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Abstract

Component-based adaptation is a novel approach for adapting applications to the lim-
ited availability of resources such as bandwidth and power in mobile environments.
Component-based adaptation works by calling on the run-time APIs that modern
component-based applications export. Because source code modification is not neces-
sary, even proprietary applications such as productivity tools from Microsoft’s Office
suite can be adapted. Moreover, new adaptive behavior can be added to applications
long after they have been deployed. Even if source code is available, development
time for implementing adaptation is much reduced.

In addition, the ease with which adaptations can be implemented in this frame-
work has enabled me to explore new avenues in adaptation. First, I have developed the
first adaptive system to support document editing and collaboration over bandwidth-
limited links. The key insight gathered from this work is that support for adaptation
is orthogonal to concurrency and consistency mechanisms, and therefore can be in-
tegrated easily in existing systems. Second, I have developed a hierarchical adaptive
transmission scheduler to support coordinated multi-application adaptation.

I have demonstrated the effectiveness of component-based adaptation by imple-
menting a system called Puppeteer, which has allowed me to adapt widely deployed
applications, such as productivity tools from Microsoft’s Office suite and Sun Mi-
crosystems’ OpenOffice suite. Although the APIs of these applications impose some

limitations, I have been able to implement a wide range of adaptation policies for



reading, editing, and collaboration, with modest implementation effort and good per-

formance results.
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Chapter 1

Introduction

The need for application adaptation in mobile and wireless environments is well es-
tablished [13, 41, 52, 76, 102, 115, 121, 122, 131]. In an ideal world, users of mobile
and wireless devices would be able to access remote data using the same applications
that are available to them on their desktop computers. Unfortunately, desktop ap-
plications, such as office productivity suites, typically expect that resources such as
bandwidth and power are available in abundance [35]. Mobile and wireless environ-
ments are, by contrast, characterized by limited and unreliable resource availability.
For instance, a mobile client might access the network over a high bandwidth wire-
less connection when inside a building, but has to rely on a low bandwidth wireless
connection when outdoors. Hence, to perform properly in these environments, the
applications need to adapt to the available resources.

Several approaches for adapting applications to run on bandwidth-limited net-
works have been proposed. The need for extensive modifications to the application’s
source code in order to add adaptation has, however, limited the wide deployment
of adaptation. Moreover, these previous approaches to bandwidth adaptation do
not support system-wide adaptation policies, which coordinate the adaptation of all
applications running on the bandwidth-limited device, and do not enable editing doc-
uments and engaging in collaborative work over bandwidth-limited networks.

This thesis has three main contributions. First, it presents component-based adap-
tation, a new approach to application adaptation. The novel premise in component-
based adaptation is that the applications provide mechanisms to enable adaptation

by exposing run-time Application Programming Interfaces (API) to external pro-



grams. The adaptation system adapts applications without changing their source
code by instead calling their APIs. For example, when browsing the Web over a
bandwidth-limited link the adaptation system reduces the time to load a Web page
by providing low-fidelity versions of its images. Later, as the user reads the page, the
adaptation system acquires higher-fidelity images and replaces the browser’s original
images, using the browser’s APIs. Applications thus become components that can be
manipulated by the adaptation system. Because no source code modifications are nec-
essary, component-based adaptation overcomes the principal roadblock to deploying
adaptation.

Second, this thesis describes, how by extending component-based adaptation with
dynamic control over bandwidth scheduling, it is possible to adapt multiple applica-
tions in a coordinated fashion. Some sample system-wide bandwidth adaptation
policies include: prioritizing the transmission of text over image data across all ap-
plications; and shifting most of the available bandwidth to the document that is
currently in the foreground, while reducing the fidelity of the background documents.
This thesis also presents the design, implementation, and evaluation of the Hierarchi-
cal Adaptive Transmission Scheduler (HATS), which provides fine grain control over
the transmission of component data. HATS enables the adaptation system to enforce
the network allocations determined by the adaptation policies, to react quickly to
changes in network connectivity and user behavior (e.g., by shifting bandwidth to the
higher priority components), and to implement sophisticated transmission policies
that give different priorities to the hierarchy of applications, documents, and compo-
nents running on the device. HATS also supports giving different priorities to various
parts of a component’s data. For example, fetching the first half of a component’s
data can have higher priority that fetching the rest of the data.

Third, this thesis presents CoFi, a unified architecture that combines the notions
of consistency and fidelity, and supports document editing and collaborative work over

bandwidth-limited links. CoFi supports editing documents that have been adapted



on read and are only partially loaded at the bandwidth-limited device. CoFi exploits
the component structure of the document to track changes made to each compo-
nent by the user, and distinguishes those changes from the ones that result from
adaptation. CoFi can then propagate only the user’s modifications to components.
CoF1i enables users to collaborate while connected over bandwidth-limited links by
supporting the partial and incremental propagation of modifications. For example,
under low bandwidth conditions, a user can choose to propagate only a portion of
the modified components, or can transcode components and propagate lower-fidelity
versions. Later, on reconnecting over higher-bandwidth links, the user can propagate
the remaining components or upgrade the fidelity of components that were previously
propagated in low fidelity.

To evaluate the effectiveness of component-based adaptation, HATS, and CoFi, I
have built a system called Puppeteer as a proof-of-concept implementation for exper-
imenting with adapting widely deployed applications such as Internet Explorer, Mi-
crosoft PowerPoint, and Sun’s OpenOffice. Puppeteer adapts applications for reading,
editing, and collaboration over bandwidth-limited devices and supports system-wide
adaptation policies that adapt multiple applications in concert. The programming
effort to support new applications and new adaptation policies is modest, and code
can be re-used to implement similar policies for different applications. Puppeteer sup-
ports powerful adaptations, showing significant latency and bandwidth reductions for
various adaptations over bandwidth-limited links, and adds little overhead when no
adaptation is done.

Finally, while the focus of this thesis is on adapting applications to bandwidth-
limited networks, component-based adaptation and Puppeteer has proven effective in
reducing power usage [49, 48].

The rest of this thesis is organized as follows:

e Chapter 2 presents background information on adapting applications for reading

documents over bandwidth-limited links and compares how component-based



adaptation differs from earlier approaches to adaptation. This chapter also
provides basic background on optimistic consistency models, which forms the
basis for the contributions of this thesis in adding adaptive support for document

editing and collaboration over bandwidth-limited links.

Chapter 3 describes the techniques that component-based adaptation uses to
adapt applications. This chapter also outlines the requirements that an applica-
tion must meet in order to support component-based adaptation, and presents

several examples of possible adaptation policies.

Chapter 4 presents the design and architecture of the Puppeteer adaptation
system. This chapter describes how Puppeteer’s modular architecture allows

adding new platforms, applications, and adaptation policies with modest effort.

Chapter 5 describes how component-based adaptation adapts applications for
reading over bandwidth-limited links. This chapter explores the extent to which
run-time interfaces provided by existing applications support bandwidth adap-
tation. This chapter also presents experimental results for adapting several
existing applications with the Puppeteer adaptation system for reading docu-

ments over bandwidth-limited links.

Chapter 6 describes how, by extending component-based adaptation with dy-
namic control over bandwidth scheduling, it is possible to implement system-

wide adaptation policies that adapt multiple applications in concert.

Chapter 7 describes the CoFi protocol, which adds adaptive support for docu-
ment editing and collaboration over bandwidth-limited links. This chapter also
presents the implementation and evaluation of a CoFi prototype on top of the

Puppeteer adaptation system.

Chapter 8 summarizes the thesis and presents my conclusions and directions for

future work.



Chapter 2

Background

This chapter presents general background on adapting applications for reading docu-
ments over bandwidth-limited links and on optimistic replication models. This infor-
mation sets the stage for Chapters 5, 6, and 7, which describe the contributions of this
thesis in adapting applications for reading, editing, and collaboration over bandwidth-
limited links and for supporting system-wide adaptation policies that adapt multiple

applications in concert.

2.1 Adaptation

Desktop applications, such as office productivity suites, typically expect that resources
such as bandwidth and power are available in abundance [35]. Mobile and wireless
environments are, by contrast, characterized by limited and unreliable resource avail-
ability. For instance, a mobile client might access the network over a high bandwidth
wireless connection when inside a building, but has to rely on a low bandwidth wire-
less connection when outdoors. Hence, to perform properly in these environments,
the applications need to adapt to the available resources.

Bandwidth adaptations can be grouped into two types: data and control. Data
adaptations transform the application’s data. For instance, they transform the im-
ages in a document into a lower-fidelity format. Control adaptations modify the
application’s control flow (i.e., its behavior). For instance, a control adaptation could
cause an application that otherwise returns control to the user only after an entire
document is loaded to return control as soon as the first page is loaded.

There are many possible implementations of bandwidth adaptation. Based on



where the adaptation is implemented, I recognize a spectrum of possibilities with two
extremes: system-based [34, 80, 98, 136, 140] and application-based adaptation [12,
31, 40, 74, 53, 54, 72, 71, 73, 75, 123]. With system-based adaptation, the system
performs all adaptation by interposing itself between the application and the data.
No changes are needed in the application. System-based adaptation also provides
centralized control, allowing the system to adapt several applications according to
a system-wide policy. With application-based adaptation, only the application is
changed. Application-based adaptation allows both data and control adaptation,
while system-based adaptation is limited to data adaptation. Another approach that
tries to strike a middle ground between system- and application-based adaptation
is application-aware adaptation [10, 103]. Here, the system provides some common
adaptation facilities, and serves as a centralized locus of control for the adaptation
of all applications. The applications are modified to implement control adaptations
and to perform calls to an adaptation API provided by the system.
Component-based adaptation attempts to bring together the benefits of system-
based and application-based adaptation, namely to implement control adaptations
without modifying the applications and to retain centralized control over adapta-
tion. Component-based adaptation has similarities to application-aware adaptation.
Both approaches delegate common adaptation tasks to the system, which provides a
centralized locus of control for adaptation of multiple applications. The approaches
differ, however, in how adaptation policies are implemented. In component-based
adaptation, the adaptation policies run inside the centralized adaptation system and
adapt by invoking interfaces the applications export. The precise opposite occurs in
application-aware adaptation where the applications are modified to implement adap-
tation policies that call on the system’s adaptation API. I argue that component-based
adaptation is a more flexible approach to adaptation. Since no source modifications
are necessary, component-based adaptation enables third parties to adapt applica-

tions for which source code is not available, and to add new adaptation policies after



the application has been deployed.

Modifying applications for the purpose of adaptation is at best unattractive, be-
cause of the complex nature of many of the applications, or may be impossible because
the source is not available or the application has already been deployed. Embedding
adaptation policies in the application furthermore requires the application designer
to foresee all necessary policies at the time the application is written. Given that
adaptation policy may depend not only on operating environments, but also on what
other applications are run concurrently, such policy decisions should not be limited to
application design time. Component-based adaptation thus provides a proper division
of policy and mechanism between the adaptation system and the application. Finally,
this policy/mechanism has the additional benefit that adaptation can be centralized.
This allows for a single specification of a policy to be reused for a variety of applica-
tions (e.g., load all text first), and for the implementation of system-wide adaptation
policies (e.g., for all applications, load all text first), which take into account the mix

of applications running on the host.

2.2 Optimistic Replication

Maintaining consistency in mobile clients is hard. Mobile clients may operate for long
periods of disconnection at a time, and tend to communicate over bandwidth-limited
links. These characteristics, make it impractical for mobile clients to implement the
strong replication models that are traditionally used in parallel applications [5, 18, 56,
77,79, 148] and distributed file systems [88] such as NFS [119], Sprite [101], AF'S [64],
xFS [11], Frangipani [138]. To maintain consistency, these models require clients to
get exclusive access to objects before modifying them [8, 57, 63, 139], and that all
clients always see the most up to date version of an object.

The overhead of obtaining exclusive access is acceptable for static clients that
communicate over stable high-bandwidth links. The strong connectivity enables static

clients to delay obtaining exclusive access just prior to writing to a file; a process that



usually involves requesting a lock. Since locks are held only while the client writes,
other clients are prevented for accessing the object only for just a short period of time.
The strong connectivity implies that invalidation can be delivered most of the time
and the high network capacity enables quick delivery of invalidations and updates.

