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Abstract— A crucial requirement for many multi-site
production services operating at global scale is the need
for exclusive access to latest state. Here, a novel approach
to address these requirements through the abstraction of
a critical section over geo-distributed state is proposed.
This abstraction is realized in a key-value store called
MUSIC, which provides critical sections with novel seman-
tics suitable for geo-distributed state referred to as entry
consistency under failures (ECF). The semantics of ECF in
MUSIC, its formal verification, and its implementation are
presented, along with details of how MUSIC has been used
to realize various fundamental geo-distributed structuring
paradigms. MUSIC has been deployed in production geo-
distributed services at AT&T as part of the Open Network
Automation Platform (ONAP). Our evaluation of MU-
SIC shows that, despite providing additional properties,
MUSIC has higher throughput (∼1.4-17.17 times) than
Zookeeper for larger critical section sizes and outperforms
(∼2-4 times) similar structures in which state updates use
Paxos or CockroachDB transactions.

Keywords-Distributed key-value stores, Distributed fault Toler-
ance, Geo-distributed services.

I. INTRODUCTION

Geo-distributed services are critical for realizing new func-
tionality that requires global scale. As such services become
more complex, however, the demands on the store that man-
ages service state across replicas also become more complex,
with an increasing need to provide abstractions and semantics
more tailored to the service requirements. While designing
multi-site1 use-cases for job schedulers and active replication
in AT&T’s next generation network control plane, we identi-
fied two crucial requirements. First, each client request must
be processed exclusively by one service replica and only that
replica can update service state corresponding to that request.
Second, if a service replica fails while processing a client
request, another service replica should continue to process the
request from the latest state. We address these requirements
through a key-value store called MUSIC (MUlti-SIte Critical
Sections) that provides a familiar abstraction—critical sections
over shared keys—but with novel underlying semantics re-
ferred to as entry consistency under failures (ECF).

The requirements outlined above were first identified from
a production use case for a multi-site job scheduler in the

1A site is a data center at a physical location connected with other sites
through a WAN.

homing service of AT&T’s network control plane. The role
of this service is to determine suitable sites (“homes” ) on
which to deploy complex virtual network functions (VNFs) [1]
using optimization techniques. While a homing request (job) is
submitted to the closest scheduler replica (worker), the actual
homing may be performed by any idle replica. Homing is a
complex and time-consuming process. For example, analysis
of a week of production logs show that the mean and 99th per-
centile latency just to query geo-distributed cloud controllers
and identify candidate cloud sites was 7 and 15 minutes, re-
spectively. Hence, to minimize work duplication, each request
should be processed from its latest state exclusively by one
scheduler replica, despite failures.

Two fundamental challenges make it difficult to fulfill the
above requirements. First, a replica that is presumed failed
might try to update the state of a request that is now being
processed by another service replica. This is a result of
imperfect failure detection, which is not uncommon in geo-
distributed services given the enhanced chance of network
partitions [2], [3]. Second, a new replica that takes over request
processing from a failed replica may not have access to the
latest state. This can often happen when state is not updated
at all replicas due to wide-area-network (WAN) latencies on
the order of hundreds of milliseconds.

MUSIC addresses these challenges by providing the ab-
straction of a critical section with novel ECF semantics.
Entry consistency, as originally defined for failure-free shared
memory systems [4], [5], specifies that data shared among
multiple processors becomes sequentially consistent at a pro-
cessor only when this processor acquires a synchronization
object (e.g., a lock) that guards the data. We significantly
re-purpose these semantics to provide a replicated key-value
store, where to modify the value of keys, a client has to
acquire first a unique lock to the keys. On acquiring a lock
to a set of keys, the lockholder enters a critical section and
can read the latest value of the keys and perform exclusive,
sequentially consistent updates to the keys. Crucially, MUSIC
provides these guarantees despite: (a) lockholders that can fail
in the middle of a write operation, and (b) prior lockholders—
detected as failed incorrectly—that may attempt to modify
shared keys.

The guarantees provided by MUSIC enable service devel-
opers to write programs for geo-distributed services with the
familiarity with which they write multi-threaded concurrent
programs, despite the complex failure modes associated with
geo-distribution. In §VII, we describe how MUSIC is used
to realize the VNF homing service described above and to



Fig. 1: The MUSIC architecture, where clients access a nearby MUSIC
replica that in turns communicates with data/lock-store replicas. In our
production deployment, since we use Cassandra for both the lock- and data-
store, we have a 9-replica MUSIC cluster interacting with a 9-node Cassandra
cluster with redundancy both within a site and across sites.

provide active replication with failover for a Management
Portal Service [6]. MUSIC and these services are based on
contributions from multiple companies, and are part of the
open-source Open Network Automation Platform (ONAP) [7].
They are currently running in AT&T production deployments.

MUSIC is designed as a combination of a data store that
maintains client key-value pairs and a lock store that is used
for locking primitives (Figure 1). Through the novel use
of vector timestamps and selective state synchronization, we
guarantee ECF semantics in a performant manner. While the
use of distributed consensus for reads and writes in a critical
section would have made it easier to prove the correctness
of MUSIC algorithms, we show that ECF can be guaranteed
even when implemented through quorum operations in an
eventually-consistent store. While both options have similar
message complexity, this choice makes MUSIC more efficient
in practice (see §VIII). Given the subtle reasoning required due
to failures and more importantly imperfect failure detection,
we model MUSIC semantics in Alloy [8] and verify its
algorithms using the Alloy Analyzer [9].

MUSIC is implemented as a layer on top of Cassandra [10],
which is used for both the data- and lock-store. We make novel
use of Cassandra’s light-weight transactions or LWTs (Paxos-
based compare-and-set [11]) to implement locking primitives.
MUSIC’s evaluation across WAN latency profiles shows that,
despite its additional properties (see §II), MUSIC outperforms
(∼1.4-17.17 times) Zookeeper for larger critical section sizes.
Moreover, MUSIC outperforms (∼2-4 times) critical sections
with identical guarantees that use LWTs or CockroachDB [12]
transactions for each state update.

In summary, this paper presents these contributions:

• The MUSIC key-value store, which provides novel ECF
semantics presented to programmers as a critical section
abstraction suitable for geo-distributed services (§III).

• A formally verified algorithm design (§IV – §V).
• An implementation [13] that is being used in AT&T’s

production network and is open-sourced through ONAP
(§VI,§VII).

• Experiments validating MUSIC’s effectiveness (§VIII).

This work builds on a brief announcement that focused only
on the basic ideas and abstractions [14].

II. RELATED WORK

Entry consistency has been widely used in shared-memory,
multi-core systems [4], [5], where updates to memory and
cache are tracked in an efficient manner so that a process
acquiring a lock to, say, a page of memory has access to the
latest version of the data in that page. Core failures are not
usually considered an issue in such systems. In this paper, we
re-purpose these semantics for geo-distributed services with
failures and imperfect failure detection. Re-purposing similar
models such as release consistency [5] for geo-distributed
services is an avenue of future work.

Existing tools either do not provide the right abstractions
to address our requirements or lead to prohibitively expen-
sive designs. Zookeeper, Consul and etcd [15]–[17] facilitate
implementation of the replicated state machine approach [18]
by providing sequentially-consistent reads and writes to file
system nodes/keys. Further, these tools use protocols like
Zab [19] or multi-Paxos to optimize performance by electing a
stable leader. MUSIC provides the higher-level abstraction of
critical sections, where lockholders are not only guaranteed
sequential consistency, but are also guaranteed to read the
latest value since no other client can be writing a new value
while the lockholder is reading the current value. In addition,
by using the lockholder as a stable leader, MUSIC amortizes
the cost of multiple operations in a critical section (see §IV).

