
This paper is included in the Proceedings of the
19th USENIX Symposium on Networked Systems

Design and Implementation.
April 4–6, 2022 • Renton, WA, USA

978-1-939133-27-4

Open access to the Proceedings of the
19th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Starlight: Fast Container Provisioning on the Edge
and over the WAN

Jun Lin Chen, Daniyal Liaqat, Moshe Gabel,
and Eyal de Lara, University of Toronto

https://www.usenix.org/conference/nsdi22/presentation/chen-jun-lin

https://www.usenix.org/conference/nsdi22/presentation/sanaee

Starlight: Fast Container Provisioning on the Edge and over the WAN

Jun Lin Chen
University of Toronto

Daniyal Liaqat
University of Toronto

Moshe Gabel
University of Toronto

Eyal de Lara
University of Toronto

Abstract
Containers, originally designed for cloud environments, are
increasingly popular for provisioning workers outside the
cloud, for example in mobile and edge computing. These
settings, however, bring new challenges: high latency links,
limited bandwidth, and resource-constrained workers. The re-
sult is longer provisioning times when deploying new workers
or updating existing ones, much of it due to network traffic.

Our analysis shows that current piecemeal approaches to
reducing provisioning time are not always sufficient, and can
even make things worse as round-trip times grow. Rather,
we find that the very same layer-based structure that makes
containers easy to develop and use also makes it more difficult
to optimize deployment. Addressing this issue thus requires
rethinking the container deployment pipeline as a whole.

Based on our findings, we present Starlight: an accelerator
for container provisioning. Starlight decouples provisioning
from development by redesigning the container deployment
protocol, filesystem, and image storage format. Our eval-
uation using 21 popular containers shows that, on average,
Starlight deploys and starts containers 3.0× faster than the
current state-of-the-art implementation while incurring no
runtime overhead and little (5%) storage overhead. Finally,
it is backwards compatible with existing workers and uses
standard container registries.

1 Introduction

Docker and other container engines are a popular approach
for software provisioning due to their low overhead, standard-
ization, and ease of use [3, 41, 53, 60]. They provide isolation
and standardized packaging for application files, and are sup-
ported by a large suite of standard tools [16,18,21,23,24]. Un-
like VMs, containers are lightweight and easy to update: even
lightweight VMs [1, 38] require re-building and re-deploying
the entire image. Container images, on the other hand, are
built as a stack of layers; updating a component can be as
simple as rebuilding its layer rather than the entire image [15].

Similarly, we can extend a container by adding layers to the
top of its stack. Deploying is also straightforward: fetch com-
pressed layers from a registry server such as Docker Hub,
decompress them, mount using a layered filesystem [34], and
start the container process. The stack-of-layers structure thus
makes containers easy to develop and maintain, and fits well
into modern development workflows [5].

Though originally designed to be used inside a cloud data-
center [20], containers are becoming increasingly popular in
edge computing, mobile, and multi-cloud settings [11, 22, 25,
47, 56, 61].1 Placing workers outside the cloud and closer to
the user brings many advantages such as lower latency, band-
width and power reduction, and privacy [52, 59]. Containers
can be used to provision network functions at mobile base
stations [13], Function-as-a-Service (FaaS) runtimes on local
datacenters [43], local replicas in distributed stores [42], or
components of distributed applications [61].

However, as systems grow larger and more complex, fast
container provisioning is increasingly important. For exam-
ple, Container-as-a-Service (CaaS) and FaaS providers must
be able to provision workers quickly [3, 41, 60]. Another
common case is rolling software updates, where we must
update software across many thousands of workers [6, 50].
Edge computing brings its own set of challenges: high latency
upstream links, bandwidth limits, resource-constrained local
datacenters and workers, and user mobility. Pulling container
images from a registry in the cloud to an edge worker takes a
long time over wide-area links [25]. Another issue is user mo-
bility, which causes frequent reconfigurations [57], making
worker provisioning a common operation. Finally, limited re-
sources in edge datacenters means that placing a local registry
or cache at every edge can be expensive [25].

While there is work on improving container provisioning
time, many are designed for the cloud [25, 60, 63], and are
ill-suited for edge computing scenarios. For example, FaaS-
Net [60] uses a tree of workers to deploy containers in paral-
lel, which is infeasible when latency is large and bandwidth

1The distinctions between these settings are not relevant for this work,
hence we will refer to all of these using the umbrella term “edge computing”.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 35

is limited. Another popular approach is on-demand down-
load [28,37,58], where we start containers early and download
files on demand. These scale poorly with even moderate la-
tency, even though many containerized applications do not
necessarily require all mounted files immediately.
Our Contributions We identify three barriers to fast con-
tainer provisioning. First, the layer-based structure that makes
containers so convenient also prevents effectively applying
common optimizations such as eliminating redundancy and
downloading files on-demand. Second, the pull-based design
of current approaches, where workers request what they need,
becomes detrimental as latency grows. Finally, current ap-
proaches do not explicitly address the common scenario of
software updates. We argue that faster provisioning requires
a holistic approach to container deployment.

Motivated by these insights, we present Starlight: an ac-
celerator for provisioning container-based applications
that decouples the mechanism of container provisioning from
container development. Starlight maintains the convenient
stack-of-layers structure of container images, but uses a dif-
ferent representation when deploying them over the network.
The development and operational pipelines remain unchanged:
users can use existing containers, tools, and registries. In de-
signing Starlight, we revisit every aspect of the container
deployment mechanism:

• A redesigned worker-cloud deployment protocol sends
all file metadata first, allowing containers to start before
file contents are available. It uses a push-based approach to
avoid costly round-trip requests: workers can specify what
they already have in store, so we send only the files they
need in the order they would be needed.

• On the worker side, we use a new filesystem to mount
files as soon as metadata is available, allowing our custom
snapshotter plugin to start containers quickly while down-
loading file contents in the background. When a container
opens a file whose contents are pending, we block until the
contents are available.

• Workers connect to a new proxy component in the cloud
which implements the new protocol. The proxy optimizes
the list and order of files on-demand, across multiple layers
and containers This reduces duplication and makes updates
faster. The proxy works transparently with existing infras-
tructure: compressed layers are stored in a standard registry,
and legacy workers can connect to that registry as normal.

• A seekable compressed layer format allows the proxy to
send individual compressed files to the worker without hav-
ing to decompress stored layers first. This format has low
overhead (average of 4.2%) and is backwards compatible
with existing workers and registries, so there is no need to
store container images in two formats.

We use 21 popular container images to evaluate Starlight
across a range a range of network latencies, bandwidths, and
scenarios. Our results show that Starlight substantially outper-

forms other approaches across all latencies, with 3.0× faster
provisioning than a state-of-the-art baseline [21], and 1.9×
faster on average than the next best approach [58]. Starlight
also improves provisioning inside the cloud; for example it
can deploy updates 35% faster than prior work [58]. In fact,
Starlight containers often start faster than the time it would
take to merely download an optimized container image. Fi-
nally, Starlight has little-to-no runtime overhead: its worker
performance matches the standard state-of-the-art approach.

Starlight is currently available as an open source project at
https://github.com/mc256/starlight.

2 Background

A container is a process that is isolated from the host system
using techniques such as cgroups and namespaces [35]. A
container is structured as a stack of layers, where each layer
contains a part of the filesystem tree for the containerized
application. Layers are mounted by the container process
using a filesystem such as OverlayFS [34] that presents the
containerized application with a merged view: files in upper
layers replace those in lower layers, making it easy to update
container contents using copy-on-write from lower layers.
Most layers are read-only; writes go to a top read-write layer
using copy-on-write as needed. A container image is the set
of files and associated metadata that represent the container
at rest (i.e., when it is not running). Concretely, container
images are comprised of container configuration metadata
and a sequence of compressed layers: compressed files that
store the files in the layer and their associated metadata.

Containers are easy to develop, maintain, and deploy, due
to their layer-based structure and standardized tooling. For
example, developers can build new containerized applications
by adding layers on top of an existing container image; pack-
aging application updates is similarly straightforward. This
also makes security updates for underlying components fast
and automatic: applying an update simply requires updating
the base layer. The repository of container images (the reg-
istry server) thus resembles a tree where individual images
are split off from a common point.

Containers also make software provisioning easy using a
three-phase process managed by a container engine on the
worker such as containerd [21] or Docker [18]: (i) pull the re-
quested container image from the registry and decompress its
layers, (ii) create a container instance by preparing an initial
snapshot of its filesystem state, and (iii) start the container
instance, which involves mounting the snapshot filesystem
and starting the container process using a standard runtime.

2.1 Edge Computing
Edge computing, defined broadly in this work, is the idea of
placing computing resources outside the cloud, closer to the
data or end users [52, 62]: near the network edge (e.g., local

36 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/mc256/starlight

0 100 200 300
RTT (ms)

0

5

10

15

Ti
m

e
(s

)

redis

0 100 200 300
RTT (ms)

0
5

10
15

node

0 100 200 300
RTT (ms)

0

20

40
postgres

containerd eStargz download

Figure 1: Mean container provisioning time across a range of
latencies; shaded area show standard deviation across 5 runs.

datacenter, base station), user devices (e.g., mobile phone),
or even in low Earth orbit [14]. We include in this definition
settings such as mobile computing, content delivery networks
(CDNs), Internet of Things (IoT), wide-area networks, and
multi-cloud deployments.

