggest a decrease in HRV indicating
autonomic dysfunction [9]. Both LF and HF power
are in the top feature set and are also indicative of
autonomic dysfunction [9] in COPD. Number of active
hours appears as a top feature showing the importance
of physical activity on COPD levels [18], [19]. Overall,
9 of the top 10 features are HRV related showing its
overall importance in detection of COPD severity levels.

B. Exacerbation prediction

Table V shows the results for the proposed exacerba-
tion prediction along with the random choice classifier
performance. Figure 5, in turn, shows the corresponding
ROC curve using the anomaly scores output from the
isolation forest. Again, we observe that performance
is better than chance for all metrics. Overall, we see
improvements of 0.12 in MCC, 0.08 in BACC and 0.04
in F1 over the random classifier.

One limitation of the proposed method is that it
assumes availability of initial calibration data (X) for
each subject in order to train the models. A solu-
tion to this would be a model trained with data from
other subjects only leading to a leave-one-subject-out
(LOSO) evaluation strategy. However, the small amount

TABLE V
PERFORMANCE ON EXACERBATION PREDICTION

BACC F1 MCC

Severity 0.57 0.27 0.12
Random Choice 0.49 0.23 0.0
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Fig. 5. ROC curve for exacerbation prediction

of subjects limits the generalizability and reliability of
a LOSO approach. Moreover, due to the small num-
ber of exacerbation events, no hyperparameter tuning
was performed for exacerbation prediction. While the
results obtained using the hyperparameters from severity
prediction outperform random choice classifier, a larger
database can allow for further improvements via hyper-
parameter tuning.

IV. CONCLUSION

In this paper, we evaluate COPD severity and ex-
acerbation using HR and activity data collected re-
motely from subjects using commercially available
smartwatches during their daily life. We show that future
trajectory can be predicted with the use of only a few
days of subject data for calibration of models. Symptoms
can also be predicted with accuracies above chance with
a combination of HRV and activity features. Overall,
the results suggest that COPD patient monitoring may
be performed remotely, thus reducing the burden on an
already overwhelmed healthcare system.
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