This argument with respect to sequentially-consistent tools
naturally extends to tools that provide weaker consistency
such as COPS for causal consistency [20], [21]. However, our
lock-store design can benefit from any research that reduces
the cost of sequential consistency through the use of mixed
consistency [22], workload management [23] or WAN-aware
designs [24], [25]. Other systems such as Atomix [26] extend
Cassandra’s per-key LWTs [11] to atomic maps, linked lists,
and other data structures. While valuable, our experience is
that it is useful to have a more general control structure
such as critical sections for building production geo-distributed
services. Note that this abstraction can then be used to build
atomic data structures as needed.

Standalone locking services provided by Chubby, Curator,
or Zookeeper recipes [27]–[29] implement distributed mutual
exclusion [30], [31] and offer a lock abstraction similar to MU-
SIC. However, these services are oriented primarily towards
providing coarse-grain locks for occasional synchronization,
such as might be used for leader election. Moreover, while
these tools provide a file system abstraction, they are intended
for storing small amounts of metadata rather than as a general
data store. As a result, these locking services are often used
in conjunction with an external data store that is expected
to enforce consistency as opposed to the locking service
itself. MUSIC provides fine-grained locks as part of a general
key-value store that can support arbitrary amounts of data
storage. The locking exists to enforce specific consistency
guarantees for that key-value store, and indeed, the primary
goal of MUSIC locks is to serve as the object that triggers the
synchronization needed to provide ECF.
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Transactions with optimistic concurrency control [32]–[34]
allow multiple processes to execute concurrent transactions on
the same keys/table and use conflict resolution and/or multi-
version concurrency control to ensure ACID semantics. Such
transactions do not satisfy our exclusivity requirement. For
example, in the homing use-case from §I, if each worker per-
forms homing in an independent transaction, multiple workers
may home the same job, which is prohibitively expensive. On
the other hand if a worker performs all updates to service
state in an ACID transaction with exclusivity guarantees, then
replica failure during the transaction will rollback all the
state updates, necessitating a complex rollback of the homing
process and further, violating our latest state requirement.

While our requirements can be addressed by performing
each state update in an exclusive transaction, this is pro-
hibitively expensive, even for highly optimized geo-distributed
databases (DB) like Spanner [35] or its open-source version,
CockroachDB [12]. This solution requires distributed consen-
sus to begin and end each transaction (see §4.2.1 in [35]),
each of which involves a single local state update. MUSIC
uses distributed consensus to enter and exit a critical section
in which there are multiple quorum state updates. We show
through basic cost analysis in §X-B4 and experiments (§VIII)
that a MUSIC critical section executes ∼2-4 times faster than
the solution above.

III. SEMANTICS

In this section, we describe MUSIC’s critical section ab-
straction and the guarantees it provides under failures. Our
system model assumes distributed nodes that communicate
using messages (that can be lost or re-ordered). To overcome
the impossibility of distributed consensus in asynchronous
systems [36], we assume partial synchrony [37], [38] where
there are sufficient periods of communication synchrony with
an upper bound on message delay. Nodes can suffer crash
failures [39], which implies that other nodes cannot distinguish
between a failed node and one that is slow to respond and/or
unable to communicate. This is relatively common in geo-
distributed systems where link failures [2], [3] can partition a
node from some subset of other nodes.

MUSIC is implemented by a collection of replicas, where
clients issue requests to the MUSIC replicas and the MUSIC
replicas in turn issue requests to back-end data-store and lock-
store replicas (see Figure 1). Clients use MUSIC by invoking
the operations listed in Table I using a non-blocking request
to a MUSIC replica of its choice.2 The replica then executes a
single-threaded sequence of steps, including requests to back-
end stores, and reports success or failure to the client.

In this section, we first describe the ECF semantics as
provided to MUSIC clients and then the semantics of the back-
end stores as provided to MUSIC.

2A blue font is used to highlight the subsequent use of MUSIC operations
in the text.

lockRef = createLockRef (key) Enqueues a per-key unique
increasing identifier that is
good for one critical sec-
tion.

result = acquireLock (key,
lockRef)

Returns true if lockRef is
first in the queue.

criticalPut (key, lockRef, value) Writes the latest value of
a key for the current lock
holder.

value = criticalGet (key, lock-
Ref)

Reads the latest value of
a key for the current lock
holder.

releaseLock (key, lockRef) Removes lockRef from the
queue and releases the
lock.

TABLE I: MUSIC Operations.

A. MUSIC ECF Semantics

We present ECF semantics by describing the details of MU-
SIC operations, which are typically used as shown in Listing
1. Note that this code has been simplified by omitting the
code for handing failures; these considerations are addressed
in detail when we discuss failure semantics later in this section.

Listing 1: Example use of MUSIC by a client
lockRef = createLockRef(key);
while(acquireLock(key, lockRef)!=true) skip;
// enter critical section
v1=criticalGet(key, lockRef);
// v1 is guaranteed to be the true value of the key
v2=v1+1;
criticalPut (key, lockRef, v2);
// v2 is guaranteed to be the true value of the key
releaseLock(key, lockRef);
// exit critical section

Locking. To read or write to a key, a client must first
acquire the lock to the key, which is granted fairly. Specifically,
the client executes createLockRef, which returns a lockRef—a
unique, increasing identifier for the key, used to authenticate
the client as it makes its critical requests. A lockRef is good for
a single execution of a critical section. For each key, MUSIC
maintains a sequentially-consistent queue of pending lockRefs,
in request order. To actually acquire the lock, the client polls
by executing acquireLock until it returns true, meaning that
this client’s lockRef is first in the queue. Standard back-off
mechanisms can be used to alleviate the cost of polling and
contention across clients trying to acquire a lock to the same
key. Our choice of separate operations of createLockRef and
acquireLock is important—as we show in §IV, the former
operation requires the use of distributed consensus while the
latter, which is called several times by clients, is a purely local
operation for most cases.

Critical section abstractions. On acquiring the lock, a client
enters a critical section in which it can read and write the value
of the key through a sequence of criticalGet and criticalPut3

3While the criticalPut has a corresponding delete function, we omit its
description for simplicity.
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operations, respectively.
ECF semantics as provided by MUSIC is a combination of

the following two definitions and two properties.

Definition. The lockholding client (or lockholder) is the client
holding the lockRef that is first in the sequentially-consistent
queue, if any.

As described in §III-B, the first lockRef in the queue refers
to the first lockRef at a quorum of the lock-store replicas. In
this paper, a quorum is defined in the usual way as a majority
of the replicas.

Exclusivity Property. Only the lockholder can perform suc-
cessful criticalPut or criticalGet operations on a key.

Definition. The true value of a key is the value of the most
recent, successfully acknowledged, criticalPut performed by a
lockholder.

If a criticalPut succeeds in all respects except that the
acknowledgment is lost on the way to the client, it has not
succeeded. This is important because a non-failed client is
obligated to retry until it does receive acknowledgment.

Latest-State Property. If the lockholder requests a criticalGet
operation and receives a value in response, the value it
receives is the true value of the key.