Edge computing provides many benefits. For example, the
short distance to users and data means faster and more con-
sistent response times. And, since we no longer need to send
all data to the cloud for processing, it improves privacy and
reduces bandwidth usage. Other benefits include robustness
to network failures and emission reduction [51, 52, 54].

Computing on edge workers has its drawbacks, however.
First, they have much higher round-trip times (RTT) to the
cloud. Recent work has found RTT ranging from 10ms to
400ms [10, 59] on terrestrial internet, and medians of 45–
724ms on satellite-based internet [40]. Cross-datacenter laten-
cies are also high, with one cloud provider reporting RTT be-
tween 2 to 400ms [45]. Bandwidth is also limited, with inter-
datacenter bandwidths of 30–250Mbps [48]. Second, unlike
cloud datacenters that offer virtually endless compute and stor-
age, edge data centers are typically resource-constrained [54].
This encourages aggressive repurposing of workers, which
makes fast provisioning even more important. For example,
maintaining a pool of “hot” workers for elasticity is common
in the cloud FaaS infrastructures, but is more expensive on
the edge [43]. Lastly, edge and mobile applications are more
affected by user mobility than cloud applications: as users
move the nearest edge datacenter changes, which entails more
frequent reconfiguration [57], i.e., provisioning.

3 Motivation

To explore the effect of latency on containers, we use
containerd [21] to provision three popular containers over
a 100Mbps connection with variable latency (see §5.1 for
technical details). Figure 1 shows provisioning time, defined
as the time it takes for the containerized application to down-
load, decompress, start, and be ready. For comparison, we
also show the download time for a file of equivalent size
(dashed lines). We observe that containerd time increases
substantially as RTT grows, and can even triple when RTT is

300ms. Moreover, in all cases provisioning time increases at
a faster rate than would be expected simply due to extra net-
work latency, which can be seen by comparing provisioning
time to download time.

We also compare to eStargz [58], a recent approach that
accelerates provisioning by starting the container before its
layers have finished downloading and retrieving individual
files on-demand. Prior work has found that many files are not
used during container startup [28], indeed our three example
containers access less than 1% of their files during startup
(comprising 1–39% of data). Rather than wait until all files are
available, eStargz starts the container quickly and download
files on-demand [27, 28, 65]. It goes further by optimizing
the order of files in each compressed layer such that the “hot”
files needed early in container startup are placed first, thus
avoiding redundant requests. Workers first fetch the hot part
of each layer, start the container, and continue fetching the
remaining files in the background or lazily on-demand.

As Figure 1 shows, when latency is small eStargz can
accelerate provisioning. However, as RTT grows eStargz
scales worse than the baseline and can even become slower
than baseline containerd, as demonstrated for postgres
with RTT of 150ms or above.

In the rest of this section, we analyze what makes optimiz-
ing provisioning difficult. We find that the root cause for slow
provisioning time is the overall design of the provisioning
pipeline: it is pull-based, designed around the stack-of-layers
abstraction container images, and does not explicitly consider
container updates. We show below that this design hinders
optimization effort – both on the edge and in the cloud.

3.1 Pull-based Protocol
The protocol used to deploy containers to workers is pull-
based: workers simply download the compressed layers they
need from the registry using HTTP requests. This straightfor-
ward design avoids redundant pulls of layers that the worker
already has, and works well inside datacenters. However, out-
side the cloud this can cause queueing delays, since registry
implementations limits the number of concurrent connections
per client to 2 or 3 [17]. Most containers have more lay-
ers [28], so the resulting cumulative delay adds up as RTT
grows. Increasing the maximum number of concurrent con-
nections could overwhelm the registry and may be impractical
for resource-constrained workers.

On-demand downloading further exacerbates queuing by
making even more HTTP requests to the registry. eStargz [58]
uses a filesystem file access trace to determine the file order in
compressed layers. In practice, however, the file access order
of container workloads is not entirely deterministic due to
multi-threading and runtime configuration. Container startup
is thus slowed as multiple HTTP request due to out-of-order
file accesses queue in the registry and delay one another.2

2Interestingly, excessive round-trips and queuing delays were also ob-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 37

3.2 Layered-based Structure

Container images are structured as a stack of independent
layers: each layer is stored separately, and contains its own
metadata (e.g., list of files). While convenient for develop-
ment, we argue that this makes optimizing provisioning more
difficult: first, the information on container contents is dis-
tributed across multiple layers; second, because layers are the
wrong granularity for provisioning protocols; and third, layer
reuse does not capture updates well.
Distributed Metadata The first issue is that file metadata,
including the list of files in the container contents, is not sent
separately as part of the container image. Rather, each com-
pressed layer includes its own list of files, and their metadata
is intermingled with file contents. Yet, we cannot start a con-
tainer early since list of files in a container is unknown until
all layers are retrieved.

Consider again eStargz: since standard container images
lack file metadata, eStargz stores a table of contents (ToC)
at the end of every layer. Unfortunately, neither the size
of compressed layers nor the exact beginning of the ToC
is encoded in the image metadata. This in turn means at
least two and perhaps three HTTP requests per layer: one to
determine the size of its compressed image file, another to
retrieve the layer’s ToC from an estimated position before the
end, and potentially a third if the ToC is larger than expected.

Fixing this is not trivial, since container images are stan-
dardized; careless changes would make development harder.
For example, adding a table of contents to container image
metadata requires changing the standard and updating a huge
number of existing tools used by developers [18, 21, 23, 46].
Layer vs. File Granularity Second, and perhaps counter-
intuitively, the layer-based structure makes deployment
slower due to cross-layer (and cross-container) redundancy.
Containers evolve one layer at a time by extending other im-
ages with new layers. To update a file, we first copy it from
the original read-only layer to the top read-write layer. Chang-
ing file metadata (e.g., ownership) also requires copying since
layers cannot refer to each other. In both cases the original
file remains in the previous layer, with no indication that this
has happened. This cross-layer data duplication cannot be
captured explicitly since file metadata is stored in the lay-
ers, and cannot be exploited by compression since layers are
compressed independently.

Table 1 illustrates the cost of such redundancy for our sam-
ple containers by comparing the required download size using
the baseline layer-based approach, to the size of an optimized
“delta” update that only includes changed files and removes
duplicates across layers.3 The inflation in update sizes ranges
from 1.23× (redis) to a whopping 10.54× (node). Indeed, a

served in mobile web browsers that use HTTP/2 [36]. The underlying causes,
however, are quite different (handshaking and packet losses, respectively).
Determining whether the mitigation approaches in QUIC are applicable for
container provisioning (or vice versa) is beyond the scope of this work.

Container From→ To Baseline Delta

redis 6.2.1→ 6.2.2 9.6 7.8
node (alpine) 16-3.11→ 16-3.12 39.0 3.7
postgres 13.1→ 13.2 109.5 24.9

Table 1: Package size (MB) of standard and optimized update.

recent analysis of Docker Hub [64] found that 90% of layers
are only referenced by a single image, but over 99.4% of files
had duplicates. Exploiting this cross-layer duplication dur-
ing provisioning is difficult since file metadata is distributed
across multiple layer.

While there has been prior work that proposes deduplicat-
ing the registry [55, 63], this does not reduce provisioning
time since (by design) the downloaded container images and
provisioning protocol remain the same. Rather, such work
focus on saving registry space.
Limited Layer-reuse Ideally, an updated container image
would share common layers with its previous version, so
deploying updates requires only fetching and decompress-
ing the new layers. Unfortunately, even a minor change
to a single layer low in the stack causes cascading effect
where all layers above it must be updated, even though their
contents are mostly identical [15]. On such example is up-
dating a worker from postgres:13.1 to postgres:13.2.
These two container images share no layers since an update
to the debian:buster-20210208-slim image forced an up-
date to all downstream layers. Provisioning this update re-
quires downloading and decompressing the entire image, even
though the total size of changed files is much smaller. Our
analysis of 21 popular containers (Table 2) suggests that layer
reuse only captures 3% of duplication, on average.

3.3 No Explicit Update Support
Provisioning a worker is not a rare operation. Rather, over
the lifetime of a worker, we will deploy containers many
times and for different reasons: initial provisioning, software
updates, security patches, and so on. This even more common
on edge workers due to user mobility and limited resources
at edge datacenters (§2.1). This not only results in frequent
provisioning, but also means that worker contents is highly
diverse: as workers get updated and repurposed, the version
of the container image available in local storage varies from
worker to worker. As discussed above, such updates are an
opportunity for optimization since many of the files have not,
in fact changed (§3.2).

However, the current design of the provisioning pipeline
does not allow users to express update operations explicitly.

3Flattening container images down to a single merged layer this way
would mitigate many of the issues we discuss. However, would also eliminate
the advantages of containers in the first place (§2), and would require an
optimized image for every potential update path [47, 55].

38 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Under the current approach, updates are treated as any other
deployment: the worker simply pulls the needed layers from
the registry. Depending on the update, this may or may not
result in faster provisioning. While in theory we could prepare
optimized provisioning packages in advance, the diversity in
worker contents makes this approach impractical. A better
approach is to compile the provisioning package dynamically,
on-demand, by taking into account what is already available
at the worker when selecting which files to include. Doing
so, however, requires a capacity to express worker updates,
which the current provisioning protocol does not support.