For mobile clients, however, lazy locking is not practical, as it is not possible
to request locks while disconnected. Instead, if a system wants to ensure strong
consistency, it has to grant write locks for any object cached by the mobile client
at disconnection. This pessimistic approach is impractical, however, as it may lock-
out other clients for long periods of time — until the mobile client reconnects again.
Moreover, it is unlikely that the mobile client will even modify more than a small
fraction of the objects it caches.

Instead, systems like Bayou [44, 110], Ficus [61, 62, 107, 112], Coda [42, 80, 124],
Reconciliation [65] and variations of AFS [66, 67] enable mobile clients to modify
objects without requiring exclusive access, using a technique know as optimistic repli-
cation [23, 32, 33]. In these systems, clients modify their local copy of an object and
propagate their modifications to other servers and clients when they reconnect to the
network. The weaker consistency model, however, may result in update conflicts [62],
as multiple users might simultaneously modify the same files. To deal with this prob-
lem, researchers have experimented with automatic and application-specific conflict
resolution [6, 43, 83, 85, 84, 116, 126, 137]. There always remains, however, a number
of conflicts that can not be resolved automatically and that require user intervention.

The consistency unit of AFS, Coda, and Ficus is the file. This design choice is
predicated on results from studies of file access in UNIX systems [14, 80, 105, 116]
where concurrent modifications to a file are rare. These studies, however, reflect
traditional research environments where there is little file sharing and when sharing
occurs, it is usually under strict coordination between the users (e.g., modifications
to disjointed parts of a source code tree). It is therefore not clear whether using files

as the consistency unit is appropriate for environments where collaborative work, and



therefore sharing, is more common. Bayou, on the other hand, supports application-
specific consistency units. It, however, requires applications to conform to a special

API for all of their data accesses.
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Chapter 3

Component-based Adaptation

The novel premise in component-based adaptation is that the applications provide
mechanisms to enable adaptation by exposing run-time Application Programming
Interfaces (APIs) to external programs. The adaptation system adapts applications
without changing their source code, by instead calling their APIs. For example, when
browsing the Web over a bandwidth-limited link, the adaptation system reduces the
time to load a Web page by providing low-fidelity versions of its images. Later, as
the user reads the page, the adaptation system acquires higher-fidelity images and
replaces the browser’s original images using the browser’s APIs. Applications thus
become components that can be manipulated by the adaptation system. Because no
source code modifications are necessary, component-based adaptation overcomes the
principal roadblock to deploying adaptation.

Component-based adaptation allows sophisticated adaptations to be implemented
without modifications to the applications. In particular, as I will demonstrate in this
thesis, it allows — without modification to the application — adaptations that modify
the behavior of the application and not just the data that it is operating on.

Component-based adaptation implements adaptation by repeated use of subsetting
and versioning. Subsetting creates a new virtual document consisting of a subset of
the components of the original document (e.g., the first slide in a presentation).
Versioning chooses among the multiple instantiations of a component (e.g., instances
of an image with different fidelity). The adaptation policies use the application’s
exported API to extend the subset or to replace the version of a component (e.g.,

load additional slides in a presentation or replace an image with one of higher fidelity).
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This iterative improvement has previously not been available except in applications
expressly designed to include it, and is one of the key advantages of component-based

adaptation over system-based adaptation [80, 98|.

3.1 Application and API Requirements

For component-based adaptation to work, the application and its API must allow the
adaptation system to discover, construct, and display meaningful subsets or versions
of a document. A subset or a version is considered meaningful if it makes sense for
the adaptation system to make use of such a subset or version. For instance, it makes
sense to display a single slide in a presentation or a single email in a email reader. It
also makes sense to display the text in a document and leave the images and other
embedded documents out, or it may make sense to display transcoded versions of
images. I now examine this requirement in more detail.

First, the adaptation system needs to be able to discover the overall structure and
the meaningful subsets of a document. This is commonly done by parsing the file(s)
containing the input document. The requirement in this case translates into one that
specifies that the document format needs to indicate the boundaries between the
subsets. For instance, in a presentation, the boundary between different slides must
be visible. Alternatively, this can be done by running an instance of the application
and extracting the structure and the subsets by means of API methods.

Second, the application’s API must provide support for inserting any meaningful
subset or version into the application. Since one version may be replaced by a different
one, the API needs to support such replacements.

Third, the application must be able to display each meaningful subset or version
independently, without having other subsets or versions available. For instance, the
display of a slide should not be dependent on information about other slides or other
information.

Finally, the adaptation system needs to be able to discover the type of a com-
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ponent. For instance, in order to reduce the resolution of an image, the adaptation
must be able to first discover that a component is an image.

Additionally, to provide powerful adaptation policies, the adaptation system must
be able to respond to certain events both in the system (‘available bandwidth has
dropped”) or in the application (“I am moving my mouse over this picture”). In
order to be able to respond to the latter type of events, the application needs to
export through its API an event registration and notification mechanism, by which

the adaptation system can be notified of all relevant events.

3.2 Some Sample Adaptation Policies

As in system-based adaptation, component-based adaptation supports all data adap-
tations. I focus our discussion on control adaptations — adaptations that modify the
behavior of the application and not just the data on which it is operating. These poli-
cies would be difficult to implement in system-based adaptation, because they affect
not only the data used by the application, but also its control flow. Such adaptation
policies have, to the best of our knowledge, only been implemented by modifying
the application. In component-based adaptation, however, they are implemented by
using the exported APIs. As will be demonstrated in Chapters 5 and 7, these policies
also result in significant benefit under limited bandwidth conditions.

A very large number of adaptation policies are possible. I can, at best, give a
sampling of the policies that can be implemented with component-based adaptation.

A first set of policies is based on repeated application of subsetting. One policy
that works for many applications is to load text first, return control to the user
immediately, and then load images and embedded elements in the background. User
response can be further improved by adding a data adaptation that compresses and
decompresses the text. Differing policies can also be constructed by re-arranging the
order in which images are loaded. For instance, small images could be loaded first.

Subsets other than text can also be chosen for initial loading before control is returned
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to the user. For a presentation application, I could implement a policy in which the
first slide is loaded initially, including text and images, and then control is returned
to the user, with the remaining slides loaded in the background. Other examples of
subsetting policies that work for all applications include choosing the subset based on
the component type (e.g., fetch text and images but leave OLE embedded object) or
the component size (e.g., fetch images smaller than 8 KB irrespective of their location
in the document).

A second set of policies is based on repeated application of versioning. One policy
that can be implemented for many applications uses Progressive JPEG compression to
reduce latency. This adaptation policy first converts all images in the document into
Progressive JPEG [1]. A prefix of the resulting JPEG image file is loaded, producing
an image with limited resolution, and control is then returned to the user. The
remaining portions of the images are loaded in the background and inserted into the
application using API calls, leading to progressively higher-resolution images. This
policies can be combined with the first set in various ways.

A third and final example set of adaptation policies combines any of the previous
policies by rearranging the order in which subsets or versions are loaded, based on
certain events generated by the user. For instance, one policy first loads or refines
the image over which the user moves the mouse.

The previous list only provides a sample of the adaptation policies that can be
implemented with component-based adaptation, but these policies nonetheless attest

to the power and the flexibility of component-based adaptation.
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Chapter 4

Puppeteer

I have built a system, called Puppeteer, that implements component-based adapta-
tion on Microsoft Windows and on Linux platforms. Figure 4.1 shows the four-tier
Puppeteer system architecture. It consists of the application(s) to be adapted, the
Puppeteer local proxy, the Puppeteer remote proxy, and the data server(s). The ap-
plication(s) and data server(s) are completely unmodified. The Puppeteer local proxy
and remote proxy work together to perform the adaptation.

The Puppeteer local proxy runs on the mobile client and is in charge of executing
the policies that adapt the applications. The Puppeteer remote proxy is responsible
for parsing documents, exposing their structure, and transcoding components as re-
quested by the local proxy. The Puppeteer remote proxy is assumed to have strong
connectivity to the data server(s). Data servers can be arbitrary repositories of data

such as Web servers, file servers or databases.

4.1 Puppeteer Proxy Architecture

Puppeteer needs to be able to discover the structure of the document and extract from
it meaningful subsets. It needs to be able to transcode certain components with a
transcoder that is suitable for the type of component. Furthermore, it has to transmit
subsets and versions over the low-bandwidth link, and update the application with
those new subsets or versions as they arrive. Finally, it needs to implement the various
adaptation policies. In doing so, it must be able to register for notification of certain
events that may trigger different adaptation choices. These events may originate both

from the application and from the environment (“bandwidth has changed”).
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Clearly, Puppeteer will have to deal with different platforms, communication sub-
strates, and applications with different document formats and APIs. In order to
minimize the overhead in moving to a new platform or adding a new application or
adaptation policy, we designed Puppeteer following a modular architecture.

The Puppeteer local and remote-proxy architectures consist of four types of mod-
ules: Kernel, Driver, Transcoder, and Policy (see Figure 4.2). The Kernel appears
once in both the local and remote Puppeteer proxy. A driver supports adaptation for
a particular component type. As components can contain other components within
the hierarchy, drivers for one component may call upon drivers for other components
contained within them. At the top of this driver hierarchy sits the driver for a par-
ticular application (which itself is a component type). Drivers may execute both in
the local and the remote Puppeteer proxies, as may Transcoders which implement
specific transformations on component types. Policies specify particular adaptation

strategies and execute in the local Puppeteer proxy.

4.1.1 Kernel

The Puppeteer Kernel is a component-independent module that implements the Pup-
peteer protocol. The Kernel runs in both the local and remote proxyes and enables
the transfer of document components. The Kernel does not have knowledge about
the specifics of the documents being transmitted. It operates on a format-neutral
description of the documents, which I refer to as the Puppeteer Intermediate Format
(PIF). A PIF consists of a skeleton of components, each of which has a set of related
data items. The skeleton captures the structure of the data used by the application.
The skeleton has the form of a tree, with the root being the document, and the chil-
dren being pages, slides, or any other elements in the document. The skeleton is a
multi-level data structure, as components in any level can contain sub-components.
Skeleton nodes can have component-specific properties attached to them (e.g., slide

title, image size), as well as one or more related data items that contain the compo-
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nent’s native data.

When adapting a document, the Kernel first communicates the skeleton between
the remote and the local proxy. It then enables application policies to request a subset
of the components and to specify transcoding filters to apply to the component’s data.
To improve performance, the Kernel batches requests for multiple components into a

single message and supports asynchronous requests.

4.1.2 Drivers

Puppeteer requires an import and an export driver for every component type it
adapts. To implement complex policies, a tracking driver is also necessary.

The import drivers parse documents, extracting their component structure and
converting them from their application-specific file formats to PIF. In the common
case where the application’s file format is parsable, either because it is human readable
(e.g., XML) or there is sufficient documentation to write a parser, Puppeteer can
parse the file(s) directly to uncover the structure of the data. This results in good
performance, and enables local and remote proxies to run on different platforms (e.g.,
running the local proxy on Windows N'T' while running the Puppeteer remote proxy
on Linux). When the application only exports an API but has an opaque file format,
Puppeteer runs an instance of the application on the remote proxy and uses the
exported API to uncover the structure of the data, in some sense using the application
as a parser. This configuration allows for a high degree of flexibility and makes porting
applications to Puppeteer more straightforward, since Puppeteer need not understand
the application’s file format. Unfortunately, running an instance of the application
on the remote proxy creates more overhead and requires both the local and remote
proxies to run the environment of the application, which in most cases amounts to
running the same operating system on both the local and remote proxy.

Parsing at the remote proxy does not work well for documents that choose what

data to fetch and display by executing a script (e.g., JavaScript-enabled dynamic Web
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pages). Unlike static documents, these dynamic documents can choose to include
different components at runtime, often in response to user input. Because of this,
static parsing of the document is insufficient to learn every possible component that
may be used. To address this problem, references to unknown components must
be trapped while the script runs inside the client application, updating the skeleton
appropriately.