The paragraphs on lock release and failure resilience below
explain the assumed behavior of clients when failures in
MUSIC or its back-end stores occur, and the behavior of
MUSIC replicas when client or back-end failures occur; these
will entail a refinement of the definition of true value. These
assumptions and refinements are encoded in the formal model
(§V), which has been used to verify the above properties.

Lock release. When the lockholder is finished with a critical
section, it should invoke the function releaseLock to make
the lock available to other clients. Clearly, the client may
fail while holding the lock. To fix this problem, any MUSIC
replica can preempt the lock from a lockholder that appears
to have failed, using time-outs for failure detection. This fix
creates another problem, that of false failure detection (usually
because of a network partition). If a lockholder is still alive but
has had its lock preempted, its request for critical functions
will be rejected by the MUSIC replica that receives the request
with a notification that the client is no longer the lockholder.
Further, the Exclusivity Property ensures that the criticalPuts
of a preempted client will not compromise the data store.

Failure Semantics. A client can execute MUSIC operations
on a key if it can reach any non-failed MUSIC replica.
However, to perform a successful operation, that MUSIC
replica must be able to reach a quorum of non-failed back-
end replicas. If a MUSIC replica makes a request to back-end
replicas and receives too many nacks or missing responses
because a replica has failed or is slow in replying, then it
returns a nack to the client. In this case, the client has to
retry the function—usually at a different MUSIC replica—
until the operation succeeds, the client fails, or the client is

told it is no longer the lockholder. If the client does not receive
a response after these retries, it must not attempt any other
MUSIC operation on the key; in this case, the client can simply
exit the code and attempt to modify the key in a new critical
section if desired. We assume that there are enough replicas
of each type, and that failures are infrequent enough that
all proper requests eventually succeed. While omitted from
Listing 1, each MUSIC call would incorporate these steps.

What if a lockholder fails or is forcibly preempted while it is
waiting for completion and acknowledgment of a criticalPut?
This one case requires a refinement of the definition of true
value above. In this case, the true value is either the value of
the most recent acknowledged write (the definition above) or
it is the value of the write being attempted by the previous
lockholder when it was preempted. The choice of which is
non-deterministic, but the system commits to a choice and
ensures that the true value is present in at least a quorum of
data-store replicas before the next lockholder enters its critical
section.

We only consider MUSIC operations on a single key here
since our use-cases do not currently require locks over multiple
keys. The semantics can easily be extended by following the
deadlock-avoidance rule that locks are always acquired in
lexicographic order, and an acquireLock on multiple keys is
successful only if it is individually successful for all the keys
in the key set. More efficient mechanisms are an important
avenue of future work.

B. Back-end Store Semantics

MUSIC uses a data store that maintains key-value pairs
created by the client, with standard eventual consistency
semantics [40], but with novel use of vector timestamps for
ordering. Specifically, the value of a key in any replica of the
data store has a (lockRef, time) vector timestamp associated
with it that reflects the lockRef and real time of the last write
received at that particular replica. This write could have been
either part of a criticalPut in the lockRef’s critical section,
or propagated by another data-store replica. The domains
of both the lockRef and time are ordered, and lockRef s are
more significant in the comparison. In the definition of true
value in §III, “most recent” refers to a comparison of vector
timestamps; we define the true timestamp as the winning “most
recent” timestamp of the write. We rely on local clocks only
to sequentialize multiple actions of a single client.

The data store provides to MUSIC a dsPutQuorum (key,
value, (lockRef, time)) function, which attempts to update the
key and its timestamp at a quorum of the data-store replicas.
The data store also provides a dsGetQuorum (key) function,
which communicates with a quorum of data-store replicas and
returns their latest value of the key. A write to a data-store
replica eventually propagates to all other replicas, where it is
accepted only if the vector timestamp of the write is greater
than the current timestamp at that replica.

MUSIC uses a lock store with standard sequential con-
sistency semantics [41] to create and store the queue of
lockRefs for each key. The lockRef queue is updated through
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the functions lsGenerateAndEnqueue (key), which atomically
generates a per-key unique increasing identifier and enqueues
it in the lock store, and lsDequeue (key, lockRef). All writes to
the queue are totally ordered, and the write order is determined
by a consensus protocol [28], [42] that to succeed needs to
update at least a quorum of lock-store replicas. All writes
eventually propagate to all other replicas. There is also a
function lsPeek (key) returning the lockRef that is first in the
queue of the local replica of the lock store, i.e., any replica
executing at the same geographic site.

IV. ALGORITHMS

A. Execution in Failure-Free Scenarios

In this section we present the algorithms executed by each
MUSIC replica to implement ECF semantics. We first explain
how and why they work in failure-free scenarios. Subsequent
sections will then explain the more complex scenarios. In
each algorithm, we specify its dominating cost with respect
to whether it is a quorum operation, or incurs distributed
consensus, on large or small amounts of data. For initialization,
we assume all keys and their lock queues have already been
created in the data and lock store, respectively.

In createLockRef, MUSIC simply calls the lock-store func-
tion lsGenerateAndEnqueue to obtain a lock reference. Al-
though createLockRef incurs the cost of distributed consensus,
it is executed only once for each critical section.

createLockRef (key) [cost: lockRef consensus write]
lockRef = lsGenerateAndEnqueue (key);
return (lockRef);

As described in §III, after enqueueing a lockRef the client
invokes acquireLock until its lockRef is first in the queue. The
code for acquireLock begins with a check of the local replica
of the lockstore. If the lockRef is greater than (later than) the
first entry in its queue, MUSIC returns failure to the client,
and the client tries acquireLock again. The lockRef may in
fact be first but the local replica has not been updated yet, in
which case retry is also the right thing to do. Checking a local
replica is efficient, which is important because there may be
several executions of acquireLock for each critical section. In
failure-free scenarios, if the lockRef is first in the queue, then
the code directly skips to the last line and returns true.

acquireLock (key, lockRef) [cost: synchFlag quorum read]
if (lockRef > lsPeek (key))

// lockRef not first yet , or local store not yet updated
return ( false ) ;

if (lockRef < lsPeek (key)) // lock forcibly released
return (youAreNoLongerLockHolder);

if (dsGetQuorum(synchFlag) == true)
[cost, only after forced release: value quorum read and

write, synchFlag quorum write]
value = dsGetQuorum (key);
dsPutQuorum (key, value, (lockRef, time));
dsPutQuorum(synchFlag, false, (lockRef, time));

// data store defined as true value for key
return (true) ;

To update the data store, a lockholding client requests crit-
icalPut. In failure-free scenarios, only the last two statements
of the algorithm matter. MUSIC writes the new value in a
quorum of data-store replicas, then acknowledges to the client
a successful put. The code for criticalGet is similar, with the
quorum write replaced with a quorum read of the data-store.

criticalPut (key, lockRef, value) [cost: value quorum write]
if (lockRef > lsPeek (key))

// lockRef not first yet , or local store not yet updated
return ( false ) ;

if (lockRef < lsPeek (key)) // lock forcibly released
return (youAreNoLongerLockHolder);

dsPutQuorum (key, value, (lockRef, currentTime));
return (true) ;

Finally, when a client is finished with its critical section, it
releases the lock. In failure-free scenarios, this simply removes
its lockRef from the lock queue.

releaseLock (key, lockRef) [cost: lockRef consensus write]
if (lockRef < IsPeek (key))

return (true) ; // lock has been forcibly released
lsDequeue (key, lockRef);
return (true) ;

The proof of the Latest-State Property (§III-A) is based on
the following definition and invariant.