4 Starlight

Starlight is designed to accelerate container provisioning by
considering the deployment pipeline holistically. In designing
Starlight, we set out to achieve several goals. First, accelerate
deployment on both low and high-latency links, and scale
gracefully as latency grows. Second, preserve the advantages
of containers for application developers. For the same rea-
son, Starlight should be easy to adopt incrementally, without
causing interference or requiring abrupt changes to working
systems – Starlight should be backwards-compatible with
non-Starlight workers, work with existing infrastructure, and
have low overhead. Finally, Starlight should better support
the common scenario of container updates.

4.1 Design Considerations
Starlight’s design is driven by four key principles, informed
by our analysis of container provisioning (§3): (1) start con-
tainers early, (2) send workers only what they need, (3) use a
push-based design to avoid costly round-trips, and (4) priori-
tize worker performance over cloud effort. These lead to the
following design decisions:

• The provisioning protocol should not resemble the stack-
of-layer structure of container images. Instead, it should be
pushed-based, and operate at file rather than layer granular-
ity. The list and order of files should be jointly optimized
across multiple layers and containers.

• The provisioning protocol should cleanly separate file meta-
data from contents, and send the metadata first. This allows
Starlight to start containers early by mounting a “mock”
filesystem while downloading contents in the background.

• The provisioning protocol should let workers explicitly re-
quest updates and specify what is available to them locally.

• Avoid changing registry by placing a proxy located near
it, which lets us to change provisioning protocol without
affecting existing workers.

• The proxy should create provisioning packages on-demand
based on what the worker already has available. This makes
updating workers more efficient, avoids inflating the reg-
istry with packages for every conceivable update, and places

snapshotter

CLI

containerd

filesystem

proxy

directory DB

registry

standard component Starlight component

worker cloud

1

2 3

4
5

6

7

8
9

Figure 2: Starlight architecture.

the computational burden on the cloud where it is cheaper
(§2.1). Supporting this requires storing a table of contents
and file metadata for every container.

• Storing compressed layers using a seekable backwards-
compatible format allows both Starlight and legacy workers
to use the same compressed layer files and standard reg-
istries, and avoids inflating the registry size.

• Use standard container images to support the large eco-
system of existing tools for building, storing, and serving
containers [16, 18, 21, 23, 24, 30, 46].

4.2 Overview

Figure 2 shows Starlight’s architecture, which is comprised
of a proxy and a directory database (§4.4) in the cloud next
a standard registry; and a snapshotter plugin (§4.5) on the
worker. The proxy and the snapshotter plugin communicate
using the Delta Bundle Protocol (§4.3). The snapshotter
plugin manages the lifecycle of the filesystem (§4.6) for the
container instance. We also include a command line tool.

We first describe Starlight’s operation at a high level, and
how it maps to the three-step PULL-CREATE-START process.

Once the user issues a worker PULL command to deploy
a container 1©, the command is received by the standard
containerd daemon. containerd then forwards the com-
mand to the Starlight snapshotter daemon 2©, and waits
for confirmation that the requested images have been found.
The Starlight snapshotter opens an HTTPS connection to the
Starlight proxy and sends the list of requested containers as
well as the list of relevant containers that already exist on
the worker 3©. The proxy queries the directory database 4©
for the list of files in the various layers of the requested con-
tainer image, as well in the image already available on the
worker. The proxy will then begin computing the delta bundle
that includes the set of distinct compressed file contents that
the worker does not already have, specifically organized to
speed up deployment; In the background, the proxy issues
a series of HTTPS requests to the registry 7© to retrieve the
compressed contents of files needed for delta bundle. Once
the contents of the delta bundle has been computed, the proxy
creates a Starlight manifest (SLM) – the list of file metadata,

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 39

container manifests, and other required metadata – and sends
it to the snapshotter 5©, which notifies containerd that the
PULL phase has finished successfully.

We can then use the SLM execute the CREATE phase: con-
figuring the container and the Starlight filesystem 6©.

Starlight then proceeds to the START phase: it mounts then
launch container instances. Note that even though the con-
tainer instances have launched, at this point the worker does
not have the contents of many files (or perhaps all, for new de-
ployments). Such files are mounted based on metadata only;
when opened, the Starlight filesystem will block until file
contents have arrived from the proxy. The proxy streams file
contents back to the snapshotter 8©, which in turn updates the
filesystem to unblocks the access of the file 9©. To optimize
provisioning times, the proxy sends files in the order they will
(likely) be needed; this order is determined when building the
delta bundle, and relies on preprocessed information stored
in the directory database.

4.3 Delta Bundle Protocol

Starlight uses a novel Delta Bundle Protocol to send con-
tainer images to the worker. This single-request HTTP-based
protocol is designed to reduce unnecessary transfers, avoid
round-trips, and prioritise information needed to start the con-
tainer. Much of Starlight’s design is informed by the need to
support the Delta Bundle Protocol.

A provisioning request includes the name and version of
the requested the container image as part of the request URL,
and optionally the old version in the worker’s local storage.
The response consists of two parts: a header and a body.

The Header The header contains of all the information
needed to start container instances of the requested images.
It it comprised of (1) a Starlight Manifest (SLM), (2) a ta-
ble of all layers digests from both the existing and requested
container images, and (3) other data required by the imple-
mentation such as protocol version and authentication..

An SLM includes a standard Open Container Initiative
(OCI) container image manifest file [24, 39], an OCI configu-
ration file for the instance, a list of indices into the table of
layer digests, and the filesystem table of content (ToC).

The ToC presents a merged (flattened) view of the re-
quested container’s filesystem (§2), providing sufficient in-
formation for the worker to mount the container’s filesystem
using StarlightFS without waiting for the response body. Each
entry in the ToC includes the file name and path, type (e.g.
regular file, link, or directory), attributes (e.g. ownership and
timestamps), and an SHA256 hash of the file content. Ad-
ditionally, every entry includes an index to the shared layer
digests table in the delta bundle header, which enables reusing
file contents on the worker’s local storage. Finally, each entry
also has an offset field which points to the file’s payload –
compressed file content – in the body of the delta bundle.

Using the SLM The name, metadata, offset, and index
into the digest list allow workers to reconstruct the requested
container’s filesystem. For new or updated files – those that
the worker does not already have in its local storage – the
offset points to the payload. This allows multiple file entries to
reuse the same payload in the body of delta bundle, reducing
the transfer volume. Alternatively, if a file’s metadata has
changed (e.g., ownership), the payload already exists on the
worker. The ToC entry thus contains the new metadata, an
empty payload offset, and an index pointing to the original
layer in the list of digests.
The Delta Bundle Body The body is a sequence of payloads
(compressed file contents) for new or updated files, sent in
the order which they are likely to be accessed. Since the
header allows multiple file to reference the same payload –
all payloads in the body are unique.

4.4 Proxy and Directory Database

Despite the name, the Starlight proxy is not merely a proxy
server or a simple bridge. It is in charge of optimizing and
building the delta bundle sent to the workers, as well as collect-
ing and analyzing filesystem traces used in this optimization.
The Directory Database The directory database stores the
table of contents and file metadata for each container image
in the registry, as well as additional information used by the
proxy to compute and optimize the delta bundle.

Whenever a new container image is uploaded to the registry
(triggered manually or by hooks), the proxy captures file
metadata from all layers, generates the ToC for the merged
view of the image, and then save the ToC, container manifest,
and image configuration file to the directory database.

The ToC in the directory database is the same as the ToC
included in the SLM with additional fields that fascilitate
building the delta bundle body. First, it records the source
compressed layer file, payload offset, and size for each file
to help retrieve it from the registry. Second, it includes two
extra columns, rank sum and hit count, used when sorting
payloads; we discuss these below.
Trace Collection To sort payloads in the order that the
worker is likely to access, Starlight collects filesystem traces
from the worker to analyse the file usage. Trace collection
is identical to running a container until it reports it is ready.
When initiated by the user, the worker starts the container
image locally using a special mode of the Starlight filesystem
(§4.6) that collects file accesses. The worker then uploads the
trace to the proxy, which ranks all files in the trace according
to their access order. Finally, for each file in a container
image, the proxy increases its hit count by one and adds its
rank to the rank sum column. The average rank of a file can
be computed from its rank sum and count.

Since file access can be non-deterministic, our design sup-
ports multiple collection runs. Collecting one trace usually

40 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

takes up to 2 minutes per run, depending on the container. By
default, we collect 10 traces for each container.

Note that while prior work [37, 58] stores file order in-
formation per layer inside the compressed layers, Starlight
associates this information with a container image and stores
it outside the registry. This provides several benefits. First, it
is possible to update file usage without rebuilding the com-
pressed layers. Second, it allows for the likelihood that a file
in a layer used by different containers to be accessed differ-
ently during startup. Third, new container image can reuse the
traces from a previous version – solving the cold start problem.
Finally, it allows for future development such as adjusting
payload orders online based on provisioning feedback.

Provisioning Process A provisioning request from a worker
contains the names and tags of two images: the image re-
quested for deployment, denoted by R, and the old version of
the image in its local storage (assuming there is one) denoted
by A. To build the delta bundle, the proxy first retrieves meta-
data from the directory database for both container images
R and A. It then issues a series of asynchronous requests to
the registry to retrieve the compressed layers for R. These
will be used to construct the body of the delta bundle.4 It
then proceeds to prepare an optimized delta bundle header
and send it to the worker. Once all requested layers to arrive
from the registry, the proxy send the delta bundle body: for
each payload in the delta bundle body as determined by the
header, we copy compressed file content directly from the
compressed layer and send them to the worker.