Export drivers un-parse the PIF and update the application using the application’s
exported API. A minimal export driver must support inserting new components into
the running application.

Typical export drivers implement one of two update modalities that match the way
most applications function. For applications that support a cut-and-paste mechanism
(e.g., Microsoft Office or Star Office) the driver uses the clipboard to insert new
versions of the components. On the other hand, for applications that must explicitly
read every item they display (e.g., IE or Netscape), the proxy instructs the application
to reload the component (e.g., asking IE to refetch a URL).

Tracking drivers are necessary for many complex policies. A tracking driver tracks
which components are being viewed by the user and intercepts load and save requests.

Tracking drivers can be implemented using polling or event registration mechanisms.

4.1.3 Transcoders

Puppeteer’s adaptation policies use transcoders to perform both subsetting and ver-
sioning transformations. These transcoders operate by either modifying the encoding
of a component’s data or by changing the relationship between a component and its

children.

4.1.4 Policies

Policies are modules that run on the local proxy and control the fetching of compo-

nents. These policies traverse the skeleton, choosing what components to fetch and
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with what fidelity.

Puppeteer provides support for two types of policies: general-purpose policies
that are independent of the component type being adapted (e.g., prefetching) and
component-specific policies that use their knowledge about the component to drive
the adaptation (e.g., fetch the first page only).

Typical policies choose components and fidelities based on available bandwidth
and user-specified preferences (e.g., fetch all text first). Other policies track the
user (e.g., fetch the PowerPoint slide that currently has the user’s focus and prefetch
subsequent slides in the presentation), or react to the way the user moves through the
document (e.g., if the user skips pages, the policy can drop components it was fetching
and focus the available bandwidth on fetching components that will be visible to the
user).

Regardless of whether the decision to fetch a component is made by a general-
purpose policy or by a component-specific one, the actual data transfer is performed

by the Kernel, relieving the policy from the intricacies of communication.

4.2 The Adaptation Process

The adaptation process in Puppeteer is divided roughly into three stages: parsing the
document to uncover the structure of the data, fetching the initially selected compo-
nents at specific fidelity levels, and supplying these components to the application.
When the user opens a (static) document, the Kernel on the Puppeteer remote
proxy instantiates an import driver for the appropriate document type. The import
driver parses the document, extracts its skeleton and data, and generates a PIF.
The Kernel then transfers the document’s skeleton to the Puppeteer local proxy. The
policies running on the local proxy ask the Kernel to fetch an initial set of components
at a specified fidelity. This set of components is supplied to the application in return
to its open call. The application, believing that it has finished loading the document,

returns control to the user.
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Meanwhile, Puppeteer knows that only a fraction of the document has been
loaded. The policies in the local proxy now decide what further components or
version of components to fetch. They instruct the Kernel to do so, and then use the
application’s exported APIs to feed those newly fetched components to the applica-

tion.
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Chapter 5

Adaptation for Reading Documents

Many applications, including office productivity suites and browsers, already provide
well-documented APIs. This chapter addresses the question to what extent these
existing APIs can support adaptation for reading documents over bandwidth-limited
networks. To the best of my knowledge, this is the first effort to use these interfaces
for adaptation.

The rest of this chapter is organized as follows. Section 5.1 discusses my experi-
ences in implementing a variety of adaptation policies using Puppeteer. In general,
my experience was very favorable, and I succeeded in implementing a large number
of adaptation policies for popular applications on both Windows and Linux plat-
forms. Section 5.2 evaluates the performance and overheads of several adaptation
policies. Section 5.3 reflects on limitations of existing APIs that prevent or com-
plicate adaptation. Section 5.4 reviews related work in document adaptation and
uses of component-based technologies to extend application functionality. Finally,

Section 5.5 summarizes and concludes the chapter.

5.1 Implementation

The Puppeteer system is written in Java. This thesis reports on experiments with
PowerPoint, Word, and Outlook from Microsoft Office, and Internet Explorer (IE)
running on the Windows platform. The thesis also presents results for experiments
with Presentation and Writer from the Sun’s OpenOffice suite running on Linux.
The export and tracking drives for the Microsoft Windows-based applications are

implemented using COM interfaces [96, 97, 118, 26]. The drivers for the Linux-based
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PowerPoint | Word Outlook IE
Import | Method | Parsing Parsing IMAP Parsing
driver | Format | XML XML IMAP (D)HTML
Comp. | PowerPoint | Word Email HTML
types Slide Image Image Image
Image Sound
Sound OLE
OLE
Export driver Cut & paste | Cut & paste | Reload Reload
Tracking driver | Open Open Read Inbox | Browse
events Select Select Open Mouse
slide image attachment | over image

Table 5.1 : Import, export and tracking drivers for PowerPoint, Word, Outlook,
Internet Explorer (IE). The table shows for each import driver the method it uses
for uncovering the skeleton, the document format, and object types that the driver
recognizes. The table also shows the technique used by export drivers and the set of
events trapped by tracking drivers.

applications use UNO interfaces, which are based on the CORBA standard.

For these applications, I implemented, in collaboration with Nilesh Vaghela, Yo-
gesh Chopra, and Rajnish Kumar, the adaptation policies described in Section 5.2.1.
Tables 5.1 and 5.2 provide a summary of the rest of the implementation. Most of the
entries in this table are self-explanatory. There are no events handled in OpenOffice
Presentation and Writer, as their APIs do not yet support event handling in the ver-
sion that I used. This version also does not yet support embedded objects, explaining
the absence of that entry under the component types supported for Presentation and
Writer. All import drivers parse the document file in the import driver, with the
exception of Outlook, which uses the IMAP protocol to obtain the mailbox structure
and its components from the mail server.

The modular Puppeteer architecture has proven successful in supporting a variety
of adaptations for different applications on different platforms. In terms of portabil-
ity, the Kernels used on the Windows and Linux platforms are identical. In terms of

programming effort to implement new applications and new policies, Table 5.3 shows
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Presentation | Writer
Import | Method | Parsing Parsing
driver | Format | XML XML
Comp. | Presentation | Writer
types Slide Image
Image
Export driver Reload Reload

Table 5.2 : Import and export drivers for Presentation and Writer. The table shows
for each import driver the method it uses for uncovering the skeleton, the document
format, and object types that the driver recognizes. The table also shows the tech-
nique used by export drivers.

the code line counts for the various modules I implemented. The line counts for the
Kernel module include the implementations of Puppeteer protocol and support for
text and progressive JPEG image compression. The relevant conclusion from this ta-
ble is that the application- and policy-independent Kernel constitutes the bulk of the
code. The amount of code specific to each application is much smaller. Similarly, the
amount of code for a specific adaptation policies is small as well, on average requiring
less than a 150 lines, even including some of the more complicated adaptations.

I also note that both Presentation and Writer [2] store their data natively in XML
format, and both PowerPoint and Word support XML formats as well [95]. This
allowed me to use a common XML parsing package, supplied as part of Sun’s Java

library, reducing the size and complexity of our input drivers.

5.2 Experiments

All experiments were performed on a platform that consists of three Pentium III
500 MHz PCs running either Windows 2000 or RedHat Linux 7.0. One PC functions
as a data server running Apache 1.3 or Cyrus IMAP 1.6.24 and stores all the docu-
ments and emails used in the experiments. The second PC runs a Puppeteer remote

proxy. The third PC runs the user’s applications and the Puppeteer local proxy. The
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| Module | Code Lines |
Kernel 9193
Policies First Slide & Text 177
Text & Small Images 159
JPEG & Text Compression 334
Total 670
Common to Import Driver 396
PowerPoint and Word Transcoder 88
Total 484
PowerPoint Import Driver 761
Export Driver 153
Track Driver 146
Transcoder 133
Total 1193
Word Import Driver 250
Export Driver 158
Track Driver 129
Total 237
Internet Import Driver 314
Explorer Export Driver 175
Track Driver 65
Total 554
Outlook Import Driver 787
Export Driver 200
Track Driver 74
Total 1061
Common to Presentation and Writer | Import Driver 163
Presentation Import Driver 374
Export Driver 241
Total 615
Writer Import Driver 242
Export Driver 197
Total 439
Grand Total 14746

Table 5.3 : Code line counts for Kernel, Policies, and Drivers for PowerPoint, Word,
Outlook email, Internet Explorer, OpenOffice Presentation, and OpenOffice Writer.
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local and remote Puppeteer proxies communicate via a fourth PC running the Dum-
myNet network simulator [117]. This setup allows me to emulate various network
technologies, by controlling the bandwidth between the local and remote Puppeteer
proxies. For each application, I use three different bandwidths: one at which the
application is network-bound, one at which it is CPU-bound, and one in-between.
Although one would expect to use adaptation only at low bandwidths, the higher-
bandwidth results are included for completeness. The Puppeteer remote proxy and
the data server communicate over a high speed LAN. For experiments that mea-
sure the latency of loading the documents using the native application, the client
PC communicates directly with the Apache 1.3 or IMAP server over the DummyNet
simulator.

For PowerPoint, Word, Presentation, and Writer the data sets consist of subsets
of the documents downloaded from the Web and characterized in de Lara et al. [35].
For Presentation and Writer we convert the documents from their original PowerPoint
and Word formats to the OpenOffice formats. IE loads HTML documents downloaded
from the Web by re-executing the Web traces of Cunha et al. [30]. Finally, Outlook
loads synthetic emails, created by adding image attachments of different sizes to a
simple text message.

The remainder of this section is organized as follows. First, I present several
examples of policies that significantly reduce user-perceived latency. Then I measure

the overhead of the implementation.

5.2.1 Some Adaptation Policies

This section illustrates the performance of some sample adaptation policies imple-
mented in Puppeteer. Figures 5.1, 5.2, 5.3, 5.4, 5.5, and 5.6 show the latencies
for these sample policies as a function of the total size of the documents. All fig-
ures show a common trend. For low bandwidths, the network is the bottleneck, and

the benefits of adaptation are most significant. The latencies are solely dependent
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on the size of the data transferred, growing more or less linearly as document size
gets larger, and the latency data points lie in a straight line. For higher bandwidths
the data points become more dispersed. The experiments become CPU-bound, and
the latency is governed by the time it takes the application to parse and render the
document, which depends on the document structure (number of images, embedded

objects, pages, etc.), in addition to the size of the document.

PowerPoint and Presentation: Fetch First Slide and Text

This experiment measures the latency for PowerPoint and Presentation adaptation
policies that load just the components of the first slide and the text component of all
remaining slides before they return control to the user. Afterward the components
of the remaining slides are loaded in the background. With these adaptations, user-
perceived latency is much reduced compared to the application policy of loading the
entire document before returning control to the user.

The results of these experiments appear, under the labels PowerPoint.slide+text
and Presentation.slide+text, respectively, in Figures 5.1 and 5.2 for 384 Kb/sec,
1.6 Mb/sec, and 10 Mb/sec network links. For each document, the figures contain
two vertically aligned points representing the latency in two system configurations:
native PowerPoint (PowerPoint.native) or native Presentation (Presentation.native),
and Puppeteer runs for PowerPoint and Presentation for loading in all the elements
of the first slide and the text for all remaining slides (PowerPoint.slide+text, Presen-
tation.slide+text).

I expected that reduced network traffic would improve latency with the slower
384 Kb/sec network. The savings for over the 10 Mb/sec network come as a surprise.
While Puppeteer achieves most of its savings on the 384 Kb/sec network by reducing
network traffic, the transmission times over the 10 Mb/sec are too small to account
for the savings. The savings result, instead, from reducing the parsing and rendering

time.
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Figure 5.1 : PowerPoint fetch first slide and text. Latency for loading documents with
PowerPoint over 384 Kb/sec (a), 1.6 Mb/sec (b), and 1.6 Mb/sec (c). Shown are la-
tencies for native PowerPoint (PowerPoint.native) and Puppeteer runs for loading

just the components of the first slide and the text of the remaining slides (Power-
Point.slide+text).
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On average, for PowerPoint, PowerPoint.slide+text achieves latency reductions of
75%, 71%, and 54% for documents larger than 1 MB on 384 Kb/sec, 1.6 Mb/sec, and
10 Mb/sec networks, respectively. For Presentation, PowerPoint.slide+text achieves
latency reductions of 61% and 36% for documents larger than 1 MB on 384 Kb/sec and
1.6 Mb/sec networks, and 13% for documents larger than 10 MB on the 10 Mb/sec
network, respectively. Moreover, the results show that, for large documents, it is
possible to return control to the user after loading just a small fraction of the total
document’s data (about 10.9% for documents larger than 4 MB). These results are
consistent with our earlier findings [35] that text accounts for only a small fraction
of the total data in large PowerPoint documents. These results suggest that text
should be fetched in almost all situations and that the lazy fetching of components
is more appropriate for the larger images and embedded objects that appear in the

documents.