Definition. The data store is defined as value v if fewer than
a quorum of data-store replicas hold a value that is not v.

This is similar to saying that at least a quorum of replicas
have the value v, but more precise because it allows for replica
failures. When a lockholding client is waiting for a criticalPut
to succeed, waiting for a criticalGet to succeed, or in a critical
section but not accessing the data store, it is in the states
Putting, Getting, or Critical, respectively. We have verified
that the following property is always true:

Critical-Section Invariant. If the lockholding client is in a
Critical or Getting state, then the data store is defined as the
true value.

It is easy to see from the invariant that the quorum read in
criticalGet must return the true value.

From the algorithms presented in this section it is clear that,
in failure-free scenarios, a MUSIC critical section essentially
requires two consensus writes to a small lockRef, one quorum
read of a small synchFlag, and a quorum operation for each
state update using a criticalPut. §VIII shows that the common
pattern of multiple state updates in a critical section effectively
amortizes the cost of entry and exit.

B. Failures

a) Lockholder Failure: A MUSIC replica can diagnose
failure of the current lockholder and preempt its lock by
executing forcedRelease, which is an internal function not
exposed to clients.
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forcedRelease (key, lockRef)
[cost: lockRef consensus write, synchFlag quorum write]
if (lockRef < lsPeek (key))

return (true) ; // lock was previously released
dsPutQuorum (synchFlag, false, (lockRef+δ, time));
lsDequeue (key, lockRef); // no−op if lockRef not in queue
return (true) ;

The lockholder may fail and be preempted while it is
attempting a criticalPut. When this happens, the state of the
data store is unknown; before a new lockholder can enter a
critical section, the data store must be synchronized, meaning
that it is once again defined as the true value. To do this,
MUSIC uses a synchFlag for each key indicating when the
data store must be synched (like a “dirty bit”). This flag is
implemented in the data store with vector timestamps, and
accessed through quorum reads/writes. We distinguish the cost
of these quorum operations from the cost of quorum operations
on the key’s value, because the latter is usually far larger.

To synchronize, in acquireLock, MUSIC first does a quorum
read of the data store. If there was an incomplete criticalPut,
then this read may or may not catch the updated value. Either
way, the result of the read is re-written into the data store with
a new timestamp carrying the new lockholder’s lockRef. This
is how the nondeterminism in §III, requiring an exception in
the definition of the true value, is resolved. After the quorum
write, MUSIC resets the synchFlag with the new lockRef in
its timestamp, eventually over-writing all values with past
lockRefs in their timestamps.

What if acquireLock and forcedRelease with the same
lockRef are racing to write the value of the synchFlag?
forcedRelease sets the flag using a value in the lockRef field
of the timestamp that is strictly higher than the lock reference
it is releasing by a small number δ. This δ needs to be greater
than zero so that it over-writes the concurrent synchFlag reset
with the same lockRef, but small enough to be over-written
by a synchFlag reset with the next lockRef in the queue. (In
our production deployment we chose δ to be 1 microsecond).
Note that setting the synchFlag in forcedRelease cannot race
with reading the synchFlag in the next successful acquireLock,
because the quorum write is completed before the last lockRef
is dequeued.

What if a lockholder releases the lock, and subsequently
some MUSIC replica thinks its lockRef still holds the lock
and executes forcedRelease on it? In this case the synchFlag
might be erroneously true, but the only consequence of this
error is that the next acquireLock will synchronize the data
store when it is not necessary.

It may be that a client requests createLockRef and then dies
before receiving the reply or before acquiring the lock. In this
case there will be a lockRef in the lock queue with no client as
owner. When the orphan lockRef becomes first in the queue,
it will be removed by forcedRelease.

b) False Failure Detection: Due to delayed packets
and/or network partitions, a MUSIC replica might execute a
forcedRelease when the lockholding client is still alive and
in its critical-section code. The client can continue to request

criticalPuts concurrently with the critical section of a subse-
quent lockholder. However, before the subsequent lockholder
entered its critical section, acquireLock synchronized the data
store. So the true value in the data store now has a timestamp
with the current lockRef, over-riding any timestamp with
the preempted lockRef. Consequently, the preempted client’s
criticalPuts will have no effect on the data store, and the
critical-section invariant will be preserved. As the code shows,
as soon as its local lock store is updated, a MUSIC replica
will know that the client’s lockRef is out-of-date and return
“youAreNoLongerLockHolder”.

We can now address the proof of the Exclusivity Property
(§III-A). Because of the guards on criticalPut, the only clients
whose requests proceed to the quorum write are those with
current or past lockRefs. If the lockRef is past and the client
is still active, it has been preempted. For its write to change
the value of the key, its lockRef must be later than or equal to
the lockRef of the true timestamp. So this invariant applies:

SynchFlag Invariant. If a client has a lockRef that is both
past (released) and later than or equal to the lockRef of the
true timestamp, then the synchFlag is true.

This is a simplified statement because the preempted client
may have failed, but there might still be traces of its requests
as pending tasks in MUSIC replicas or as ongoing writes to the
data store. If these traces are present, the synchFlag must be
true as well. In these cases, before another client can enter its
critical section, the data store will be synchronized, which will
either obliterate the ongoing write or confirm it as belonging
to the previous lockholder’s critical section.

V. FORMAL VERIFICATION

In this section we provide an overview of MUSIC’s formal
verification – an effort that ensures correctness despite the
complex failure modes of geo-distributed services.

A. Modeling the System

In choosing an approach to verification, we were motivated
by the need to experiment and design iteratively; we chose Al-
loy [8] as a modeling language because it has fully-automated
(“push-button”) verification over bounded domains. The Alloy
language is a smooth and versatile integration of first-order
predicate logic, relational algebra, and object orientation.4 The
model takes the form of a state-transition system, which means
that it consists of four parts: (i) a declaration of the structure
and component types of each state of the system, (ii) an
invariant, which is a large and complex predicate describing
which system states are legal, (iii) a predicate describing the
initial state of the system, and (iv) for each type of event,
a precondition/postcondition pair. The pre/postconditions are
predicates on the system states, describing when the event is
enabled, and how it alters the system state, respectively.

Verification assumes that each event is atomic, but they are
fine-grained events. With the exception of lock-store events

4A further discussion of this choice, including comparison to alternatives,
can be found in [43].
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(§V-C), the “biggest” atomic event is confined to one node,
which can read a message from its input buffer, change its
local state, and send an output message.

The model of MUSIC replicas is the specification that
our implementation must satisfy. The models of the network,
clients, lock-store replicas, and data-store replicas record as-
sumptions about the behavior of these components, which
interact with MUSIC replicas but are not controlled by them.

B. Verification

For a state-transition model, there is a conventional set
of proof obligations based on the system invariant: (i) the
initial state must satisfy the system invariant, and (ii) for every
event and system state satisfying the system invariant, if the
event is enabled in that state and executed from that state,
the resulting state also satisfies the invariant. If the proof
obligations are discharged, then every possible system state
satisfies the system invariant, and all correctness conditions
implied by the invariant are true. Thus, in this style of
verification, every property we want to prove must be stated
as an invariant, i.e., a conjunct of the system invariant.