Optimizer The optimizer is responsible for selecting which
compressed file content (payload) should be included in the
body of the delta bundle and in which order, and then building
the delta bundle header. Crucially, the optimizer does not re-
quire retrieving the compressed layers; the directory database
contains all necessary information to build the delta bundle
header. The optimization proceeds in several phases:
• Merge: load the merged (flattened) ToC for R and A from

the directory database, denote them TR and TA.
• Difference: Compute the set difference T ′ = TR \TA: for

every file f in TR, we look for a corresponding entry f ′ in
TA with the same hash and name. If we find one, we update
the source layer index for f in TR to the corresponding one
in the old the entry in TA update its source layer index to the
corresponding layer of f ′. This step takes O(|TR|+ |TA|)
time and O(1) space.

• Consolidate: Consolidate files in T ′ with the same payload.
Assuming the chance of hash collision is low, this step takes
O(|TR|) time and O(|TR|) space.

4Our current implementation retrieves entire compressed layers. This
does not substantially affects provisioning time since the registry and the
proxy are located in the same cloud datacenter. Nevertheless, we stress
that Starlight’s directory database and the seekable image format support
retrieving only the contents of compressed files, by issuing HTTP range
requests to the registry when building the delta bundle body. We are planning
to implement this optimization in the immediate future.

• Select: Remove from T ′ files already available on the
worker (whose source layer is in TA).

• Sort: Sort the payloads in order of increasing average rank,
O(|T ′| log |T ′|). If different files point to the same payload
due to previous steps, use the lowest rank.

Compressed Layer Format The current format used to
store compressed layers is the tar gzip format: a sequence
of concatenated files with interleaved headers for metadata
(e.g., timestamps, ownership), compressed as one data stream.
This format is non-seekable: extracting a specific file requires
decompressing the entire compressed layer until we reach the
file, which takes time.

eStargz [58] uses an alternative seekable compressed layer
format that compresses files individually (or 4KB chunks of
larger a file) and appends an index at the end of the com-
pressed layer into the offsets of compressed files and chunks.
To maintain backwards compatibility, each file includes tar
headers and footers, so the tarball data stream remains un-
changed. The result is an increase in the size of compressed
layers due to the index at the end and the additional tar head-
ers and footers. Furthermore, compression is less effective
since file are compressed separately.

Our proposed format follows similar ideas, with three dif-
ferences. First, we do not include an index at the end of the
compressed layer, and instead use the directory database to
store the table of contents. This not only reduces the over-
head of our compressed layer format, but allows the proxy
to build the delta bundle while fetching compressed layers
in the background. Second, we do not need to split files into
4kb chunks since we retrieve files wholly, which simplifies
our provisioning protocol and reduces the size of the ToC.
Finally, since we do not need the metadata in tar headers and
footers during provisioning, we do not include them as part of
the compressed stream of file contents, which further reduces
payload size. The overhead of Starlight’s format is only 4.4%
for containers in Table 2 comparable to eStargz (4.7%).

4.5 Snapshotter Plugin
The containerd snapshotter daemon manages the life cycle
of a container filesystem: from downloading images to keep-
ing track of changes in the container’s mounted file system.
We take advantage of the snapshotter plugin-based design [7]
to write a snapshotter plugin to support Starlight provision-
ing. Figure 3 shows an overview of the Starlight snapshotter
plugin, which includes two components: the downloader and
metadata manager. The snapshotter also maintains the in-
stances of the user space component of StarlightFS – one for
every mounted container instance.
Delta Bundle Downloader The downloader is responsible
for downloading the delta bundle from the proxy and decom-
pressing the payloads to designated locations (if an image
has been completely downloaded, it is not started). Once
the downloader receives the delta bundle header, it saves the

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 41

kernel
user

VFS

FUSE networkext4

container instance

metadata manager

Starlight FilesystemStarlight FilesystemStarlight filesystem

Starlight
snapshotter

downloader

notify

1

2 78435

6

subscribe to

Figure 3: The flow of filesystem requests in Starlight.

SLM to the local storage and creates a metadata manager
using the SLM. At this point, we have enough information to
mount and start the container, so the snapshotter notifies the
containerd daemon that the PULL phase has finished. In the
background the downloader keeps receiving the payloads: it
decompresses the payloads to its designated location accord-
ing to the source layer information in the received SLM and
the share layer digests in the delta bundle. Once the decom-
pression of the payload has finished, it notifies the metadata
manager. When a payload belongs to multiple files, the down-
loader creates hard links to avoid writing to the underlying
filesystem multiple times.
Metadata Manager Multiple container instances can start
from the same container image. The metadata manager there-
fore acts as a centralize place for managing file’s availability
and its metadata. It maintains file metadata of all the files in
a container image and manages files’ actual location in the
host file system. Most importantly, it manages the availability
of file contents, and notifies StarlightFS once a file payload
has decompressed. Once the worker has downloaded the en-
tire image, we store its SLM locally so that future container
instances launch from the local storage. When removing an
old container image, the metadata manager removes any hard
link references (if any) and copies the file to a new location if
it is used by a newer version of this image.

4.6 The Starlight Filesystem (StarlightFS)
The customized filesystem serves two goals. First, we need to
start containers early using only their SLM. Second, we want
to reuse file contents across layers and images. As OverlayFS
and other filesystems do not support both of these features,
we use FUSE [33] to implement StarlightFS.
Structure StarlightFS relies on the underlying host filesys-
tem (e.g., ext4), similar to a typical OverlayFS and FUSE-
OverlayFS. Like OverlayFS, StarlightFS provides a container
with a merged view that combines multiple directories in the
underlying filesystem that represent multiple read-only layers
and a single read-write layer.

Starlight maintains a filesystem tree in memory, created
from the merged view ToC in SLM. Each file (or directory)
node keeps track of the actual location of the file contents –

whether it is in the read-only layer, in the read-write layer,
or pending payload. As with the ToC, some nodes might
reference read-only layers from the previous version of the
container image (§4.3). Nodes of pending files will be notified
by the metadata manager when the payload is available (in
our implementation, by subscribing to a Go signal channel in
the corresponding file entry of the metadata manager). The
user space portion of StarlightFS is located in the snapshotter
process to allow such low-overhead communication.

Note that StarlightFS does not maintain any file system
state on its own, nor does it have any on-disk structures. Meta-
data for files in read-only layers is stored in the ToC. State for
files in the read-write layer (i.e., mutable state) is stored in
the underlying host filesystem, with changes forwarded to it
immediately. For example, if a file is deleted by the container,
we write a whiteout entry to the read-write layer, similarly
to OverlayFS [34]. In case of a crash, error or remount, the
tree and all other state are rebuilt using the saved SLM and
underlying filesystem.
Operation When starting a container instance, the snapshot-
ter creates a filesystem instance which builds a filesystem tree
from the metadata manager’s ToC for this container image.

Figure 3 shows the flow of operations in StarlightFS. When
a container instance performs a file operation, it is forwarded
to StarlightFS via FUSE 1© 2©. In the best scenario, the con-
tent of the file is already in the local filesystem (e.g., ext4in
Figure 3). Starlight uses the file path provided by the file
node to opens the underlying file 3© 4© and then return the
file handle back to the container instance 5© 6©. In case the
file contents are still pending, but the operation only involves
reading metadata (e.g. GETATTR), StarlightFS returns the
metadata immediately using the information in the file node.

When an operation on a pending file involves setting meta-
data (e.g. SETATTR) or accessing file content (e.g. OPEN,
FSYNC), StarlightFS blocks the operation until the file is ready
by subscribing to a Go signal channel associated with the file’s
ToC entry in the medtadata manager. Once the downloader
has extracted the file payload 7© 8©, it notifies the correspond-
ing entry in the metadata manager, which closes the channel
associated with the file’s ToC entry. This releases any filesys-
tem tree nodes that are waiting for the payload, while newly
created instances will not be able to subscribe to a closed
message channel. StarlightFS can then load the file from the
local storage and update the file metadata if necessary 3© 4©,
then return the file to the container instance 5© 6©. If this
requires changing the file metadata or content, this file will be
copied from the read-only layer to the read-write layer. All
subsequent requests will be forwarded to the read-write layer.

5 Evaluation

We use 21 popular container images to evaluate Starlight’s
performance in both controlled and real-world networks. Our

42 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

main metric is provisioning time, defined as the time from
the initial command to deploy a container on a worker, to
the time the containerized application reports it is ready (as
with HelloBench [28], this is determined by monitoring the
application’s stdout). To show the benefit of Starlight, we
define two types of provisioning: a fresh deployment means
the container worker does not have any prior images in its
local storage, while an update means deploying the next avail-
able version of a container to a worker that already has the
previous version deployed.