Word and Writer: Text and Small Images

This experiment reduces user-perceived download latency for Word and Writer doc-
uments by loading only the text of the documents and images smaller than 4 KB
before returning control to the user. The experiment also explores the use of text
compression to further reduce download latency. Figures 5.3 and 5.4 show the la-
tency for loading the Word and Writer documents over 56 Kb/sec, 384 Kb/sec,
and 10 Mb/sec networks. The figures show latencies for native Word and Writer
(Word.native, Writer.native), and for two Puppeteer configurations that load only
the text an images smaller than 4 KB (Word.smallimag, Writer.smallimag), and
load gzip-compressed text and images smaller than 4 KB ( Word. comptezt+smallimag,
Writer.comptezt+smallimag).

Word.smallimag and Writer.smallimag show how loading images smaller than
4 KB reduces latency for about 1/2 of the documents. For these document, smallimag

achieves an average reduction in latency of 55% and 57% for Word and Writer over
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Figure 5.3 : Word text and small images. Latency for loading documents with Word
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native Word ( Word.native), and Puppeteer runs that load text and images smaller
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56 Kb/sec respectively. Word.comptext+smallimag and Writer.comptext+smallimag
further reduces latency for all documents. On average, comptext+smallimag achieves
a reduction in latency of 85% and 59% for all Word and Writer documents over
56 Kb/sec respectively, and of 61% and 50% for Word and Writer documents larger
than 1 MB over 384 Kb/sec, respectively. The comptext+smallimag latency reduc-
tions for Writer are smaller than for Word because of the larger Puppeteer overhead
for Writer documents. For example, the average Puppeteer overhead for Writer doc-
uments smaller than 1 MB is 27% versus just 6% for Word documents. Figures 5.3(c)
and 5.4(c) show that for most documents on 10 Mb/sec networks text compression is

detrimental to performance.

Outlook and IE: JPEG and Text Compression

This experiment explores the use of progressive JPEG compression technology to
reduce user-perceived latency for HTML pages and emails. The experiment’s goal is
to reduce the time required to display a page or load an email by lowering the fidelity
of some of the document’s elements.

The prototype converts, at run time, GIF and JPEG images embedded in the
HTML documents or emails into a progressive JPEG format* using the PBMPlus [113]
and Independent JPEG Group [1] libraries. The prototype then transfers only the
first 1/7th of the resulting image’s bytes. In the client the prototype converts the
low-fidelity progressive JPEG back into normal JPEG format and supply it to IE
or Outlook as though it comprised the image at its highest fidelity. Finally, the
prototype only transcodes images that are greater than a user-specified size threshold.
The results reported in this paper reflect a threshold size of 8 KB, below which it

becomes cheaper to simply transmit an image rather than run the transcoder.

*A useful property of a progressive image format, such as progressive JPEG, is that any prefix of
the file for an image results in a complete, albeit lower quality, rendering of the image. As the prefix

increases in length and approaches the full image file, the image quality approaches its maximum.
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Figures 5.5 and 5.6 show the latency for loading the HTML documents over
56 Kb/sec, 384 Kb/sec, and 10 Mb/sec networks and the email over 384 Kb/sec,
1.6 Mb/sec, and 10 Mb/sec networks. The figures show latencies for native IE and
Outlook (IE.native, Outlook.native) and for Puppeteer runs that load only the first
1/7 bytes of transcoded images (IE.imagtrans, Outlook.imagtrans). For IE the fig-
ures also show the latency for Puppeteer runs that load transcoded images and gzip-
compressed text (IE.fulltrans). The figures do not show Outlook runs with gzip-
compressed text since the text components of our emails were small (under 8 KB)
and the results were similar to Qutlook.imagtrans.

IE.imagtrans shows that on 10 Mb/sec networks, transcoding is always detrimental
to performance. In contrast, on 56 Kb/sec and 384 Kb/sec networks, Puppeteer
achieves an average reduction in latency for documents larger than 128 KB of 59%
and 35% for 56 Kb/sec and 384 Kb/sec, respectively. A closer examination reveals
that roughly 2/3 of the documents see some latency reduction. The remaining 1/3
of the documents, those seeing little improvement from transcoding, are composed
mostly of HTML text and have little or no image content. To reduce the latency
of these documents, the prototype was extended with gzip text compression. The
IE. fulltrans run shows that with image and text transcoding, Puppeteer achieves
average reductions in latency for all documents larger than 128 KB of 76% and 50%
for 56 Kb/sec and 384 Kb/sec, respectively.

Outlook.imagtrans shows that on 10 Mb/sec networks, transcoding is useful only
for emails with image attachments larger than 512 KB. The latency savings at
10 Mb/sec result from reducing the parsing and rendering time of the attachments.
Outlook.imagtrans achieves an average reduction in latency for documents larger than
128 KB of 71% and 85% for 384 Kb/sec and 1.6 Mb/sec, respectively.

Overall transcoding time takes between 11.5% to less than 1% of execution time.
Moreover, since Puppeteer overlaps image transcoding with data transmission, the

overall effect on execution time diminishes as network speed decreases.
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5.2.2 Overhead

The Puppeteer overhead consists of two elements: a one-time initial cost and a contin-
uing cost. The one-time initial cost consists of the CPU time to parse the document
to extract its PIF and the network time to transmit the skeleton and some additional
control information. Continuing costs come from the overhead of the various exported

APIs commands used to control the application.

Initial Adaptation Costs

To determine the one-time initial costs, I compare the latency of loading PowerPoint,
Word, HTML, email, Presentation, and Writer documents in their entirety using the
native application (PowerPoint.native, Word.native, IE.native, Outlook.native, Pre-
sentation.native, Writer.native) and the application with Puppeteer support (Pow-
erPoint.full, Word.full, IE.full, Outlook.full, Presentation.full, Writer.full). In the
latter configuration, Puppeteer loads the document’s skeleton and all its components
at their highest fidelity, using a separate control message for every loaded component.
This policy represents the worst possible case: it incurs the overhead of parsing the
document to obtain the PIF and it does not benefit from any adaptation.

Figures 5.7 and 5.8 show the extra latency and Figure 5.9 shows extra data sent
for PowerPoint.full, Word.full, TE.full, Outlook.full, Presentation.full, and Writer.full.
Extra latency and data are normalized by the latencies and data traffic for loading
the documents with the native applications. Overall, for all these applications, the
Puppeteer extra latency becomes less significant as document size increases and net-
work speed decreases. Moreover, for large documents transmitted over medium to
slow speed networks, where adaptation would normally be used, the Puppeteer extra
latency is small compared to the total document loading time. For example, the over-
head for PowerPoint documents varies from 2% for large documents over 384 Kb/sec
to 57% for small documents over 10 Mb/sec and for IE documents from 4.7% for large

documents over 56 Kb/sec. to 305% for small document over 10 Mb/sec.
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Figure 5.7 : Initial adaptation costs. Latency overhead for loading documents and
emails with Puppeteer for PowerPoint, Presentation, and Outlook.
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Figure 5.9 : Initial adaptation costs. Data overhead for loading documents and emails
with Puppeteer for PowerPoint, Word, IE, Outlook, Presentation, and Writer.

Figure 5.9 decomposes the data overhead into data transmitted to fetch the skele-
ton (skeleton) and data transmitted to request components (control). This data con-
firms the results of Figures 5.7 and 5.8. The Puppeteer data overhead becomes less
significant as document size increases. For example, the data overhead varies for
PowerPoint documents from 2.9% on large documents to 34% on small documents

and for HTML documents from 1.3% on large documents to 25% on small documents.

Continuing Adaptation Costs

The continuing costs of adaptation using the exported APIs are clearly dependent on
the application and the policy. The purpose of this section is not to give a compre-
hensive analysis of exported API-related adaptation costs, but to show that they are
small compared to the network and rendering times inherent in the application.
This section presents results for two experiments: loading and pasting newly
fetched slides into a PowerPoint presentation, and replacing all the images of an
HTML page with higher fidelity versions. To prevent network effects from affecting

the measurements, the prototype makes sure that the data is present locally at the
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client before loading it into the application.

For PowerPoint I find that the average time to load a single slide in a presentation
is 894 milliseconds with an standard deviation of 819 milliseconds. For each additional
slide, inserted in the application with the same API call, the average time is 539
milliseconds with an standard deviation of 591 milliseconds. In comparison, the
average network time to load a slide over the 384 Kb/sec network is 2994 milliseconds,
with a standard deviation of 3943 milliseconds.

For IE the average time to load an image in a page is 33 milliseconds with a
standard deviation of 19 milliseconds. Loading additional images as part of the same
update takes an average of 33 milliseconds per image with a standard deviation of 12
milliseconds. These image update times are small compared to the average network
time. For instance, the average time to load an image over a 56 Kb/sec network is
565 milliseconds with a standard deviation of 635 milliseconds.

The above results suggest that the cost of using exported API calls for adaptation
is small (e.g., for IE, the API overhead of loading an image is 5.8%), and that most of
the time that it takes to add or upgrade a component is spent transferring the data

over the network.

5.3 Limitations

While it is possible to achieve a large number of powerful adaptations, these appli-
cations and their APIs were not originally designed for adaptation. It then comes as
no surprise that I encountered limitations in these applications, which prevented or
limited my ability to adapt. Some limitations truly prevented me from performing
certain adaptations I wanted to do. Others simply made it more difficult to add the
desired adaptive support.

The most restrictive limitations I found were limits on the ability to recognize
meaningful subsets and dependencies between different meaningful subsets. Both of

these limitations occur in Word and Writer. The Word and Writer file formats store
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all the document’s text in a single component. While pages in Word or Writer clearly
qualify as meaningful subsets, they are not reflected in the document format. Instead,
pages are rendered dynamically when loading the document. As a result, adaptations
like “load the first page of the document, then return control to the user, and then load
the rest of the document in the background” cannot be implemented for Word and
Writer. Furthermore, Word and Writer evaluate cross-references and bibliographic
citations when first loading the document. The eager evaluation of dependencies pre-
vents the adaptation system from loading paragraphs (which, as opposed to pages, do
appear as recognizable components in the file format) independently. Cross references
and bibliographic citations are not re-evaluated when inserting a new paragraph and
result in broken links.

Limitations in the exported APIs for updating the application made the imple-
mentation of some adaptations for some applications more cumbersome than needed.
Ideally, I would like to create or update any subset of the document directly from its
persistent representation. For example, I would like to create a new slide or update
an image by loading its content from a file. Unfortunately, support for creating and
updating components in this way is limited. Instead, for instance in PowerPoint, a
new temporary document needs to be created, containing the new slide or image,
which is then cut from the temporary document and pasted in its final place.

The lack of an easy way to add new components or update existing components
may require loading a larger or higher fidelity set of initial component than otherwise
required. For example, in PowerPoint there is no easy way for updating the master
slides, which store properties that are common to all slides in the presentation (e.g.,
logos, background color, or font size). For this reason, all our PowerPoint policies,
even those that load just the first slide or just the text components of the presentation,
load all the elements (images, embedded OLE objects) of the master slides. Loading
the master slides in all cases, simplifies the implementation (it does not have to

deal with all the properties of the master slides) at the expense of the extra latency
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incurred to transfer the data for the master slides.