§IV presented two important invariants, the Critical-Section
Invariant and the SynchFlag Invariant. To formalize these
properties, defined concepts such as the true value and true
timestamp are put into the model state as history variables,
which appear nowhere in the implementation. In state transi-
tions they are updated to show what the “true” state of the sys-
tem should be, so that invariants such as the Critical-Section
Invariant can state that implementable state components are
equal to history variables whenever appropriate. The Latest-
State Property (§III) is turned into an invariant of the form “if
a reply to a criticalGet request is waiting in the lockholding
client’s input queue, then it is carrying the key’s true value.”

The system invariant is large, complex, and most of its
conjuncts say how the many components of a real system
state—one that could have arisen during execution of the
system—are consistent with one another. In total the formal
model plus assertions consists of 1328 lines of Alloy code,
including 49 invariants and 21 event types (see [44]).

The proof obligations are discharged automatically by run-
ning the Alloy Analyzer on the model; the Analyzer does
exhaustive “model enumeration” over bounded scopes, which
means that there are maximum sizes for basic sets (for exam-
ple, our model is analyzed with 5 instances of each replicated
node type). To check that an event type preserves the system
invariant, it constructs (symbolically) all possible system states
that satisfy both the invariant and the event precondition. It
then computes the post-state for each possible pre-state, and
checks that it satisfies the invariant. If a post state does not
satisfy the invariant, the Analyzer presents this counterexample
for debugging. The widely-accepted “small scope hypothesis”
[8] says that most bugs are exposed by counterexamples in
small scopes. In practice it is not difficult to choose scopes that
find all the bugs, as far as can be determined by comparison
with other forms of verification. It only takes a few seconds
to a few minutes to check each assertion.

Our focus to date has been on formally verifying safety
properties (something bad does not happen, e.g., the system
does not return a wrong answer). Our reasoning about liveness
(something good does happen) is based on three observations.
First, every lockholder’s local peek will eventually return
true since the lock store eventually propagates updates to all
replicas. Second, critical operations will eventually succeed
since we assume there are enough back-end store replicas
and that failures are infrequent enough. Finally, every aspiring
client will eventually acquire the lock to a key since failed/non-
responsive lockholders will be timed-out and preempted. In
future work, we will formally verify these properties.

C. Modeling the Back-end Stores

Atomic events on the lock store are larger-grained than
other events in the model, because of the strong consistency
properties of consensus protocols. The most innovative as-
pect of our verification effort is our approach to modeling
eventually-consistent stores. Earlier versions of the MUSIC
model, which included explicit representation of the data store
with all its replication and failure cases, were too complex to
comprehend fully. We solved this problem by modeling only
certain properties of the data store that are directly observable
by MUSIC replicas. The result is a weak and incomplete
representation of behavior, but this does not matter, because
the properties we do model are exactly the ones that MUSIC
correctness relies on.

An attempted quorum write by a MUSIC replica is modeled
by a (MUSIC timestamp, value) pair. The entire set of past
attempted writes is kept in a history variable, partitioned into
subsets pending and succeeded. A pair begins in pending
and moves to succeeded when and only when the requesting
MUSIC replica receives an acknowledgment message that the
write has succeeded, which means that a quorum of replicas
has been updated. Because this is a MUSIC view of the data
store, if the write fails, or the data store completes a write but
the MUSIC replica requesting it has timed out the request, or
has died and does not receive the reply, then the attempted-
write pair stays in pending forever.

The true pair is defined as the write pair with the latest
timestamp. Thus all write pairs except the true pair should not
affect the value returned by a quorum read. The data store is
defined from MUSIC’s view (§IV-A) when, and only when,
the true pair is in succeeded. The crucial property of the data
store is that if a quorum read operation is requested and replied
to, and the data store is continuously defined between the
request and reply, then the reply returns the true pair. This is
a specification that any eventually-consistent data store should
satisfy. The design of MUSIC ensures that criticalGets are
requested by the lockholder when, and only when, the data
store is continuously defined.

VI. IMPLEMENTATION

The MUSIC algorithms in §IV are implemented in Java 1.8
with approximately 12k LOC [13]. Functionality is provided
as a Java library that clients can import and as a multi-site
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Fig. 2: Example of a MUSIC data store and lock store table in Cassandra.

REST web service, the latter as shown in Figure 1. Due
to its proven multi-site performance and production support
through Datastax [45] (more details in §X-A1), our goal was
to use an unmodified version of Cassandra to realize both the
lock store and data store. Each MUSIC replica can query any
Cassandra node for lock and data store operations. In this
section, we describe how we make novel use of Cassandra’s
light-weight transactions (LWT) [11] to ensure that the lock
store is updated in a sequentially-consistent manner while the
data store is updated using the relatively efficient quorum
operations (§III-B).

To realize the MUSIC data and lock stores, we use Cas-
sandra’s SQL-like (CQL) model with keyspaces that contain
data tables and lock tables. As shown in Figure 2, for each
row in a data table, the primary key/index corresponds to a
MUSIC key, while the (value) columns collectively correspond
to the MUSIC value of the key. Each row in a lock table is
indexed by the pair (key, lock reference) to maintain a queue of
lock references sorted in ascending order for each key. Other
columns in Figure 2 are explained below. The data in these
tables can be replicated and sharded across Cassandra nodes
as required. Clients send key-value pairs for these tables in
JSON format, which are then converted to CQL queries.

ECF Functions. While Cassandra uses the time-of-write
(time) to order all values for a key, MUSIC’s data store
(unlike the lock store) requires vector timestamps (lockRef,
time) as described in §III-B. To address this challenge, we
implement a function that maps vector to scalar timestamps,
v2s(lockRef, time) = lockRef · T + time, where T is a
configurable parameter that restricts the maximum time for
which a lock-holder can be in a critical section. In §X-A2,
we prove that this mapping preserves the ordering of vector
timestamps.

The criticalPut operation is implemented as follows. First,
we perform a lock store peek, which is implemented as a
Cassandra eventual read query on the lock table that reads
from one replica to obtain the topmost lock reference for a
key. Then, we ensure that the critical section duration is not
exceeded by maintaining a startTime variable for each lock
reference in the lock-store that is initialized in acquireLock
just before returning true for this lock reference when access
is granted. criticalPut can then simply reject any operations
with (time− startT ime) ≥ T . In dsPutQuorum we convert
(lockRef, time) into a scalar timestamp v2s(lockRef, time)
and perform a Cassandra quorum update operation to update
the value of the key and its timestamp at a quorum of replicas.
The only difference in criticalGet is the use of dsGetQuorum,
which is implemented as a Cassandra quorum select query that

returns the latest value from a quorum of replicas.
For createLockRef the most difficult challenge was generat-

ing per-key increasing lock references using just one consensus
operation. We show in §X-A3 that a simple choice of 128-bit
time-based UUIDs for lock references can cause overflows in
the data table. To avoid this, we use a 64-bit static integer
variable called guard whose value is constant across rows
of a key (see Figure 2). Each call to createLockRef then
uses Cassandra’s batch operation to atomically increment this
variable and enqueue its value in the lock table using one
LWT. In forcedRelease, we implement lsDequeue using the
LWT delete, which atomically removes the entire key-lock
reference row from the lock table. Finally, all the functions
used internally in acquireLock have been described above. In
§X-A4, we provide pseudo-code for several of these functions.

Additional Functions. To enhance MUSIC’s usability (see
§VII), we provide a get(key) and a put(key, value) function that
are implemented as an eventual read and write on any Cas-
sandra replica respectively. Clients should use these functions
only on keys for which no ECF guarantees are expected.