5.1 Experimental Setup
We use AWS EC2 to run our experiments. Container workers
use m5a.large instances (AMD EPYC 7000 at 2.5GHz) with
2 cores (vCPUs) and 8GB RAM. The registry server runs
Docker Registry 2.05 v2.7.1 on a c5.xlarge instance (Intel
Xeon at 3.4GHz) with 4 vCPUs and 8GB RAM. The Starlight
proxy and the metadata database run on a second c5.xlarge
instance. All the machines run Ubuntu 20.04.3 LTS. We use
Linux’s Traffic Control tool [2, 29] to control round-trip time
and bandwidth between the worker and the other machines.
Bandwidth is limited to 100Mbps unless otherwise specified.
For cloud experiments, bandwidth and latency are not limited
(RTT is ∼0.15ms). Each experiment is run 5 times.
Benchmark Approaches We compare Starlight to two state-
of-the-art approaches: the containerd baseline [21] v1.5.0
and eStargz [8,58] v0.6.3.6 The baseline implementation first
downloads and decompresses all new compressed layers be-
fore launching the container. eStargz presorts the files in
each compressed layer according their expected order of or
use, and uses on-demand “lazy” download during deployment
to handle for unexpected accesses: when a running container
opens a file whose contents are not yet available, eStargz
pauses the container and requests the file from the registry.
We also plot two reference times: warm startup time de-
notes the container startup time once its image has already
been downloaded and decompressed to local storage; wget
time denotes the time to compute and download the Starlight
delta bundle over the network, serving as a lower bound on
provisioning time when not starting containers early.
Containers We evaluate Starlight on a variety of popu-
lar containers from Docker Hub [30]. Since many of the
containers in the original HelloBench container suite [28]
are outdated and can no longer be deployed using moderns
tools, we instead take several of its most popular containers,
finally, we add several container images used in edge com-
puting applications. The full list of containers is available in
Appendix A.1.

5This is the official Docker registry server [30, 49].
6We do not compare to Slacker [28] as its source is not public and since

eStargz is explicitly designed to supersede it in performance and features.
Similarly, our preliminary experiments showed eStargz offers similar or
superior performance to DADI [37].

5.2 Provisioning Time

Figure 4 shows the average normalized provisioning time for
all the containers in Table 2 across a range of round-trip times
(RTT) and network bandwidths. We normalize the provision-
ing time of each container to the time it takes to deploy a fresh
worker using the baseline approach over a 100Mbps network
with 0.15ms RTT. We also show the 95% confidence intervals
to help establish statistical significance [12].

Our first immediate observation is that Starlight is the
fastest provisioning approach for all latencies, bandwidths,
and scenarios we study, except when provisioning fresh work-
ers in the cloud, where Starlight provides similar performance
to eStargz. It is significantly faster than both the state-of-the-
art baseline approach and eStargz. Overall, Starlight provi-
sioning is 3.0× faster on average than the baseline, and 1.9×
faster than eStargz. Surprisingly, Starlight also frequently
outperforms wget. In other words, Starlight early start design
and effective scheduling of file payloads allows it to provision
a fresh worker faster than the time it takes to merely download
an optimized package. Conversely, eStargz, which also starts
containers early, is on average slower than wget except when
bandwidth is 54Mbps and RTT is low. Neither early start nor
building optimized container images is sufficient in isolation;
Starlight effectiveness is the result of its holistic design.

Effect of Latency When RTT is very low (i.e., inside a
single datacenter), Both Starlight and eStargz are significantly
faster than the baseline. However eStargz scales poorly when
RTT grows due to its pull-based design that requests “out-
of-order” files on-demand (§3). As latency grows, delays
due to these requests add up: eStargz’s provisioning time at
RTT=300ms grows by 3.7× when going from RTT of 0ms to
300ms on a 500Mbps network. In comparison, the baseline
provision time only doubles. For high bandwidth, high latency
networks (e.g., satellite links) eStargz performance is close to
the baseline approach, especially for updates.

Starlight, on the other hand, is far less sensitive to latency
than the other approaches: its provisioning time grows at a
slower rate than the baseline, eStargz, and wget. Starlight
scales well not because its prediction of file access order is
perfect (it is not), but rather due to its push-based design.
Unlike eStargz, Starlight avoids flooding the registry with
HTTP requests when containers open files “out of order”, and
instead waits for the file to arrive.

Deploying Updates Since updates are a common operation
(§3.3), we also consider the provisioning time for updating
containers on existing workers.

Starlight is very successful in optimizing updates: pro-
visioning updates using Starlight (bottom row of Figure 4)
is on average 1.7× faster than an equivalent fresh deploy-
ment (top row) using Starlight, and 2.5× faster than baseline
fresh deployment.7 The other approaches only show modest

7Harmonic mean of speedups across all bandwidths and latencies.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 43

0.0

0.5

1.0

1.5

2.0

Fr
es

h
de

pl
oy

m
en

t
no

rm
al

ize
d

pr
ov

. t
im

e

54Mbps

normalized to

100Mbps 500Mbps

0 100 200 300
RTT (ms)

0.0

0.5

1.0

1.5

2.0

Up
da

te
no

rm
al

ize
d

pr
ov

. t
im

e

0 100 200 300
RTT (ms)

0 100 200 300
RTT (ms)

baseline eStargz Starlight warm startup wget

(a) Edge and WAN.

0
1
2
3
4
5
6

Fr
es

h
de

pl
oy

m
en

t
 P

ro
v.

 ti
m

e
sp

ee
du

p

0 100 200 300
RTT (ms)

0
1
2
3
4
5
6

Up
da

te
 P

ro
v.

 ti
m

e
sp

ee
du

p

(b) Speedup with 100Mbps.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fr
es

h
de

pl
oy

m
en

t
no

rm
al

ize
d

pr
ov

. t
im

e 1.7x 2.7x 3.0x

speedup

25.4x

baseline eStargz Starlight wget
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Up
da

te
no

rm
al

ize
d

pr
ov

. t
im

e

2.0x 3.1x 4.2x 40.0x

(c) Cloud time and speedup.

Figure 4: (a) Normalized provisioning time for different methods, round-trip times, and network bandwidth, aggregated across
containers in Table 2. Solid line shows the geometric mean [19]; shaded areas show 95% confidence intervals. Top row shows
fresh deployment, bottom row shows updates. Time is normalized to fresh deployment of the same container using the baseline
approach with RTT of 0ms and a 100Mbps connection. (b) Speedups over baseline with 100Mbps (solid line shows harmonic
mean). (c) Provisioning time and speedup in the cloud (RTT approximately ∼0.15ms, no bandwidth restriction).

improvement when provisioning updates: average update pro-
visioning time for baseline and eStargz are close to those of
fresh deployment. Additionally, we observe that Starlight
update provisioning scales much better than the two other ap-
proaches as RTT grows. Finally, Starlight’s transfer volume
is smaller: the size of a median Starlight update is 30% that of
a fresh update using the size of a baseline fresh deployment,
while for eStargz and the baseline updates are 99% (figure
omitted for space).

As we discuss in §3, layer reuse is low in real-world con-
tainers, and even the on-demand “lazy” approach of eStargz
must still fetch file metadata from all layers. Conversely,
Starlight optimizes updates at a finer file-level granularity,
and also stores all file metadata at the beginning of the delta
bundle. The result is that Starlight is much better able to
exploit redundancy in updates, significantly outperforming
the benchmark approaches.

Effect of Bandwidth Can increasing bandwidth help miti-
gate slow provisioning time? We find that higher bandwidth
does not provide a corresponding improvement in provision-
ing time at higher RTT, even for the baseline approach at
0.15ms. This is not surprising: container provisioning is not
purely bandwidth-bound task, since we must also decompress
and start containers.

Very low bandwidth We repeated our experiments with a
5Mbps network. At such low bandwidth, transmission time
overwhelms the effect of latency: normalized provisioning
time for fresh deployments is 9–10.5× higher (compared to
100Mbps network with 0.15ms RTT) for baseline and wget,
while eStargz and Starlight reduce it to 2.5–4×. For up-

0

20

Fr
es

h
Pr

ov
. t

im
e

(s
) wordpress

0.0

2.5

5.0

alpine

0

50

ghost

0 100 200 300
RTT (ms)

0

20

Up
da

te
Pr

ov
. t

im
e

(s
)

0 100 200 300
RTT (ms)

0.0

2.5

5.0

0 100 200 300
RTT (ms)

0

50

baseline eStargz Starlight warm startup wget

Figure 5: Provisioning times versus round-trip latency for
selected containers. Shaded areas show standard deviation.

dates, the baseline is 8–9×, wget and eStargz are 2.5–3×,
and Starlight the fastest at 1× across the range of RTT values.

Interestingly, the network is so slow that Flink class loader
times out when opening one of the class files when provision-
ing with eStargz and Starlight. This is the only case we have
found of timeout due to on-demand downloading. Indeed,
such timeouts are very rare in practice since most software
does not timeout on read-only open() calls, and software
that does must handle timeouts correctly to function with
NFS mounts and other distributed filesystems. Nevertheless,
we could mitigate such issues by automatically or manually
sorting these files earlier in the delta bundle. Starlight’s on-
demand optimizer makes this straightforward.

44 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

20K

40K

60K

Th
ro

ug
hp

ut
 (o

ps
) Redis

0

5K

10K

15K
MongoDB

0 10 20 30 40 50
Time (s)

0.0

0.2

0.4

0.6

La
te

nc
y

(m
s)

0 50 100 150
Time (s)

0

1

2

baseline eStargz Starlight

Figure 6: Redis (left) and MongoDB (right) performance
during provisioning. Shaded areas show standard deviation.

Individual Analysis Figure 5 shows provisioning time of
selected containers across a range of latencies at 100Mbps.

We find that eStargz is bottlenecked by queuing delays
caused by on-demand file downloads, and can be slower than
even the baseline for RTT over 50ms. Starlight outperforms
both except for ghost at 0ms, which is the worst case for
Starlight: a 84K file container whose delta bundle takes 3
seconds to build. See Appendix A.2 for in-depth analysis.