While these limitations are real, I was nonetheless able to implement a large
number of adaptations for the different applications without much complexity. Part
of our ongoing work is to define a comprehensive adaptation API that overcomes the

above limitations.

5.4 Related Work

Much work has gone into extending the system architecture to better support mobile
clients [80] and to creating programming models that incorporate adaptation into the
design of the application [71, 72]. Transcoding has been used for some time now to
customize information to the user’s preferences [17, 34], reduce server load [4, 20], or
support thin clients [53, 145, 146]. The project that most closely relates to Puppeteer
is Odyssey [103], which splits the responsibility for adaptation between the application
and the system. Puppeteer takes a similar approach, pushing common adaptation
tasks into the system infrastructure and leaving the application-specific aspect of
adaptation to application drivers. The main difference between the two systems
lies in Puppeteer’s use of existing run-time interfaces to adapt existing applications,
whereas Odyssey requires applications to be modified to work with it.

Visual Proxies [123], an offspring of Odyssey, implements application-specific
adaptation policies without modifying the application by using interposition between
the window system and the application. This technique is limited to window system
commands and does not use exported application APIs. While it enables some of
the same adaptations, it requires much more complicated application constructs to
implement them.

The term “component adaptation” [47, 70, 82] is also used to describe efforts that
support tunable RPC implementations, which monitor and adapt the communication
path between distributed CORBA or DCOM components. These approaches enable

client components to control their bindings to servers components. Instead of getting
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a default static stub, clients components can choose among available bindings, or
adapt a binding by, for instance, inserting a compression filter in the data path.
These approaches differ from component-based adaptation in that they do not take
advantage of application APIs and are limited to data adaptations.

Another project that uses similar ideas to Puppeteer is Dynamic Documents [75].
This instrumentation of the Mosaic Web browser uses T'cl scripts to set the policies for
individual HTML documents. While Puppeteer uses the external interfaces provided
by the application, Dynamic Documents use an internal script interpreter in the
browser.

The Pebbles [100] project uses Automation interfaces to explore the use of Personal
Digital Assistants (PDAs) to augment the functionality of applications.

Quint et. al [114] describes a structured editor that provides an API that en-
ables extending the editor with new functionality. The API supports commands for
navigating and modifying the three-like document structure, and for displaying these
modifications on the user interface. In its current form, however, the editor’s API

can only be invoked within the same process (i.e., like a macro).

5.5 Summary and Conclusions

This chapter evaluated the extent to which existing APIs can be used for the purposes
of adaptation. In particular, the chapter describes the implementation of a number
of adaptation policies for popular applications from the Microsoft Office and the
OpenOffice productivity suites and for Internet Explorer. Although I found some
limitations in their APIs, I was able to implement a large number of adaptations

policies without much complexity and with little overhead.
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Chapter 6

Multi-Application Adaptation

Previous approaches to adaptation do not support system-wide bandwidth adapta-
tion policies, which adapt multiple applications in concert. This chapter describes
how, by extending component-based adaptation with dynamic control over band-
width scheduling, it is possible to adapt multiple applications in a coordinated fash-
ion. Some sample system-wide bandwidth adaptation policies include: prioritizing
the transmission of text over image data across all applications; shifting most of the
available bandwidth to the document that is currently in the foreground, while re-
ducing the fidelity of the background documents; guaranteeing that all images across
all applications are available at the same fidelity level before fetching higher fidelity
refinements; and guaranteeing a minimal bandwidth allocation to an audio applica-
tion independent of network bandwidth fluctuations, by dynamically adjusting the
fidelity of the data downloaded by other applications running on the device.

Clearly, coordinated adaptation of multiple applications requires additional func-
tionality beyond what is required to adapt individual applications. While an adapta-
tion policy that adapts a single application can be fully contained within the appli-
cation itself, adapting multiple applications in concert requires system-wide adapta-
tion policies that run in a centralized location (i.e., outside any specific application).
Implementing powerful adaptation policies, like the examples given above, requires
understanding the semantics of data, controlling the behavior of the applications,
and monitoring the user activity (e.g., determine what application is on the fore-
ground). Doing so outside the application, requires that the application expose an

API (Application Programming Interface) and a document format, through which the
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adaptation policies can be implemented. Chapters 3 and 5 introduced component-
based adaptation and demonstrated that component-based adaptation is an effective
technique that supports powerful adaptation policies without requiring modifications
to the applications. This chapter demonstrates that system-wide adaptation policies
can be implemented by extending component-based adaptation.

In addition to understanding the behavior and the data of the applications,
system-wide adaptation policies also require coordinating between the adaptation
policies for different applications, documents, and document components. In partic-
ular, dynamic control over transmission scheduling is a core requirement.

While for single-application adaptation, it suffices to specify what data to transmit
and how this data is to be adapted, system-wide adaptation policies must be able
to specify, for all applications and documents running on the device, in what order
to transmit what data and how this data is adapted. If, for example, we want to
implement an adaptation policy that specified “text first for all applications”, then
we need to be able to schedule the transmission of the text of all applications before
any other document elements are transmitted.

This chapter presents the design, implementations, and evaluation of our Hierar-
chical Adaptive Transmission Scheduler (HATS) [37], which extends Puppeteer with
fine grain control over the transmission of component data. HATS enables Pup-
peteer to enforce the network allocations determined by the adaptation policies, to
react quickly to changes in network connectivity and user behavior (e.g., by shift-
ing bandwidth to the higher priority components), and to implement sophisticated
transmission policies that give different priorities to the hierarchy of applications,
documents, and components running on the device. HATS even supports giving dif-
ferent priorities to various parts of a component’s data. For example, fetching the
first half of a component’s data can have higher priority that fetching the rest of the
data.

While earlier systems have implemented individual facilities described here [7, 53,
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71, 82, 90, 103, 130, 123, 135], to our knowledge, no prior system supports scheduling
and adaptation working in concert. HATS is thus more powerful than its predecessors.
HATS enables the implementation of new powerful system-wide adaptation policies
that allow bandwidth allocation where it will most likely minimize the time users
wait for an application to complete its network operations.

The rest of this chapter is organized as follows. Section 6.1 presents our im-
plementation of HATS. Section 6.2 evaluates the performance of three system-wide
adaptation policies. Section 6.3 describes how HATS differs from previous approaches

to resource scheduling. Finally, Section 6.4 summarizes and concludes the chapter.

6.1 HATS

This section first discusses possible implementations of HATS on Puppeteer. It then

describes a proof-of-concept remote proxy-based HATS implementation.

6.1.1 Possible HATS Implementations

In Puppeteer, all communication between the applications on the mobile or wireless
client and the data server(s) passes through the local and remote proxies. These
proxies are therefore the natural places for implementing HATS. The rest of this
section describes two possible implementations and the tradeoffs between them.

A local proxy-based HATS implementation follows most closely the conventional
HTTP pull-based data transfer model: each component is specifically requested by
the local proxy (based on the ordering determined by the system-wide adaptation
policies), and the remote proxy simply fulfills each request as it arrives. To enable
the concurrent transmission of multiple components, the local proxy requests only
a small portion of the data of a given component at any given time. I refer to the
amount of data requested at one time for a specific component as the scheduling
quantum. The local proxy may, of course, request data for multiple components in a

single batch message.
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A remote proxy-based HATS implementation follows a different approach, using
a push-based model of data transfer. The system-wide adaptation policies still run
on the local proxy, but determine the order in which components get transferred by
choosing a transmission strategy that orders the transmission of component data. In
the most general case, this would require sending mobile code that implements specific
transmission strategies. In practice, I expect that common transmission strategies will
be available at the remote proxy, and that the system-wide adaptation policies will
just parameterize them.

There are a variety of tradeoffs between the local and remote proxy approaches.
On the plus side for the local proxy approach, it closely follows the well-understood
pull-based Web transfer model. Additionally, client events, such as the user changing
focus to a different window, can be handled locally (i.e., changing the order in which
components are requested). On the minus side, the local proxy does not know which
components have data ready to be sent on the remote proxy. This information is
available at the remote proxy and would need to be transferred to the local proxy,
requiring additional communication, in order to ensure that the local proxy would
not waste scheduling cycles on components that do not have data ready to transmit.
Moreover, the fact that every component must be requested separately requires that
a fairly large scheduling quantum be used; smaller quanta require a large number of
request packets. A small bandwidth scheduling quantum is desirable for streaming
audio and video applications that need a continuing stream of data to avoid jitter.

On the plus side for the remote proxy approach, it does not require a request for
every quantum and can, therefore, support a smaller quantum size. On the minus
side, a remote proxy approach requires the system-wide policies to reconfigure the
remote proxy transmission strategy when relevant user events occur.

Our current HATS implementation follows the remote proxy-based model. I chose
the remote proxy-based implementation over the local proxy-based approach because

I want to provide for bandwidth sharing with low jitter. While it is widely accepted
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that low jitter is important for streaming media (which I plan to support in the fu-
ture), it is less apparent that fine granularity scheduling is also important for more
traditional data types (e.g., text and images). Scheduling components that encode
traditional media types atomically can seriously restrict the ability of the system to
run multiple applications concurrently (which is, after all, the underlying purpose
of HATS). Since traditional media types can be large (a few megabytes) [35], they
can take a long time to propagate over the bandwidth-limited link. Scheduling large
components atomically can therefore starve other applications and documents from
network service. Finally, I felt that, for our initial implementation, a fixed number of
transmission strategies, provided by the remote proxy, were sufficient. The following
section discusses in detail a proof-of-concept remote proxy-based HATS implementa-

tion.

6.1.2 Remote-Proxy-Based HATS Implementation

The current HATS implementation is incorporated mainly in the Puppeteer remote
proxy, and extends many of the facilities present in Puppeteer. Figure 6.1 shows the
architecture of our implementation. It involves four key mechanisms: a transmission
hierarchy, schedulers, and multiplexing and demultiplezring facilities. In short, the
transmission hierarchy describes the hierarchical structure of the data to be trans-
mitted. Schedulers determine the order in which nodes in the hierarchy are transmit-
ted. The multiplexer and demultiplexer organize the concurrent transmission of data
associated with multiple nodes in the hierarchy.

The following sections first describe the above mechanisms. I then discuss how our
implementation supports dynamic reconfiguration. I conclude with a simple example

that illustrates the use of these mechanisms.
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Multiplexer Demultiplexer
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Figure 6.1 : Remote proxy-based HATS implementation. The architecture consist of
schedulers, multiplexing and demultiplexing facilities, and a hierarchy of applications
(App), documents (Doc), and components (Cmp).
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Transmission Hierarchy

The transmission hierarchy is a transient structure composed of applications, docu-
ments, and components that are in the process of being transmitted. The transmission
hierarchy is assembled in response to requests from adaptation policies running on the
local proxy. Nodes remain in the transmission hierarchy only as long as data is be-
ing transferred to them. Specifically, leafs in the transmission hierarchy are removed
as soon as their related data finishes transmission. Interior nodes of the hierarchy
are removed when their related data finishes transmission and they do not have any
children left with pending data.

Nodes in the transmission hierarchy can be in one of three states: ready, waiting,
and disabled. A node in the ready state has data queued for transmission. A node in
the waiting state has no data queued-up. When data is added to the node’s queue,
it transitions to the ready state. A node in the disabled state may have data queued
for transmission but has been temporarily disabled as a result of the transmission
strategy.

HATS keeps separate transmission hierarchies for each bandwidth-limited device
serviced by the remote proxy. Each of the client hierarchies is serviced by a separate
thread running on the remote proxy and receives a fair share of the remote proxy’s
resources. This implementation decision assumes that the client bandwidth is the
bottleneck in our system. If, however, a Puppeteer remote proxy was to serve a large
set of clients, we might see contention for the remote proxy resources. If so, we can
adopt one of the several resource reservation strategies that have been proposed in

the literature [7, 27, 90, 135].

Schedulers

Adaptation policies (running on the local proxy) determine the transmission strategy
by setting a scheduler for every internal node of the transmission hierarchy. Specif-

ically, HATS requires one scheduler for the root node (the root scheduler) to choose



ol

what application to serve, one scheduler for every application node (the application
scheduler) to choose what document to serve, and one scheduler for every component
node (the component scheduler) that has children.