VII. MUSIC IN PRODUCTION

In this section we describe MUSIC’s use in realizing the
VNF Homing Service (from §I) and a Management Portal
Service [6] with active replication. These services have been
deployed since September 2017 across AT&T sites as shown
in Figure 1, with the three sites in San Diego, Kansas City,
and North Carolina, respectively. The deployment is associated
with a controlled introduction, so usage is expected to ramp
up from here. As it does, we will collect data for more
extensive analysis. We are also currently designing MUSIC-
based solutions for ONAP’s Application and SDN Controller
Services. Note that our pseudo-code here does not include
failure handling for simplicity; refer to §III for guidelines on
how this would be added.

a) VNF Homing: This use-case is an example of the
job-scheduler paradigm where workers (scheduler replicas)
vie for jobs (homing requests). A homing request contains
a list of VNF service chains to be placed, together with
associated constraints such as hardware requirements, distance
between VNFs, bandwidth between VNFs, etc. that determine
the placement of the VNFs on the cloud sites. Each worker
chooses the appropriate sites by solving for the constraints.
Figure 3(a) shows the schematic of a Homing Service consist-
ing of worker pools replicated across multiple sites. Incoming
homing requests are load-balanced across the homing service
front-end (Client API), which inserts it into a pool of pending
homing requests. Any free worker can select and solve a
homing request, moving it across the different execution states
of the homing process as shown in Figure 3(b).

A Client API replica receives an incoming homing request
or job with a unique identifier (jobId), and creates a key in
MUSIC with this jobId. The value of the key is a combination
of the dynamic job execution state and a static job description
that provides enough information for a worker to resolve this
request. This information is placed in MUSIC by the receiving
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Fig. 3: Schematic of a VNF Homing service.

Client API replica using the put operation without any locks.
It then periodically checks to see if the job has been completed
(its execution state is “DONE”) using the get function in order
to delete completed jobs from MUSIC.

At each worker, in a periodic loop do:
Queue currentJobIds = getAllKeys();
while (currentJobIds is not empty){

jobId = currentJobIds.pop () ;
// get job (e.g. homing request) details.
{jobState, jobDesc} = get ( jobId) ;
if (jobState != DONE)

lockRef = createLockRef ( jobId) ;
if (acquireLock ( jobId , lockRef) == true)

executeJobInCriticalSection ( jobId , lockRef);
releaseLock ( jobId , lockRef); // exit critical section

else
removeLockReference (jobId, lockRef);

// wait x seconds for new jobs to be added

executeJobInCriticalSection (jobId, lockRef)
// get latest job state
{jobState, jobDesc} = criticalGet ( jobId , lockRef);
while (jobState != DONE)

// execute job and progress it to its next state
jobState = next state from current job state ;
// for the homing use−case refer to Figure 3(b)
value = {jobState, jobDescription} ;
criticalPut ( jobId , lockRef, value);

Each worker (pseudo-code above) iterates through all jobs
in MUSIC according to their time of submission, using getAl-
lKeys and pop helper functions. Since these functions do not
use locks, the values may be stale but that has no impact on
the correctness of the job scheduler. When a worker finds an
incomplete job, it attempts to acquire exclusive access to the
job using a MUSIC lock over the jobId. Workers that fail to
acquire a lock to a job use a removeLockReference function
to evict their lock reference from MUSIC and ensure timely
garbage collection. The worker executes the job in a critical
section from its latest state and regularly updates the state of
the job in MUSIC using criticalPut. As a result, if this worker
fails, another worker can execute the job from its latest state.

b) Management Portal: The Portal Service provides the
front-end through which clients—users and administrators—
can use ONAP. Portal is deployed as client-facing REST
front-end replicas communicating with back-end replicas each
processing client requests. Administrators use Portal to change
the roles of users, which changes their privileges over different

ONAP projects. To ensure consistent role updates, each request
has to be processed from its latest state by exactly one back-
end replica. Unlike VNF homing, a request to change a user
role involves just one state update, specifically to a key-value
pair (userId-role) maintained in MUSIC.

write (userID, role) at Portal REST front end:
owner = get(userID−owner)→owner; //cache locally
if (owner == empty) //only on initialization

owner = closest back end replica;
while (owner→write (userID, role ) != SUCCESS)

owner = next closest replica ; // repeat RETRY times

write (userID, role) at Portal back end P:
ownerDetails = get(userID−owner); //cache locally
if (ownerDetails→owner == empty) //only on initialization

own (userID); // first owner
if (ownerDetails→owner != P) //only on previous owner failure

forcedRelease(userID, ownerDetails→lockRef);
own (userID); // new owner

criticalPut(userID, ownerDetails→lockRef, role) ;

own (userID) at Portal back end P: // called infrequently
lockRef = createLockRef(user);
while(acquireLock(userID, lockRef)!=true) skip;
put(userID−owner,(P, lockRef)); //no locks needed

A front-end replica (above) routes each request to the user’s
owner, also maintained in MUSIC. If no owner has been
assigned or if the current owner fails to respond, the request is
retried at other available back-end replicas, sorted according
to latency. A back-end replica on receiving such a request
becomes that user’s owner by forcibly releasing the lock,
acquiring a new lock to the user, and updating the ownership
and lock reference details. This lock reference is used for this
and subsequent requests to perform critical operations. Since
the cost of stale ownership information is just unnecessary
ownership transition with no implication on correctness, this
information can be cached at each replica. If each back-end
replica executes requests in a single thread, MUSIC ensures
exclusive, latest reads and writes. Crucially, a critical section is
interrupted and ownership transitions only on back-end replica
failure. By reducing the number of calls to create and release
lock references, both of which require distributed consensus
across the WAN, we reduce the chance of failed operations,
amortize the locking cost across multiple criticalPuts for a
given user, and reduce the time taken to execute each write.

VIII. EVALUATION

In this section, we address the following questions:
• How does MUSIC perform (throughput and latency)

under different latency profiles and cluster sizes?
• Does MUSIC significantly outperform a tool with iden-

tical guarantees in which critical operations use Cassan-
dra’s LWTs as opposed to just quorum puts?

• Do the additional properties provided by MUSIC over a
sequentially-consistent system like Zookeeper come at a
high cost?
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Profile Site 1 Site 2 Site 3 RTT in ms
l1 Ohio Ohio N. Virginia 0.2, 15.14, 15.14

lUs Ohio N. Calif. Oregon 53.79, 72.14, 24.2
lUsEu Ohio N. Calif. Frankfurt 53.79, 100.56, 150.74

TABLE II: Latency profiles used for 3-site deployments.

• Does MUSIC significantly outperform a solution with
identical guarantees implemented using a highly opti-
mized geo-distributed database like CockroachDB?
a) Methodology: We use Proliant SE1101 servers run-

ning Ubuntu 18.04 with 16GB RAM, 256GB SSD disk and
eight 2.5GHz cores. We partition the servers into 3 logical sites
and emulate WAN latencies between sites using NetEm [46]
based on latency profiles that closely reflect our target deploy-
ments as shown in Table II. The RTT between sites is based
on AWS measurements [47] and is presented in the order Site
1-Site 2, Site 1-Site 3, Site 2-Site3. The same RTT is used for
both directions. While l1 is within one AWS region, lUs and
lUsEu are across regions. We run a Cassandra 3.11.3 cluster,
where by default we have one Cassandra node per site. For all
our experiments, we maintain one copy of each key-value pair
on each site. We use a load-generator on each site that uses
the MUSIC library, which communicates with Cassandra. We
measure the peak throughput by saturating the servers with
multiple threads, and mean latency using a single thread of
operation. To prevent collision-induced variability, each thread
updates non-overlapping key ranges. Keys are updated using
a default data size of 10 bytes. Each experiment is performed
at least five times, with each run taking 5 minutes on average.
For all results, we present the mean and standard deviation
(when greater than 5%). We only present results for writes
since the results for reads are similar. In our experiments
we do not introduce any failures since we assume they are
relatively infrequent and our goal is to measure performance
during normal operation.