5.3 Performance
We measure application, worker, and proxy performance. Un-
less otherwise noted, proxy-worker RTT is set to 150ms.
Application Performance Ideally, containers deployed us-
ing Starlight would exhibit similar application performance as
those deployed using the baseline approach, especially during
provisioning when Starlight is decompressing files.

To confirm this, we measure application performance for
two databases: Redis (in-memory) and MongoDB (disk-
based). We run YCSB [9] Workload A (50% read/write ratio)
on a separate m5a.large instance as the client while we per-
form a fresh deployment the containerized application, and
measure the throughput and read latency of database opera-
tions. We repeat each experiment 5 times; each run consists of
2 million database operations, long enough sufficient to finish
provisioning and for application performance to stabilize.

Figure 6 depicts throughput and latency over time for both
applications. With Starlight, the worker starts handling re-
quests and finishes processing workload earlier than with the
other two methods. Additionally, it reaches the same maxi-
mum throughput and minimum query latency.

In summary, Starlight workers exhibit no performance over-
head compared to the baseline approach and eStargz, and
moreover the time gained by early provisioning directly trans-
lates to finishing jobs faster.
Worker CPU Usage and Memory We measured the total
CPU time used by the snapshotter and containerd daemons

1 2 3 4 5 6 7 8
Concurrent clients

0
1
2
3
4
5

Tr
an

sf
er

 ra
te

(G
bp

s/
se

c) wget (8 cores)
Starlight (4 cores)
Starlight (8 cores)

Figure 7: Scalability of Starlight proxy as the achieved trans-
fer rate for different number of concurrent workers. Network
bandwidth is capped at 5Gbps, and RTT is ∼0.15ms.

during provisioning of containers in Table 2. CPU usage is
largely determined by image size, up to 40 seconds of CPU
time for the largest image. Median CPU time was 12 seconds
for the baseline, 15.1 seconds for eStargz, and 9.8 seconds
for Starlight, since it is more effective in removing cross-
layer duplicate files. This is consistent with our finding that
containerized application exhibit no performance overhead.

Starlight memory usage, measured as total maximum res-
ident set size of the snapshotter and containerd daemons, is
linear in the number of files (140MB plus 9.5KB per file,
R2=0.784) since it maintains file metadata (§4.5 and §4.6).
Memory use for both Starlight and eStargz is similar, ranges
from under 200MB for most containers to 1GB for ghost – a
massive container image with over 84K files. A recent analy-
sis [64] finds that the median container image has 1,090 files,
while 70% of images have less fewer 20,000 files – approxi-
mately 330MB for Starlight.

Optimization Time Optimizing the delta bundle is by far the
most computationally intense operation for the proxy. We find
we can compute delta bundles for images of up to 30K files in
under one second (figure omitted for space), which includes
most of Table 2; the sole exception is ghost at 84K files,
which takes three seconds. Similarly, 80% of the container
images in Docker Hub [64] have fewer than 30K files, and
could therefore be processed within one second. Finally, the
time to build delta bundle could be eliminated completely
for common deployments by placing a cache in front of the
Starlight proxy; we do not do so in any of our experiments.

Scalability We use Apache Benchmark to measure the
achievable transfer rate of the Starlight proxy as we increase
the number of concurrent clients repeatedly requesting the
Redis delta bundle (36.8MB). This is equivalent to the com-
mon setup where hundreds of simultaneous Starlight worker
requests are load-balanced across multiple replicas of the
proxy, and the goal is to saturate the bandwidth – if the proxy
is network bound, we are serving as many clients as the net-
work supports. For this experiment, we run with no artificial
bandwidth or latency limits. For reference, we request an
image of equivalent size from an nginx webserver. Figure 7
shows a Starlight proxy running on a 4-core instance is able
to saturate about 80% of the link bandwidth before becoming

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 45

0

2

4

6

8

Fr
es

h
Pr

ov
. t

im
e

(s
)

redis

0

3

6

9

12
node

0

10

20

30

postgres

Montreal

Frankfurt

Singapore
0

2

4

6

8

Up
da

te
Pr

ov
. t

im
e

(s
)

Montreal

Frankfurt

Singapore
0

3

6

9

12

Montreal

Frankfurt

Singapore
0

10

20

30

baseline eStargz Starlight wget

Figure 8: Provisioning time when moving the worker between
different datacenters. Errors bars show standard deviation.
The registry is located in North Virginia.

bottlenecked due to the need to optimize the delta bundle.
Once we switch to 8 cores, it becomes network bound.

5.4 Geo-Distributed WAN Experiment

Thus far we have evaluated Starlight using controlled experi-
ments in a single AWS datacenter. Here, we Starlight perfor-
mance in a multi-cloud (wide area network) setup running in
multiple datacenters over the real network. We place the reg-
istry in us-east-1 region (N. Virginia) and move the worker
to increasingly distant locations: ca-central-1 (average
RTT to registry 14ms, bandwidth 4.24Gbps), eu-central-1
(89ms, 2.79Gbps), and ap-southeast-1 (209ms, 1.15Gbps).

Figure 8 shows the provisioning time for fresh and update
deployment. Results generally match our previous observa-
tions: Starlight substantially outperforms the baseline and
eStargz, and in many cases is faster than a simple wget of the
delta bundle. eStargz is sensitive to increased latency, in some
cases becoming slower than the baesline approach. Finally,
Starlight support for container updates is much more effective
than the other approaches, and can reduce provisioning time
to a fraction of the other approaches.

6 Related Work

There are several streams of work on container provisioning.
On-Demand Download Slacker [28] starts containers early
and uses NFS to load files on-demand without requiring the
entire container image. CRFS [27] follows a similar idea, but
uses a seekable tar gzip format with more efficient compres-
sion, allowing it to work with standard registries. DADI [37]
also uses on-demand fetching but operates at the block level,
which requires a customized image format and registry. eS-
targz [58] uses collected filesystem traces to identify files

needed during provisioning and prefetch them first, before
switching to on-demand downloading. Starlight also sorts
files based on collected traces, but its push-based design scales
better with higher latency. Moreover, Starlight’s protocol is
file-based rather than layer-based as prior approaches.

Peer-to-peer Some approaches use workers to help pro-
vision other workers, Wharf [65] and Shifter [26] propose
client-side image sharing: workers act as caches, serving
locally stored images to other workers. FID [32], CoMI-
Con [44], and Kraken [31] are P2P docker registries that help
reduce registry load by utilizing the bandwidth of workers in
the datacenter. Similarly, FaaSNet [60] uses a tree of work-
ers to accelerate provisioning inside datacenters for scsaling
Function-as-as-Service workloads inside a datacenter. These
approaches tend to focus on single datacenter setting with the
goal of reducing registry load. They may not be applicable
outside the datacenter or where bandwidth and other worker
resources are limited. Conversely, Starlight is focused on
accelerating provisioning without increasing worker load.

Registry optimizations Fu et al. [25] and Anwar et al. [4]
proposes smart caching and prefetching image layers from
the back-end object store to the registry using the production
workload, in order to do large scale software provisioning.
Starlight is orthogonal to, and compatible with, these works
since it does not require changing the registry.

7 Conclusion

Containers have evolved in a single datacenter environment,
but are increasingly used in geo-distributed settings such as
edge, mobile, and multi-cloud environments. We revisit sev-
eral of the design decisions behind containers, and show that
while they are convenient for developers, they slow down
provisioning. Starlight redesigns the provisioning pipeline
to support faster container deployment, while maintaining
the layer-based structure that makes containers easy to de-
velop and maintain. Empirical evaluation using a large set
of popular containers shows Starlight provisioning times
are significantly smaller than existing approaches, while
incurring no performance overhead. Moreover, Starlight
is backwards compatible and makes use of existing reg-
istries. Starlight is available as an open-source project at:
https://github.com/mc256/starlight.

Starlight’s design opens several avenues for improvement.
For example, since the delta bundle is optimized on-demand,
we can improve it and even tailor it to specific scenarios by
collecting traces online during deployment, or by training an
ML model to predict which files will be needed first. Another
improvement is support for repurposing workers: by modify-
ing the optimizer and extending the delta bundle design, we
could optimize switching between arbitrary sets of containers.

46 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/mc256/starlight

References

[1] Alexandru Agache, Marc Brooker, Alexandra Iordache,
Anthony Liguori, Rolf Neugebauer, Phil Piwonka, and
Diana-Maria Popa. Firecracker: Lightweight virtual-
ization for serverless applications. In 17th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 20), pages 419–434, Santa Clara, CA,
February 2020. USENIX Association.

[2] Werner Almesberger. Linux traffic control - implemen-
tation overview. Technical report, EPFL ICA, 1998.

[3] Amazon. Amazon Elastic Container Service (Amazon
ECS). https://aws.amazon.com/ecs/.

[4] Ali Anwar, Mohamed Mohamed, Vasily Tarasov,
Michael Littley, Lukas Rupprecht, Yue Cheng, Nan-
nan Zhao, Dimitrios Skourtis, Amit S. Warke, Heiko
Ludwig, Dean Hildebrand, and Ali R. Butt. Improving
docker registry design based on production workload
analysis. In 16th USENIX Conference on File and Stor-
age Technologies (FAST 18), pages 265–278, Oakland,
CA, February 2018. USENIX Association.