The HATS scheduler architecture is modular and supports the addition of new
schedulers. HATS supports static schedulers that implement simple transmission
strategies that choose the next node to serve based on well known scheduling disci-
plines (e.g., round-robin, in-order, FIFO, packet fair queuing), and dynamic sched-
ulers that reconfigure their scheduling discipline in response to events (e.g., changing
the weight of a packet fair queuer after a drop in available bandwidth). Dynamic
schedulers may register for events that signal changes in available network band-
width, changes in the transmission hierarchy, or progress in the transmission of a
component’s data.

Bandwidth is distributed top-down. A parent scheduler has full control over how it
allocates bandwidth to its children. A child scheduler can only distribute bandwidth
within the bounds of the allocation provided to it by its parent. Schedulers of parent
nodes can re-parameterize the schedulers of their descendents. A parent scheduler can
also temporarily disable one of its descendents. Once a node has been disabled, it can
only be re-enabled by one of its ancestors that is at least as high in the hierarchy as
the scheduler that disabled it. These properties, ensure that transmission strategies
implemented by ancestor schedulers take priority over transmission strategies imple-
mented by child schedulers and enable the implementation of transmission strategies
that operate across levels of the hierarchy.

For example, it is possible to implement a scheduler that prioritizes the transmis-
sion of text data over image data across applications and documents by installing a
root scheduler that implements the following algorithm: (1) traverse the hierarchy to
determine if there are any nodes with associated text and image data (since the root
scheduler sits at the root of the hierarchy, it has access to all the nodes); (2) if there

are any nodes with associated text data, disable all nodes with associated image data;
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(3) monitor the transmissions of the nodes with associated text data and respond to
completion events generated by these nodes; (4) once all nodes with text data have
been transmitted, re-enable nodes with associated image data; and (5) restart this
process when a node with associated text data is added to the hierarchy. This root
scheduler implements the above system-wide transmission strategy independent of the

specific schedulers running at the application and component levels of the hierarchy.

Multiplexing and Demultiplexing

The multiplexer and demultiplexer perform the actual transmission of component
data. The multiplexer and demultiplexer operate in terms of a scheduling quantum.
The size of the quantum, which determines the maximum amount of data of a single
node of the hierarchy that is transferred at a time, can be configured by the system-
wide adaptation policies to reflect changes in connectivity between the remote and
local proxies, the types of the nodes being fetched, or any other criterion.

Our prototype implementation multiplexes all component data going to the same
client over a single TCP connection. An important benefit of this approach, in addi-
tion to its simplicity, is that it avoids any issues stemming from TCP’s slow-start or
congestion control algorithms. TCP only sees one long-running and stable network
connection, for which it tends to perform much better than short-lived “transactional”
sessions. The downside of using TCP is that the frequency with which the prototype
can reallocate bandwidth is limited by the OS transmission buffers, which the proto-
type must keep full to get good performance, and by TCP’s own ability to respond
to changes in the available bandwidth. Measurements of reconfiguration latencies are

present in Section 6.2.1.

Dynamic Reconfiguration

HATS supports dynamic reconfiguration of the transmission hierarchy by either ex-

plicit requests for reconfiguration from adaptation policies running on the local proxy
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or by the schedulers running on the remote proxy.

On the local proxy, adaptation policies use tracking drivers to monitor the user,
and reallocate resources to benefit the application, document, or components cur-
rently in use. Adaptation policies reconfigure the transmission hierarchy by sending
requests, which replace or re-parameterize the schedulers attached to the transmission
hierarchy.

On the remote proxy, schedulers can register for events and reconfigure the trans-
mission hierarchy when they occur. For example, a scheduler can implement a trans-
mission strategy, which ensures that all Progressive JPEG images in an HTML page
are present with a given fidelity level before higher fidelity data is transferred. Ini-
tially, all Progressive JPEG objects are scheduled with equal priority. Once smaller
images reach a given threshold, for example 30% of the file has been transmitted, the
scheduler reconfigures the hierarchy ensuring that larger images that have not yet

reached the 30% mark now have transmission priority over the smaller images.

Example

To illustrate the HATS mechanisms let us consider a user simultaneously loading two
Web pages in two browsers as depicted in Figure 6.2. Let us consider further that one
of the pages describes a resort that the user is considering for an upcoming vacation,
while the other page comes from a major news site.

Obviously, our user values the images depicting the idyllic resort more than the
images (mostly advertisements) that appear on the news site. Accordingly, our user
would like to make significantly more bandwidth available to loading the resort images
than to loading the ads. The user, however, would like to feel that both browsers are
making similar progress with new images appearing in both browsers at similar rates,
even if this requires that images from the news page be loaded initially at low fidelity
and refined later as bandwidth becomes available.

To achieve the above goals, I use a system-wide adaptation policy that installs
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a root-level proportional scheduler that gives 80% of the available bandwidth to the
browser on the foreground (i.e., loading resort page) and the remaining 20% to the
browser on the background (i.e., loading the news page).

Since it has enough bandwidth, the policy for the browser fetching the resort page
decides to fetch all images at high fidelity and sets a component-level scheduler that
transmits the image components in-order.

On the other hand, the policy for the browser fetching the news page converts
images into a progressive representation (e.g., progressive JPEG). This policy assumes
that images have 3 fidelity levels, which I will refer to as low, medium, and high.
To make sure that all images in the news page are present with low fidelity before
any image is refined, the policy sets the LowFidelityFirst dynamic scheduler as the
component-level scheduler. LowFidelityFirst gives document-wide priority to low
fidelity images, transmitting images sequentially. When an image reaches a target
fidelity level, LowFidelityFirst start serving the next image in the page. When all
images reach low fidelity, LowF'idelityFirst starts sending medium fidelity data for
the first image and so on.

Later, when an article catches the user’s attention, the user can reverse the cur-
rent policy by moving the browser fetching the news page to the foreground. The
system-wide adaptation policy, traps the user event and reconfigures the proportional
scheduler, shifting the majority of the bandwidth to the browser loading news pages.
The system-wide policy then switches the news browser to fetching full fidelity images

and the resort browser to fetching progressive images.

6.2 Experimental Evaluation

This section quantifies the advantages and overheads of our Puppeteer-based HATS
implementations by measuring the effects of three HATS-enabled adaptation policies.
The set of possible adaptation policies is, however, much larger. The purpose of this

section is not to determine the best adaptation policies for the applications we adapt.
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Instead, this section illustrates the variety of system-wide adaptation policies made
possible by HATS.

This section quantifies the performance of the Puppeteer-HATS prototype by load-
ing documents using Internet Explorer 5.5 (IE5) and PowerPoint (PPT) on a platform
consisting of three Pentium III 500 MHz PCs running Windows 2000. These PC are
configured as: a data server running Apache 1.3, which stores all the documents used
in these experiments; a Puppeteer remote proxy; and a client that runs the user’s
applications and the Puppeteer local proxy. The local and remote Puppeteer proxies
communicate via another PC running the DummyNet network simulator [117]. This
setup allows me to emulate various network technologies, by controlling the band-
width between the local and remote Puppeteer proxies. The Puppeteer remote proxy

and the data server communicate over a high speed LAN.

6.2.1 HATS-based Adaptation Policies

This section explores the power of HATS by implementing adaptation policies that
benefit from dynamic bandwidth reconfiguration. I first explore the power of dynamic
schedulers running on the remote proxy that prioritize the transmission of text and
low fidelity images. Then, I experiment with an adaptation policy running on the
local proxy that re-allocates bandwidth to the document that has the user’s focus.

I run these experiments using a 256-byte HATS scheduling quantum. I choose
this small quantum size to stress the performance of HATS: If the implementation
performs well with the small quantum size, we expect its performance would only
improve with a larger quantum size. 1 examine the overhead incurred by the small

quantum size in Section 6.2.2.

Remote-proxy-based Reconfiguration

This section compares the performance of two system-wide adaptation policies run-

ning on Puppeteer with and without HATS support. Without HATS, Puppeteer as-
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signs equal allocations to all applications and documents, and transfers components

within a document in-order.

Text First This experiment compares the time to load text-only versions of a
HTML page and a PPT presentation. For each application I use an adaptation
policy that loads a document into the application as soon as all its text components
are present at the local proxy (the HTML for IE, and the text of all slides for PPT),
and displays images and other embedded components as they become available at the
local proxy.

For Puppeteer with HATS support (Puppeteer-HATS), I also use a system-wide
adaptation policy that sets the TextFirst dynamic scheduler as the root scheduler in
the transmission hierarchy. TextFirst gives system-wide priority to the transmission
of text components (HTML, PPT slides).

Figures 6.3(a) and (b) show the bandwidth allocations for loading an image-rich
668 KB HTML document and a 1.05 MB PowerPoint presentation over a 56 Kb/sec
network link with Puppeteer and Puppeteer-HATS. For these documents, HATS
achieves savings of 49%, reducing the time to load a text-only version of the PPT pre-
sentation from 133 to 68 seconds. The arrows in the figures show the start and finish
times for loading the text components of the HTML and PPT presentation. HATS
lowers the times to load a text-only version of the PPT presentation by re-allocating
bandwidth from sending images embedded in the HTML document to sending PPT

slides.

Low Fidelity First In this experiment, I use two browsers to load image-rich Web
pages. Both browsers use an adaptation policy that loads HTML pages progressively.
The adaptation policy, running on the local proxy, instructs the remote proxy to
convert images embedded in the HTML pages into a progressive JPEG representation
and transfer them to the local proxy. I assume that images have 3 fidelity levels,

which I will refer to as low, medium, and high. I chose these levels to correspond
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to the first 1/7, the next 2/7, and the last 4/7 of the bytes in the progressive JPEG
representation. The adaptation policy then responds to events on the local proxy that
signal progress in the transmission of the images’ data. When the image data available
at the client reaches predefined fidelity levels, the adaptation policy transcodes the
image back to its original format (GIF, JPEG, etc.) and uses IE5’s exported API to
update the image in the browser.

For Puppeteer-HATS 1 also use a system-wide adaptation policy that sets the
LowF'idelityFirst dynamic scheduler as the root scheduler in the transmission hier-
archy. LowFidelityFirst gives application-wide and document-wide priority to low
fidelity images. LowFidelityFirst ensures that all images, of both documents, have
reached the same fidelity level before starting to transmit higher fidelity data.

I experimented with the order in which images within a page get serviced by using
a round-robin and an in-order scheduler. With round-robin, all images are transferred
in parallel. As smaller images reach a target fidelity level, their share of bandwidth is
redistributed among the larger images that still have data to be sent. With in-order,
the prototype transmits images sequentially. When an image reaches a target fidelity
level, the prototype start serving the next image in the page.

I was expecting round-robin to be the better transmission strategy as small images
would show quickly irrespective of their location on the page. In practice, however,
our experience showed that many images have similar sizes and that servicing them
all in parallel results in a situation where users do not see any progress for an ex-
tended amount of time, followed by brief periods of high activity where most images
are updated simultaneously (the implementation only triggers an application update
when it reaches a targeted fidelity level). Moreover, because most images reach the
target fidelity level around the same time, there is little opportunity for overlapping
transcoding with network transmission. For these reasons, I choose to present my
results using an in-order transmission strategy, which achieves better overall perfor-

mance.
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Figures 6.4(a) and (b) show the results of this experiment for loading two large
HTML documents (PageA and PageB), with sizes 388 KB and 304 KB, over a
56 Kb/sec network link, with Puppeteer and Puppeteer-HATS. For these documents,
Puppeteer-HATS reduces the time to load a low fidelity version of PageB from 46
to 35 seconds. The arrows in the figures show the times, in each run, at which the
pages reach the three fidelity levels. With Puppeteer-HATS, when PageA reaches low
fidelity, the LowFidelityFirst dynamic scheduler reconfigures the transmission hierar-
chy, transferring network resources to PageB, and lowering the time it takes PageB
to reach low fidelity. In contrast, Figure 6.4(b) shows that with Puppeteer without
HATS, the remote proxy keeps sending data for PageA even after it reaches low fi-
delity, limiting the bandwidth available to PageB and increasing the time it takes for
PageB to reach low fidelity.