(a) (b)

Fig. 4: MUSIC has ∼ 30% higher throughput than MSCP, in which critical
puts use LWTs as opposed to just quorum puts. Both solutions scale as we
increase the number of nodes from 3 to 9 in a fully sharded deployment.

b) Microbenchmarks: In our experiments, we compare
three operations: (i) a write in a critical section where the
code creates a lock reference, acquires a lock, performs a
critical (quorum) put, and then releases the lock (MUSIC);
(ii) a Cassandra local write with eventual consistency, which
provides an upper bound for performance (CassaEV); and
(iii) a write in a MUSIC critical section using a sequentially-

consistent (SC) LWT put rather than a quorum put (MSCP).
The MSCP operation serves as a lower bound on performance
and illustrates the high cost of LWTs for critical puts.

Figure 4(a) shows the throughput of CassaEV, MUSIC,
and MSCP across the three latency profiles. CassaEV has
throughput of nearly 41K op/s, which is comparable to the
throughput published for a three node cluster by Datastax [48].
MUSIC’s throughput is much less than CassaEV since the
former is a multi-step operation that uses both consensus and
quorum operations. However, MUSIC outperforms MSCP by
∼30% across all the latency profiles due to the latter’s use
of an LWT put. For the lUS latency profile, as the total
number of Cassandra nodes is increased from 3 to 9 with
3 replicas of each key sharded across these nodes, MUSIC
outperforms MSCP (∼30-36%) and the throughput of the
solutions improves (Figure 4 (b)). Since similar results were
seen in experiments across AWS data-centers, we do not
present them.

(a) Mean latency (b) Latency breakdown for lUs

Fig. 5: MUSIC’s ∼30% lower latency than MSCP for the cross-region
profiles (lUs, lUsEu) is due to the higher cost of the latter’s LWT critical put.

Figure 5(a) shows the mean latency of CassaEV, MUSIC
and MSCP across all the latency profiles. As expected, the
latency of CassaEV is similar across all the latency profiles.
However, the latency of MUSIC is approximately 30% less
than MSCP for the cross-region profiles (lUs, lUsEu), which
translates to the higher throughput observed earlier; similar
results are seen in the CDF (see §X-B1). For the remaining
experiments in this section, we only present results for the lUs
profile since the results are similar for lUsEu and l1 does not
capture cross-country WAN latencies.

Figure 5(b) shows a fine-grained latency breakdown of the
main MUSIC operations (see §VI). Since MSCP is identical
to MUSIC except for its LWT criticalPut (marked ‘P’ for
Paxos), we just show the latency for that operation. Both
createLockRef and releaseLock use LWTs and require 219-230
ms, which corresponds to 4 RTTs across Ohio-N.California
(RTT = 53.79 ms). For clarity, we break acquireLock into the
peek, which is a ∼0.67 ms local function (marked ‘L’) that
can be called multiple times by clients awaiting a lock, and
the grant, which is a ∼55 ms quorum read (marked ‘Q’) of
the synchFlag across Ohio-N.California called only for the
next lockholder. While the MUSIC criticalPut is a ∼93 ms
quorum write across Ohio-Oregon (RTT = 72.14 ms), MSCP’s
criticalPut is a ∼270 ms LWT write.5.

5In §X-B2, we present similar results with YCSB [49] loads, where we
allow lock collisions among threads.
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(a) (b)

Fig. 6: While Zookeeper’s throughput (∼3k) is greater than MUSIC for
batch size of 1 (885.4 in Figure 4(a)), as the batch and data size increases,
the cost of locking is amortized and MUSIC outperforms not only MSCP
(∼2-3.5 times) but surprisingly, also Zookeeper (∼1.4-17.17 times).

c) Comparisons with Zookeeper: In Figure 6, we com-
pare MUSIC with a 3-node (1 node per site), fully replicated
Zookeeper 3.4.13 deployment on the same infrastructure. To
illustrate the amortization effects of MUSIC we vary the
number of writes (batch size) in a critical section from 10
to 1000, and vary the data size from 10B to 256KB for a
fixed batch size of 100. As the number of writes increases
(Figure 6(a)), MUSIC’s peak throughput nearly doubles as
the cost of locking gets amortized across the quorum puts.
This structure is reflective of our most common use-cases.
Despite the additional properties provided by MUSIC (see
§II), MUSIC outperforms Zookeeper (∼1.4-2.3 times). This
is surprising, as a MUSIC critical put (a quorum write) and
a Zookeeper Zab write [19] both require just one RTT. The
improvement is more pronounced (∼2.45-17.17 times) when
we increase the data size (6 (b)). Since we observed a stable
consensus leader in Zookeeper, these performance differences
are perhaps due to the queuing effects of consensus writes.
As expected, MUSIC outperforms MSCP (∼2-3.5 times) in
both experiments. Moreover, our comparisons with Zookeeper
suggest that even if we replaced the use of LWTs for critical
puts in MSCP with the more efficient Zab operation, MUSIC
will still outperform MSCP.

(a) (b)

Fig. 7: MUSIC executes faster (∼2-4 times) than a critical section with
identical guarantees implemented on CockroachDB.

d) Comparisons with CockroachDB: In Figure 7, we
compare MUSIC with a 3-node (1 node per site), fully
replicated CockroachDB (Cdb) 3.4.13 deployment on the
same infrastructure for the lUs profile. To provide the same
properties as a MUSIC critical section with multiple state
updates, each state update in Cdb needs to be done in an
exclusive transaction (see §II). Since Cdb transactions use
optimistic concurrency control by default, we used their lock-

ing primitives to build a Cdb critical section (pseudo-code in
§X-B3). The main purpose of this comparison is to validate
the qualitative analysis in §X-B4 that shows that a MUSIC-
based critical section is nearly two times faster than one based
on CockroachDB. We do not attempt an in-depth comparison
because clearly a transactional DB like CockroachDB offers
different semantics than MUSIC.

Our workload consists of a single thread executing one
critical section in both these tools. As expected, as we increase
the batch size (Figure 7 (a)) or increase the data size for a fixed
batch size of 100 (Figure 7 (b)) MUSIC has much lower mean
latency (∼2-4 times) than the Cdb critical section.

IX. CONCLUSIONS

Critical sections that provide exclusive access to the latest
state have been a fundamental building block of concurrent
systems for decades. Here, we argue that such an abstraction
is also invaluable for building geo-distributed services, but is
challenging to realize using existing solutions for sequential
consistency, locking services, or geo-distributed databases due
to more complex failure modes and high WAN latencies.
We address this challenge through a formally verified key-
value store, MUSIC, with novel ECF semantics, presented
to programmers as a critical section abstraction suitable for
geo-distributed services. MUSIC is being used in production
deployments and is part of the open-source ONAP project for
multi-site services. Our evaluation of MUSIC demonstrates its
effectiveness in multi-site settings.