[5] A. Balalaie, A. Heydarnoori, and P. Jamshidi. Mi-
croservices architecture enables devops: Migration to a
cloud-native architecture. IEEE Software, 33(3):42–52,
2016.

[6] Steve Beattie, Seth Arnold, Crispin Cowan, Perry Wagle,
Chris Wright, and Adam Shostack. Timing the appli-
cation of security patches for optimal uptime. In 16th
Systems Administration Conference (LISA 02), Philadel-
phia, PA, November 2002. USENIX Association.

[7] Containerd. Snapshots design. https:
//github.com/containerd/containerd/blob/
main/design/snapshots.md.

[8] Containerd. Stargz snapshotter. https://
github.com/containerd/stargz-snapshotter.

[9] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM Symposium on Cloud Computing, SoCC ’10, page
143–154, New York, NY, USA, 2010. Association for
Computing Machinery.

[10] Lorenzo Corneo, Maximilian Eder, Nitinder Mohan,
Aleksandr Zavodovski, Suzan Bayhan, Walter Wong,
Per Gunningberg, Jussi Kangasharju, and Jörg Ott. Sur-
rounded by the Clouds: A Comprehensive Cloud Reach-
ability Study, page 295–304. Association for Computing
Machinery, New York, NY, USA, 2021.

[11] Breno Costa, Joao Bachiega, Leonardo Rebouças
de Carvalho, and Aleteia P. F. Araujo. Orchestration in
fog computing: A comprehensive survey. ACM Comput.
Surv., 55(2), January 2022.

[12] Geoff Cumming, Fiona Fidler, and David L. Vaux. Error
bars in experimental biology . Journal of Cell Biology,
177(1):7–11, 04 2007.

[13] Richard Cziva and Dimitrios P. Pezaros. Container
network functions: Bringing nfv to the network edge.
IEEE Communications Magazine, 55(6):24–31, 2017.

[14] Bradley Denby and Brandon Lucia. Orbital edge com-
puting: Nanosatellite constellations as a new class of
computer system. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for
Programming Languages and Operating Systems, AS-
PLOS ’20, page 939–954, New York, NY, USA, 2020.
Association for Computing Machinery.

[15] Docker. Best practices for writing dock-
erfiles. https://docs.docker.com/develop/
develop-images/dockerfile_best-practices/.

[16] Docker. Docker compose. https://github.com/
docker/compose.

[17] Docker. Docker documentation. https:
//docs.docker.com/engine/reference/
commandline/dockerd/.

[18] Docker. Empowering app development for developers |
docker. https://www.docker.com/.

[19] Philip J. Fleming and John J. Wallace. How not
to lie with statistics: The correct way to summarize
benchmark results. Commun. ACM, 29(3):218–221,
March 1986.

[20] The Linux Foundation. Cloud native computing foun-
dation. https://cncf.io.

[21] The Linux Foundation. containerd: An industry-
standard container runtime with an emphasis on
simplicity, robustness and portability. https://
containerd.io/.

[22] The Linux Foundation. K3s: Lightweight kubernetes.
https://k3s.io.

[23] The Linux Foundation. Kubernetes. https://
kubernetes.io/.

[24] The Linux Foundation. Open container initiative.
https://opencontainers.org/.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 47

https://aws.amazon.com/ecs/
https://github.com/containerd/containerd/blob/main/design/snapshots.md
https://github.com/containerd/containerd/blob/main/design/snapshots.md
https://github.com/containerd/containerd/blob/main/design/snapshots.md
https://github.com/containerd/stargz-snapshotter
https://github.com/containerd/stargz-snapshotter
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://github.com/docker/compose
https://github.com/docker/compose
https://docs.docker.com/engine/reference/commandline/dockerd/
https://docs.docker.com/engine/reference/commandline/dockerd/
https://docs.docker.com/engine/reference/commandline/dockerd/
https://www.docker.com/
https://cncf.io
https://containerd.io/
https://containerd.io/
https://k3s.io
https://kubernetes.io/
https://kubernetes.io/
https://opencontainers.org/

[25] Silvery Fu, Radhika Mittal, Lei Zhang, and Sylvia Rat-
nasamy. Fast and efficient container startup at the edge
via dependency scheduling. In 3rd USENIX Work-
shop on Hot Topics in Edge Computing (HotEdge 20).
USENIX Association, June 2020.

[26] Lisa Gerhardt, Wahid Bhimji, Shane Canon, Markus
Fasel, Doug Jacobsen, Mustafa Mustafa, Jeff Porter, and
Vakho Tsulaia. Shifter: Containers for HPC. In Journal
of physics: Conference series, volume 898, page 082021.
IOP Publishing, 2017.

[27] Google. CRFS: Container registry filesystem. https:
//github.com/google/crfs.

[28] Tyler Harter, Brandon Salmon, Rose Liu, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
Slacker: Fast distribution with lazy docker containers.
In 14th USENIX Conference on File and Storage Tech-
nologies (FAST 16), pages 181–195, Santa Clara, CA,
February 2016. USENIX Association.

[29] Stephen Hemminger. Network emulation with NetEm.
In Linux Conf Australia, pages 18–23, 2005.

[30] Docker Inc. Docker Hub: Container im-
age library | app containerization. https://
registry.hub.docker.com/.

[31] Uber Inc. Kraken - p2p docker registry capable of dis-
tributing tbs of data in seconds. https://github.com/
uber/kraken.

[32] Wang Kangjin, Yang Yong, Li Ying, Luo Hanmei, and
Ma Lin. Fid: A faster image distribution system for
docker platform. In 2017 IEEE 2nd International Work-
shops on Foundations and Applications of Self* Systems
(FAS*W), pages 191–198, 2017.

[33] The kernel development community. Fuse the linux ker-
nel documentation. https://www.kernel.org/doc/
html/latest/filesystems/fuse.html.

[34] kernel.org. Overlay filesystem – the linux kernel doc-
umentation. https://www.kernel.org/doc/html/
latest/filesystems/overlayfs.html.

[35] Petros Koutoupis. Everything you need to know about
Linux containers, part i: Linux control groups and pro-
cess isolation. Linux Journal, 2018, 2018.

[36] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio
Vicente, Charles Krasic, Dan Zhang, Fan Yang, Fedor
Kouranov, Ian Swett, Janardhan Iyengar, Jeff Bailey,
Jeremy Dorfman, Jim Roskind, Joanna Kulik, Patrik
Westin, Raman Tenneti, Robbie Shade, Ryan Hamil-
ton, Victor Vasiliev, Wan-Teh Chang, and Zhongyi Shi.
The quic transport protocol: Design and internet-scale

deployment. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication,
SIGCOMM ’17, page 183–196, New York, NY, USA,
2017. Association for Computing Machinery.

[37] Huiba Li, Yifan Yuan, Rui Du, Kai Ma, Lanzheng Liu,
and Windsor Hsu. DADI: Block-level image service
for agile and elastic application deployment. In 2020
USENIX Annual Technical Conference (USENIX ATC
20), pages 727–740. USENIX Association, July 2020.

[38] Filipe Manco, Costin Lupu, Florian Schmidt, Jose
Mendes, Simon Kuenzer, Sumit Sati, Kenichi Yasukata,
Costin Raiciu, and Felipe Huici. My vm is lighter (and
safer) than your container. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17,
page 218–233, New York, NY, USA, 2017. Association
for Computing Machinery.

[39] Scott McCarty. A practical introduction to container ter-
minology, 2018. https://developers.redhat.com/
blog/2018/02/22/container-terminology-
practical-introduction.

[40] Isla Mcketta. How Starlink’s satellite internet stacks
up against HughesNet and Viasat around the globe,
2021. https://www.speedtest.net/insights/
blog/starlink-hughesnet-viasat-performance-
q2-2021/.

[41] Microsoft. Azure container instances.
https://azure.microsoft.com/en-us/services/
container-instances/.

[42] Seyed Hossein Mortazavi, Mohammad Salehe, Moshe
Gabel, and Eyal de Lara. Feather: Hierarchical querying
for the edge. In 2020 IEEE/ACM Symposium on Edge
Computing (SEC), pages 271–284, 2020.

[43] Seyed Hossein Mortazavi, Mohammad Salehe, Car-
olina Simoes Gomes, Caleb Phillips, and Eyal de Lara.
Cloudpath: A multi-tier cloud computing framework.
In Proceedings of the Second ACM/IEEE Symposium on
Edge Computing, SEC ’17, New York, NY, USA, 2017.
Association for Computing Machinery.

[44] Senthil Nathan, Rahul Ghosh, Tridib Mukherjee, and
Krishnaprasad Narayanan. CoMICon: A co-operative
management system for docker container images. In
2017 IEEE International Conference on Cloud Engi-
neering (IC2E), pages 116–126, 2017.

[45] Mahesh Nayak, Kumud Dwivedi, and Cheryl McGuire.
Azure network round-trip latency statistics, 2021.
https://docs.microsoft.com/en-us/azure/
networking/azure-network-latency.