Figure 6.4(b) also shows that with the LowFidelityFirst dynamic scheduler PageB
reaches medium and high fidelity before PageA; the precise opposite of what happens
in Figure 6.4(a). The inversion of times to reach medium and high fidelity are an
artifact of the adaptation policy and the pages used in this experiment. The LowFi-
delityFirst adaptation policy only transcodes images to progressive JPEG if they are
bigger than 4KB in size. In its first state, LowFidelityFirst loads all images smaller
than 4 KB and the first 1/7 of all transcoded images. In this experiment PageB has
more images smaller than 4 KB, which are not transcoded and are sent in whole, than
PageA. This is why it takes PageB more time to reach low fidelity, but less time to
reach medium and high fidelity.

Local-proxy-based Reconfiguration

This experiment evaluates Focus, an adaptation policy that reconfigures the transmis-
sion strategy (by re-parameterizing the root scheduler of the transmission hierarchy)
so that it re-allocates bandwidth to the components of the foreground application or

document. This experiment loads two different HTML pages simultaneously in two
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separate instances of IE5. The experiment uses a system-wide adaptation policy that
switches the browser in the background to fetching low fidelity images. This adap-
tation policy achieves small page download times, albeit at low fidelity, even when
the browser in the background receives just a small fraction of the available band-
width. Once the page is loaded in low fidelity, Puppeteer starts fetching higher fidelity
refinements and uses IE5’s exported API to upgrade the images in the browser.

Focus, which runs on the local proxy, uses explicit requests to reconfigure the
transmission strategy and give the majority of the bandwidth (80%) to the browser
of the foreground. This experiment uses a scheduler that implements the WF2Q+
Packet Fair Queuing (PFQ) algorithm [19], which distributes bandwidth among the
nodes it services according to their rate allocations.

Figure 6.5 shows the results of this experiment for loading two image-rich HTML
pages (PageA and PageB), with sizes 668 KB and 193 KB, on two separate IE5
windows over a 384 Kb/sec network link. The transmission strategy starts by giving
equal bandwidth to both documents. Seconds later, Focus detects that the user has
selected the browser loading PageB (moving it to the foreground), and reconfigures
the transmission strategy giving PageB 80% of the link bandwidth. Later, when the
user selects the browser loading PageA, Focus reconfigures the transmission strategy
again.

I measured the time it takes for a bandwidth re-allocation to take effect, from
the time it is requested by the local proxy until the bandwidth allocation for the
documents stabilizes again. I refer to this time as re-allocation latency. 1 measured
an average re-allocation latency of 1.38 and 0.24 seconds for runs on 56 Kb/sec and
384 Kb/sec network links, respectively. The re-allocation latency is dominated pri-
marily by the time it takes the system to send any packets that were already in the
network transmission queue by the time the remote proxy processed the re-allocation
request. We experimented with increasing the network latency in DummyNet. Unsur-

prisingly, the re-allocation latency increased by exactly the amount of extra latency
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Focus, an adaptation policy that re-allocates 80% of the available bandwidth to the
foreground document.

introduced by DummyNet (e.g., 2.38 seconds over 56 Kb/sec when I set the latency
to 0.5 sec). This result meets our expectation, as the greater latency only affects the
single message that is sent from the local proxy to the remote proxy to reconfigure the
transmission hierarchy. The low reconfiguration latencies show good promise for the
prospects of client-driven transmission scheduling reconfiguration even on networks

with limited bandwidth and high latencies.

6.2.2 System Overhead

I measured the worst case HATS latency overhead by using TE5 to load a set of
HTML documents downloaded from the Web. I load the documents without doing
any adaptations or using any dynamic transmission strategy, using Puppeteer and

Puppeteer-HATS. Figure 6.6 shows the results of this experiment for HTML doc-
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uments of sizes ranging from 64 KB to 773 KB over network links of 56 Kb/sec,
128 Kb/sec, and 384 Kb/sec. The values in the plot show the overhead over loading
the documents using native IE5 without any adaptive support.

This experiment represents the worst possible case for both Puppeteer and Puppeteer-
HATS as it incurs the full overhead of parsing the document and transmitting the
skeleton but do not benefit from any adaptation or transmission strategy (i.e., we only
load one document at a time). In this experiment, Puppeteer and Puppeteer-HATS
differ only in the mechanism they use to ship data to the local proxy. Puppeteer uses
the conventional pull mechanism, while Puppeteer-HATS implements the push mech-
anism described in Section 6.1. For this experiment I configured the Puppeteer-HATS
scheduling quantum to be 256 bytes.

Figure 6.6 demonstrates that, while Puppeteer-HATS overhead is slightly bigger
than Puppeteer (an average of 11.17% over all documents and network speeds vs.
an average of 7.75%), it is still small compared to total document loading time,
especially for large documents (512 KB and over) on slow links, where adaptation
and transmission scheduling are the most important.

The extra overhead in Puppeteer-HATS over Puppeteer results from the packet
headers Puppeteer-HATS uses along with the transmission of component data (for
multiplexing component data over a single TCP stream). For this experiment, with a
quantum size of 256 bytes, sending the headers requires transmitting 4.72% more data,
which is roughly similar to the ratio of header size over payload size (12/256=4.68%),
and close to the difference in performance between Puppeteer and Puppeteer-HATS.
Increasing the Puppeteer-HATS quantum size to 1024 bytes results in just 1.25%
overhead for sending the packet headers and eliminates the performance gap between
Puppeteer-HATS and Puppeteer. The smaller overhead comes, however, at the ex-
pense of increasing jitter.

The three dynamic HATS transmission strategies described in Section 6.2.1 had

similar data overheads ranging between 4.6% to 4.8% extra data. The data overhead
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consists of data headers that identify data packets (Headers), skeleton data (Skele-
ton), and control messages for requesting objects and setting bandwidth allocations
(Control). The Skeleton and Control components account for little overhead. The
Headers account for the majority of the overhead with an average of 4.45% extra
data. Although the overhead is not large, it can be reduced significantly by switching
to a larger quantum size as explained above.

Finally, all three dynamic HATS transmission strategies achieve a high degree of
network throughput. TeztFirst and LowFidelityFirst measured an average of 93% and
92.6% network utilization over 56 Kb/sec, while Focus averaged a 93.08% network
utilization over 384 Kb/sec.

6.3 Related Work

There is a large body of related work in this area. In this section I summarize a few of
the projects I believe are most related to Puppeteer and HATS. T group these works
depending on whether their main focus is on arguing for system-wide adaptation,
implementing server and network support for scheduling, or enabling client-centric

scheduling.

6.3.1 System-wide Adaptation

Several groups [45, 89, 104] have suggested the need for centralized adaptation systems
that implement system-wide adaptation policies. In these approaches the adaptation
system monitors system resources and user behavior, and coordinates the adaptation
of the applications running on the client by issuing commands that force the appli-
cations to adapt. Although similar in nature to Puppeteer, these efforts have been
mainly focused on streaming media and limit the adaptation system to switching the
application between a few predefined operation modes. Moreover, none of these ef-
forts provide support for scheduling data transmission for applications and documents

running on the client.
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6.3.2 Server and Network Support for Scheduling

Several projects [7, 27, 90, 135] have added differentiated services to general purpose
operating systems. While most of these systems support hierarchical bandwidth
scheduling, they do not understand the semantics of the applications they run, which
prevents them from implementing more sophisticated system-wide adaption policies.
They are typically deployed to manage server resources and do not provide system
support for adapting to changes in user behavior or network connectivity. In contrast,
the main objective of HATS has been to manage client bandwidth, while adapting to
changes in connectivity and user behavior.

Significant effort has been invested into providing differentiated service in net-
work hierarchies [19, 50, 92, 108, 109, 134]. HATS can use existing network facilities,
where available, to reserve bandwidth between end-points. In cases where the net-
work does not support bandwidth reservations, HATS measures the throughput of its
connections and adapts to variations in available bandwidth.

Packeteer [3] provides monitoring and control of network traffic for ISPs. It enables
setting quotas for different applications, network protocols, users, etc. Packeteer
differs from HATS in that the focus is on rationing server-side resources and as such,
it does not take any input form the client. Moreover, Packeteer is not dynamic and
does not perform adaptation.

The Stream Control Transmission Protocol (SCTP) [133] supports the concurrent

transmission of component data over a single stream.

6.3.3 Client-Centric Scheduling

Several projects enable clients to schedule their resources. Most of these efforts,
however, are limited to scheduling the bandwidth, disk, or CPU usage of a single
application and do no support adaptation.

Several projects have used application specific information to provide better sup-

port for file and media servers [93, 128, 129, 127]. Systems have been developed to
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enable clients to specify their QoS network requirements [29, 46, 144, 147].

Rialto [69], to the best of our knowledge, was the first system to introduce the
notion of user-centric scheduling, where the system dynamically schedules resources
in a way that dynamically maximizes the user’s perceived utility of the system, rather
than the performance of individual applications.

Ford and Susarla [51] introduced CPU inheritance scheduling, a novel proces-
sor scheduling framework in which arbitrary threads can act as schedulers for other
threads. Goyal et al. [58] implemented a hierarchical CPU scheduler for a multimedia
operating system. Their system, however, assigns applications to well defined service
classes and does not support adaptation.

Eclipse/BSD [21] provides existing applications the ability to set disk resource
reservations without modifying their source code. In Eclipse/BSD, the application is
linked with a customized version of libc and the user sets reservations by adding a
“needed-resources” property to the each file.

The WebTP [60] protocol allows Web browser to schedule the order in which
objects of an HTML page are downloaded based on the client’s hardware, network
conditions, and user preferences. WebTP, however, does not schedule across docu-
ments or applications (i.e., two browsers downloading two separate pages).

Spring et al. [130] implemented a receiver-based system that manipulates the
TCP receiver window size to prioritize between flows of three different service classes:
interactive, short download and long download. Their system, however, does not
implement a hierarchical scheduler and does not schedule between flows of the same
class. Finally, its limited knowledge of data semantics, prevents it from implementing
complex system-wide adaptation policies.

SCUBA [9] enables users of a distributed teleconferencing application to adjust
their sending rates based on receiver interest. The collaboration group has an assigned
capacity. Multiple sources in the group compete for a share of this capacity. Each

source receives a part of the capacity depending on how much interest receivers show
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for the source. Similarly, RCTP [22] enables video clients to signal servers to reduce
their transmission rate to save network bandwidth and reduce congestion.

Finally, recent efforts use resource scheduling to extend battery life for mobile
devices by adaptively scaling the CPU’s clock rate [94], or selectively disabling the

network interface [25].

6.4 Summary and Conclusions

This chapter demonstrated a system that is capable of adapting multiple applica-
tions running concurrently on a bandwidth-limited device. Specifically, it described
the design and evaluated the performance of the Hierarchical Adaptive Transmission
Scheduling (HATS), which I implemented as an extension of the Puppeteer adaptation
system. Together, Puppeteer and HATS support centralized transmission scheduling
for bandwidth-limited devices and support dynamic system-wide adaptation policies
based on the semantics of the applications, documents, and components running on
the mobile or wireless device.

HATS enables Puppeteer to enforce the network allocations determined by the
adaptation policies, to react quickly to changes in network connectivity and user
behavior (e.g., by reallocating bandwidth to the higher priority components), and to
implement sophisticated hierarchical transmission scheduling strategies.

The goal of this chapter was not to perform a comprehensive study of transmission
strategies. Instead, I have implemented a small number of transmission strategies to
demonstrate the benefits of the infrastructure and the fact that the overheads involved
are small. For example, I have shown that even simple policies that prioritize text
over other component types can achieve substantial savings in the time it takes to

open text-only versions of large documents.
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Chapter 7

Writing and Collaborative Work

There is much to be gained from enabling users of bandwidth-limited devices to edit
documents and to share their modifications with their peers. For example, consider a
team member on a wireless device that wants to collaborate with the rest of his team
on a presentation. Since bandwidth limitations make it cumbersome to download
or upload the entire presentation in full fidelity, the user downloads, instead, an
adapted version of the presentation, perhaps containing the text and low-fidelity
versions of the images. Alternatively, the user may know which slides he wants to
change, and download only those slides. The user then modifies his version of the
presentation, and uploads his changes back to the server. One of the items that the
user added to the presentation is an image that the user just took with his digital
camera. Transmission of such a large data item may take considerable time over a
wireless link, so the adaptation system first sends a reduced-fidelity version of the
image, and may upgrade it later with higher-fidelity versions.