Future work will focus on providing richer locking abstrac-
tions and new design patterns to address various additional
use-cases. We are also building a hierarchical version of
MUSIC that will scale better across the WAN.
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X. APPENDIX

A. Additional Implementation Details

1) Why Cassandra?: Since Cassandra’s LWTs provide a
compare-and-set primitive, it requires 4 RTTs across replicas
to complete [11]. While we could have satisfied our require-
ments through basic consensus writes with implementations
requiring only 1 RTT [50], we chose Cassandra because: (1)
since we need it for our data store, it is far easier to maintain
and deploy just one tool in production, (2) Datastax does not
provide support for modified versions of Cassandra, so we
could not optimize its default LWT solution, (3) as shown in
§VIII, the cost of consensus is sufficiently amortized even for
modest critical section sizes, and (4) Cassandra’s fully sharded
implementation of LWTs makes it seamless to add new nodes
and scale out. Integrating new, efficient consensus primitives
into the open-source code of Cassandra is an avenue of future
work.

2) v2s Preserves Ordering:

Lemma. v2s preserves the ordering of vector timestamps.

Proof: Consider two vector timestamps
t1 = (lockref1, time1) and t2 = (lockref2, time2).
If t1 = t2, then trivially, v2s(t1) = v2s(t2).

If t1 < t2 such that (lockref1 = lockRef2) and (time1 <
time2), i.e., timestamps typical of operations within a critical
section, then,
v2s(t1) = lockref1 + time1 < lockRef1 + time2 =
lockRef2 + time2 = v2s(t2) and hence, v2s(t1) < v2s(t2).

If t1 < t2 such that (lockref1 < lockRef2), i.e.,
timestamp t1 belongs to an earlier critical section than t2,
then,
v2s(t1)− v2s(t2)
= (lockRef1− lockRef2) · T + (time1− time2)
< T − (time2− time1) {lock references are positive integers
and lockRef1 < lockRef2}
< 0 { (time2 − time1) < T since each critical section can
last for only T seconds}

The same argument can be extended to show that (t1 >
t2)⇒ (v2s(t1) > v2s(t2)).

3) Timestamp Overflow Analysis: Since Cassandra times-
tamps are signed 64-bit integers, to prevent overflow, the
following inequality has to hold: (lockRef ·T + time) ≤ 263.
We note that time here is only used to order writes within
a critical section and hence, v2s can be implemented as
(lockRef · T + time − startT ime) where, startT ime is
the time at which the critical section for lockRef began.
The inequality then simplifies to (lockRef · T ) ≤ 263 since
(time − startT ime) < T . With this inequality and time
captured in milliseconds, clearly we can support nearly 10
million lock references as long as T < 29 years, which is
more than sufficient for our needs. The problem with using
128-bit UUIDs as lock references is that we cannot control
which among the 2128 UUIDs will be generated and from the
inequality this can easily cause an overflow.
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Fig. 8: The latency CDFs for MUSIC and MSCP.

4) Simplified CQL code: In this section, we provide a
simplified version of the CQL code for some of the functions
to illustrate how the algorithms translate to code that reads
and writes to Cassandra.

createLockRef (key)
prevGuard = SELECT guard FROM lock table WHERE

lockName = key; //consistency = eventual
lockRef = 1;
if (guard != null )

lockRef = prevGuard + 1;
BEGIN BATCH; //will be retried configurable number of times
UPDATE lock table SET guard = {lockRef}WHERE key =

{key} IF guard = prevGuard;
INSERT INTO lock table (key, lockRef) VALUE (key,lockRef) IF

NOT EXISTS;
APPLY BATCH; //entire batch is one LWT operation
return lockRef;

criticalPut (key, lockRef, value)
(topLockRef, startTime) = SELECT (lockRef, startTime) FROM

lock table WHERE lockName = key; //consistency = eventual
if (lockRef > topLockRef)

return ( false ) ;
if (lockRef < topLockRef)

return (youAreNotLockHolder);
if ((currentTime − startTime) > T)

return (exceededDuration);
dsPutQuorum (key, lockRef, value, startTime);
return (true) ;

dsPutQuorum (key, lockRef, value, startTime)
scalarTime = lockRef*T + (currentTime − startTime);
UPDATE data table USING TIMESTAMP = scalarTime SET value

= {lockRef}WHERE key = {key} ; //consistency = quorum

B. Additional Evaluation Details

1) Latency CDFs: In Figure 8, we show the latency CDFs
for MUSIC and MSCP. While for the l1 profile the latency is
similar, for the cross-region lUS profile, MUSIC outperforms
MSCP by ∼30%.

2) YCSB Benchmarks: In this section we compare the per-
formance of MUSIC and MSCP for the workloads provided by
Yahoo!’s YCSB benchmark [49], the de-facto benchmarking
tool for NoSQL databases. We implemented our own MUSIC
adapter for YCSB such that the YCSB reads/writes/inserts
were converted to MUSIC and MSCP operations respectively.
We ran three different workloads for a three node MUSIC
cluster with the lUs latency profile: R only has READs, UR is

(a) Throughput (Mean) (b) Latency (Mean)

Fig. 9: MUSIC and MSCP comparison using the YCSB benchmark

composed of 50% READS and 50% UPDATES, and U only
has updates. In each scenario tuples are selected randomly
with a Zipfian distribution.

In Figure 9, we see that MUSIC consistently outperforms
MSCP in terms of both throughput (∼6-20%) and latencies
(∼ 0−20%). In these workloads, among the 10,000 operations
performed in each of the loads there were ∼5.5 % collisions,
i.e., contention for locks.

3) CockroachDB RW Transactions: Pseudo-code for a criti-
cal section in CockroachDB that provides the same guarantees
as a MUSIC critical section:

do batch size times:
BEGIN TRANSACTION;

SELECT * FROM t WHERE k=lock; //check for lock
UPSERT INTO t (k,v) VALUES (lock,ME) RETURNING

NOTHING; //critical section entry using Raft consensus
END TRANSACTION;
UPSERT INTO t (k,v) VALUES (k,random−string−of−size−10

bytes) RETURNING NOTHING; //local state update
UPSERT INTO t (k,v) VALUES (lock,NONE) RETURNING

NOTHING; //critical section exit using Raft consensus
COMMIT;

4) Qualitative Comparison with Spanner RW Transaction:
In this section, we compare the cost of a MUSIC critical
section with x criticalPuts to shared state with a solu-
tion with similar guarantees implemented in Spanner/Cock-
roachDB where each update to shared state is performed in
a separate transaction (see §II). This corresponds to Read-
Write transactions in Spanner (Section 4.2.1 in [35]), where
each transaction involves one consensus (C) operation for
locking the transaction, one local operation for the update
(negligible cost), and one consensus operation for the commit
of the transaction, leading to a cost of 2C/transaction. Since
this has to be performed x times, the total cost of this
solution is 2 · x · C. Consider the cost of doing the above
in MUSIC (§IV): one consensus (C) operation for creating a
lock reference, one quorum (Q) look up of the synchFlag to
acquire the lock, x quorum writes in the critical section and
one consensus operation for releasing the lock, leading to a
total cost of 2C + (x + 1) · Q. Assuming, generously, that a
good implementation of consensus will only cost as much as
a quorum operation, the above translates to (3 + x) ·C≈ x·C
when x >> 3. Hence, the MUSIC-based solution is nearly
two times faster.
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