48 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/google/crfs
https://github.com/google/crfs
https://registry.hub.docker.com/
https://registry.hub.docker.com/
https://github.com/uber/kraken
https://github.com/uber/kraken
https://www.kernel.org/doc/html/latest/filesystems/fuse.html
https://www.kernel.org/doc/html/latest/filesystems/fuse.html
https://www.kernel.org/doc/html/latest/filesystems/overlayfs.html
https://www.kernel.org/doc/html/latest/filesystems/overlayfs.html
https://developers.redhat.com/blog/2018/02/22/container-terminology-practical-introduction
https://developers.redhat.com/blog/2018/02/22/container-terminology-practical-introduction
https://developers.redhat.com/blog/2018/02/22/container-terminology-practical-introduction
https://www.speedtest.net/insights/blog/starlink-hughesnet-viasat-performance-q2-2021/
https://www.speedtest.net/insights/blog/starlink-hughesnet-viasat-performance-q2-2021/
https://www.speedtest.net/insights/blog/starlink-hughesnet-viasat-performance-q2-2021/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/
https://docs.microsoft.com/en-us/azure/networking/azure-network-latency
https://docs.microsoft.com/en-us/azure/networking/azure-network-latency

[46] The Containers Organization. Buildah: a tool that facil-
itates building open container initiative (oci) container
images. https://buildah.io/.

[47] Misun Park, Ketan Bhardwaj, and Ada Gavrilovska.
Toward lighter containers for the edge. In 3rd USENIX
Workshop on Hot Topics in Edge Computing (HotEdge
20). USENIX Association, June 2020.

[48] Valerio Persico, Alessio Botta, Pietro Marchetta, An-
tonio Montieri, and Antonio Pescap. On the perfor-
mance of the wide-area networks interconnecting public-
cloud datacenters around the globe. Comput. Netw.,
112(C):67–83, January 2017.

[49] CNCF Distribution Project. Distribution - the toolkit to
pack, ship, store, and deliver container content. https:
//github.com/distribution/distribution.

[50] Prashanth Rajivan, Efrat Aharonov-Majar, and Cleotilde
Gonzalez. Update now or later? effects of experience,
cost, and risk preference on update decisions. Journal
of Cybersecurity, 6(1):tyaa002, 2020.

[51] Brian Ramprasad, Alexandre da Silva Veith, Moshe
Gabel, and Eyal de Lara. Sustainable computing on the
edge: A system dynamics perspective. In Proceedings
of the 22nd International Workshop on Mobile Com-
puting Systems and Applications, HotMobile ’21, page
64–70, New York, NY, USA, 2021. Association for
Computing Machinery.

[52] Mahadev Satyanarayanan. The emergence of edge
computing. Computer, 50(1):30–39, 2017.

[53] J. Shah and D. Dubaria. Building modern clouds: Using
Docker, Kubernetes & Google Cloud Platform. In
2019 IEEE 9th Annual Computing and Communication
Workshop and Conference (CCWC), pages 0184–0189,
2019.

[54] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and
Lanyu Xu. Edge computing: Vision and challenges.
IEEE Internet of Things Journal, 3(5):637–646, 2016.

[55] Dimitris Skourtis, Lukas Rupprecht, Vasily Tarasov, and
Nimrod Megiddo. Carving perfect layers out of docker
images. In 11th USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud 19), Renton, WA, July
2019. USENIX Association.

[56] Jörg Thalheim, Pramod Bhatotia, Pedro Fonseca, and
Baris Kasikci. Cntr: Lightweight OS containers. In
2018 USENIX Annual Technical Conference (USENIX
ATC 18), pages 199–212, Boston, MA, July 2018.
USENIX Association.

[57] Abhishek Tiwari, Brian Ramprasad, Seyed Hossein Mor-
tazavi, Moshe Gabel, and Eyal de Lara. Reconfigurable
streaming for the mobile edge. In Proceedings of the
20th International Workshop on Mobile Computing Sys-
tems and Applications, HotMobile ’19, page 153–158,
New York, NY, USA, 2019. Association for Computing
Machinery.

[58] Kohei Tokunaga. Startup containers in lightning speed
with lazy image distribution on containerd, Apr 2020.

[59] B. Varghese, E. De Lara, A. Ding, C. Hong, F. Bonomi,
S. Dustdar, P. Harvey, P. Hewkin, W. Shi, M. Thiele, and
P. Willis. Revisiting the arguments for edge computing
research. IEEE Internet Computing, (01):1–1, jun 5555.

[60] Ao Wang, Shuai Chang, Huangshi Tian, Hongqi Wang,
Haoran Yang, Huiba Li, Rui Du, and Yue Cheng. FaaS-
Net: Scalable and fast provisioning of custom server-
less container runtimes at Alibaba cloud function com-
pute. In 2021 USENIX Annual Technical Conference
(USENIX ATC 21), pages 443–457. USENIX Associa-
tion, July 2021.

[61] Ying Xiong, Yulin Sun, Li Xing, and Ying Huang. Ex-
tend cloud to edge with KubeEdge. In 2018 IEEE/ACM
Symposium on Edge Computing (SEC), pages 373–377,
2018.

[62] Ashkan Yousefpour, Caleb Fung, Tam Nguyen, Krishna
Kadiyala, Fatemeh Jalali, Amirreza Niakanlahiji, Jian
Kong, and Jason P. Jue. All one needs to know about
fog computing and related edge computing paradigms:
A complete survey. Journal of Systems Architecture,
98:289–330, 2019.

[63] N. Zhao, V. Tarasov, A. Anwar, L. Rupprecht, D. Sk-
ourtis, A. Warke, M. Mohamed, and A. Butt. Slim-
mer: Weight loss secrets for Docker registries. In 2019
IEEE 12th International Conference on Cloud Comput-
ing (CLOUD), pages 517–519, 2019.

[64] Nannan Zhao, Vasily Tarasov, Hadeel Albahar, Ali
Anwar, Lukas Rupprecht, Dimitrios Skourtis, Amit S.
Warke, Mohamed Mohamed, and Ali R. Butt. Large-
scale analysis of the docker hub dataset. In 2019 IEEE
International Conference on Cluster Computing (CLUS-
TER), pages 1–10, Sep. 2019.

[65] Chao Zheng, Lukas Rupprecht, Vasily Tarasov, Douglas
Thain, Mohamed Mohamed, Dimitrios Skourtis, Amit S.
Warke, and Dean Hildebrand. Wharf: Sharing docker
images in a distributed file system. In Proceedings of
the ACM Symposium on Cloud Computing, SoCC ’18,
page 174–185, New York, NY, USA, 2018. Association
for Computing Machinery.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 49

https://buildah.io/
https://github.com/distribution/distribution
https://github.com/distribution/distribution

A Appendix

A.1 Container Images Used in Evaluation
Table 2 below lists containers and version tags used in our
experiments; combined, they have over 15 billion downloads
in Docker Hub.

Category Images

Linux alpine:3.13.4
ubuntu:focal-20210401

Web memcached:1.6.8
nginx:1.19.10
httpd:2.4.43

Data mysql:8.0.23
mariadb:10.5.8
redis:6.2.1
mongo:4.0.23
postgres:13.1
rabbitmq:3.8.13

Services registry:2.7.0
wordpress:php7.3-fpm
ghost:3.42.5-alpine

Dev node:16-alpine3.11
openjdk:11.0.11-9-jdk
golang:1.16.2
python:3.9.3

Edge flink:1.12.3-scala_2.11-java8
cassandra:3.11.9
eclipse-mosquitto:2.0.9-openssl

Table 2: Container images used in our evaluation.

A.2 Analysis of Selected Containers
Figure 5 shows provisioning time of selected containers
across a range of latencies at 100Mbps.

When updating wordpress, the baseline approach is able to
reuse 4 out of 18 layers, making it faster in update. eStargz,
though faster than the baseline approach in fresh deployments,
does not benefit much from this layer reuse since it is bottle-
necked by on-demand file downloads. Starlight, on the other
hand, is much faster than either approach, reducing update
provisioning time by approximately 8×.

For alpine eStargz is slower than the baseline when RTT is
above 50ms. This is because the alpine image is small and its
file access pattern is not entirely deterministic. Provisioning
time is thus dominated by queuing delays due layer down-
loads and on-demand file downloads. Starlight also suffers
somewhat from out-of-order file accesses, but is still able to
deploy the container quickly, and is even faster than wget.

Finally, we discuss ghost – the worst case for Starlight.
Starlight’s provisioning time with low RTT is 10% higher

0

20

Fr
es

h
Pr

ov
. t

im
e

(s
) wordpress

0.0

2.5

5.0

alpine

0

50

ghost

0 100 200 300
RTT (ms)

0

20

Up
da

te
Pr

ov
. t

im
e

(s
)

0 100 200 300
RTT (ms)

0.0

2.5

5.0

0 100 200 300
RTT (ms)

0

50

baseline eStargz Starlight warm startup wget

Figure 5: Provisioning times versus round-trip latency for
selected containers. Shaded areas show standard deviation.
(figure repeated from page 10)

than eStargz’s – the only container where this happens. Build-
ing a delta bundle takes 3 seconds for this 84K file container.
eStargz provisioning time grows quickly with latency, how-
ever, and Starlight outperforms it when RTT is above 50ms.

50 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Background
	Edge Computing

	Motivation
	Pull-based Protocol
	Layered-based Structure
	No Explicit Update Support

	Starlight
	Design Considerations
	Overview
	Delta Bundle Protocol
	Proxy and Directory Database
	Snapshotter Plugin
	The Starlight Filesystem (StarlightFS)

	Evaluation
	Experimental Setup
	Provisioning Time
	Performance
	Geo-Distributed WAN Experiment

	Related Work
	Conclusion
	Appendix
	Container Images Used in Evaluation
	Analysis of Selected Containers