While clearly useful, the above scenario has not been supported, to the best of our
knowledge, by any previous adaptation system. This chapter introduces CoFi, a new
architecture that supports document editing and collaborative work on bandwidth-
limited devices.

I identify three factors that hinder document editing and collaborative work over

bandwidth-limited links:

1. The techniques used by adaptation systems to lower download laten-
cies. These systems reduce network traffic by use of subsetting and versioning.

In subsetting adaptations, only a subset of the components of the original docu-
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ment, for example the first page, is transferred. In versioning adaptations some
of the components are transcoded into lower fidelity representations, for example
low-resolution images. In either case, the documents present at the bandwidth-
limited device are only partially loaded, and may be significantly different from
the documents stored at the server. Naively storing user modifications to a
partially loaded document may result in the deletion of components that were
not included in the subset, or in the replacement of high-fidelity components
with the lower-fidelity versions available at the bandwidth-limited device (even

in cases where the user did not modify the transcoded components).

. Large updates. Users can produce large multimedia content (e.g., photographs,
drawings, audio notes) that may incur long upload latencies over the bandwidth-

limited link.

. Conflicts. The use of optimistic consistency models [80, 112] allows concur-
rent modifications, which may conflict with each other. Conflicts can occur in
other circumstances as well, but low bandwidth and the possibility of frequent

disconnection make their occurrence more likely.

This chapter introduces CoFi, a unified architecture that combines the notions

of cosistency and fidelity, and supports document editing and collaborative work

on bandwidth-limited devices. CoFi consists of two novel component-based mecha-

nisms that enable document editing and collaborative work over bandwidth-limited

links: adaptation-aware editing and progressive update propagation. These mecha-

nisms extend traditional replication models with concepts of fidelity. Both mech-

anisms decompose documents into their component structure (e.g., pages, images,

paragraphs, sounds), and keep track of consistency and fidelity at a component gran-

ularity. Adaptation-aware editing enables editing partially-loaded documents by dif-

ferentiating between modifications made by the user and those which result from

adaptation. Progressive update propagation shortens the propagation time of compo-
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nents created or modified at the bandwidth-limited device by transmitting subsets of
the modified components or transcoded versions of those modifications. Adaptation-
aware editing and progressive update propagation also reduce the likelihood of update
conflicts. First, by working at the component level rather than the whole-document
level, they reduce the sharing granularity. Second, because both mechanisms lower
the cost to upload component data, they encourage clients to communicate more
frequently, increasing the awareness that users have of their collaborators’ activities.

I have found that these two techniques can be added without much difficulty to
both optimistic and pessimistic replication models. Consistency maintenance meth-
ods for replicated objects are typically represented by state diagrams, and I fol-
low this general paradigm. I present state diagrams that incorporate the presence
of low-fidelity versions of components, for use with both optimistic and pessimistic
replication. The introduction of low-fidelity component versions is orthogonal to the
maintenance of consistency between replicas. More specifically, new states are added
to represent low-fidelity versions, but the semantics of the existing states and the
transitions between them remain unchanged. I therefore argue that the techniques
presented in this chapter can be applied to any replication method without undue
complication.

The CoFi mechanisms are general and allow for several possible implementations.
One possibility is to write or modify applications to implement CoF'i natively within
the application. Another option, is to implement CoFi as part of a centralized adap-
tation system. I believe that the later is a more profitable proposition. Most parts of
the CoFi architecture are bound to be common for most applications; by implement-
ing CoFi in the general adaptation infrastructure I get to leverage the coding effort
across a wide set of applications.

I have implemented a prototype that supports both application-aware editing and
progressive update propagation in an optimistic replication protocol. The imple-

mentation is done by extending Puppeteer. I demonstrate the implementation with
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examples using progressive propagation of messages in Outlook and adaptation-aware
editing and progressive update propagation for PowerPoint presentations. The im-
plementation effort was modest (a total of 5700 lines of code), and the performance
of the system is good, even though no changes were made to the applications.

This chapter is organized as follows. Section 7.1 introduces adaptation-aware edit-
ing and progressive update propagation and explores the implications of extending
traditional replication models to support these mechanisms. Section 7.2 presents a
prototype implementation of adaptation-aware editing and progressive update propa-
gation on top of the Puppeteer adaptation system. Section 7.3 presents experimental
results for document editing and collaborative work on bandwidth-limited clients us-
ing Microsoft Outlook and PowerPoint. Section 7.4 discusses related work. Finally,

Section 7.5 summarizes and concludes the chapter.

7.1 Mechanisms

This section describes the implications of extending traditional replication models
to provide various degrees of support for adaptation-aware editing and progressive
update propagations.

I assume that multiple views of a component can co-exist in different replicas.
Two views of a component may differ because they have different creation times,
and hence reflect different stages in the development of the component, or because
they have different fidelity levels. I consider two fidelity classes: full and partial. For
a given creation time, a component can have only one full-fidelity view but many
partial-fidelity views. A component is present at full fidelity when its view contains
data that is equal to the data when the view was created. Conversely, a component
is present with partial fidelity if its view was lossily transcoded from the component’s
original view. Fidelity is by nature a type-specific notion, and hence there can be
a type-specific number of different partial-fidelity views. I assume, however, that

all the views of a component can be arranged into a monotonically increasing order
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according to their fidelity, the last one being a full-fidelity view.

I consider both pessimistic and optimistic replication models. A pessimistic repli-
cation model guarantees that at most one replica modifies a component at any given
time, and that a replica does not modify a component while it is being read by some
other replica. The mutual exclusion guarantee can be realized by various mechanisms
such as locks or invalidation messages. With optimistic replication, replicas can read
and write components without any synchronization, and communication occurs only
when two replicas reconcile.

I also consider both primary replica and serverless approaches. In a primary
replica approach, a server holds the primary replica of the document. Clients can
replicate subsets or all of the document’s components by reading components from
the server’s primary replica. Client modifications are sent to the server, and there is
no direct communication between clients. I also discuss the implications of a serverless
configuration, in which there is no centralized server or primary replica and there is
direct communication between replicas.

I first describe the implications of supporting adaptation-aware editing and pro-
gressive update propagation in isolation. I then describe replication models that sup-
port both mechanisms. The initial discussion assumes a primary replica. Serverless

systems are discussed in Section 7.1.4.

7.1.1 Adaptation-Aware Editing

The simplest form of adaptation-aware editing limits users to modifying only com-
ponents that are loaded with full fidelity at the bandwidth-limited device. Such an
implementation requires the system to keep track of which components are available
at the bandwidth-limited device and whether these components have been transcoded
into partial-fidelity versions. This information is normally already present in the adap-
tation system or easily added. The system then prevents users from modifying any

component that is not present with full fidelity.
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A simple extension to the previous model is to allow users to (completely) over-
write or delete components present at partial-fidelity or components that were not
included in the client’s replica subset. In this scenario, the user can (completely)
replace the content of a component that was not loaded, or that was loaded at par-
tial fidelity, with new full-fidelity content generated at the bandwidth-limited device.
The user can also remove a component from the document altogether. Adding this
functionality does not require keeping extra state, but the system may wish to warn
the user that he is about to overwrite or delete a component for which a full-fidelity

view is not locally available.

Pessimistic Replication

Figure 7.1(A) shows the state transition diagram for individual components of a client
replica for a pessimistic replication model that supports modifying full-fidelity com-
ponent views and overwriting partial-fidelity component views. In our state diagrams,
I represent new low-fidelity states and the new transitions in and out of these states
with gray ovals and dotted lines, respectively. In contrast, I represent the states
present in traditional replication models and their transitions with clear ovals and
full lines, respectively. The state diagram for the primary replica stays the same
as without support for application-aware editing, containing two states, Empty and
Clean, with the obvious meanings, and is not shown.

In the client replica state diagram, a component can be in one of four states:
Empty, Partial-Clean, Clean, and Dirty. A component is in Empty when it is being
edited by some other client replica or when the client chose not to read it. A com-
ponent transitions into Partial-Clean when the client replica reads a partial-fidelity
view. This view can be further refined by reading higher-fidelity partial-fidelity views
(i.e., Read-Partial) or the component can transition into Clean by reading a full-
fidelity view. The component transitions into Dirty when the client replica either

modifies a full-fidelity view (i.e., a component in the Clean state) or overwrites an
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Figure 7.1 : State transition diagram for a pessimistic (A) and optimistic (B) repli-
cation model with support for adaptation-aware editing. Low-fidelity states and the
transitions in and out of these states are represented with gray ovals and dotted lines,
respectively. In contrast, states present in traditional replication models and their
transitions are represented with clear ovals and full lines, respectively.
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unloaded component or a partial-fidelity view (i.e., a component in Empty or Partial-
Clean). The component transitions back to Clean when the client replica propagates
a full-fidelity view to the primary replica. Finally, a component transitions back to
Empty when the client replica no longer wishes to read the component. Transitions
to Empty depend on the specific mechanisms used to guarantee mutual exclusion,
and can occur, for example, when the client replica releases a lock or receives and

invalidation.

Optimistic Replication

Figure 7.1(B) shows the state transition diagram for an optimistic replication model.
The optimistic replication diagram differs from the pessimistic diagram (Figure 7.1(A))
in two ways. First, it has an extra state for conflict resolution. The component tran-
sitions to the Conflict state when the replica detects the primary replica view and
the client replica view are concurrent (i.e., it is not possible to determine a partial
ordering for the two views) [86]. The component transitions back to the Dirty state
once the client replica reads the conflicting view and resolves the conflict. Second,
transitions between the Clean and Partial-Clean states to the Empty state occur
when the client replica learns that the primary replica has a more recent view for the

component.

Modification of Partially Loaded Components

A more ambitious form of application-aware editing and one that results in significant
complications is to allow users to modify just a portion of a partial-fidelity view, for
example, replacing parts of transcoded images, audio recordings, or video streams.
Such modifications result in views that contain a mixture of partial and full-fidelity
data, which contravenes our initial assumption that the system keeps track of fidelity
at the component granularity. While the semantics of some data types, such as images

may support modifications to just parts of the component’s view, these semantics are
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Figure 7.2 : A component is split into two subcomponents when a user modifies a
partial-fidelity view.

not visible to the replication system. To make the changes visible to the system,
the component has to be split into two subcomponents as shown on Figure 7.2. The
first subcomponent holds the partial-fidelity data, which was not modified by the user,
and the second subcomponent holds the user’s full-fidelity modifications. The original
component (now turned into a container for the two subcomponents) transitions to
the Dirty state, to reflect the change in the document’s component structure. The
subcomponent holding unmodified partial fidelity data remains in the Partial-Clean
state. In contrast, the subcomponent holding new full-fidelity data transitions to the
Dirty state.

The partial-fidelity subcomponent is further subdivided when the user modifies
it again. As Figure 7.3 shows, however, a client replica may have at most two sub-
components for each of the original components, as two full-fidelity subcomponents

can be merged into a larger subcomponent. The figure shows that when the partial-
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Figure 7.3 : When a partial-fidelity subcomponent is subdivided, the resulting full-
fidelity sub-subcomponent can be merged with an existing full-fidelity subcomponent.

fidelity subcomponent is subdivided for a second time, the resulting full-fidelity sub-
subcomponent can be merged with the full-fidelity subcomponent created in the first
subdivision. For a similar reason, a component at the primary replica does not have
to be subdivided, even when it was subdivided at a client replica. Conceptually,
when a client replica propagates modifications to a component that was split, it has
to split the component in the primary replica. In this section, however, since I limit
client replicas to propagate only full-fidelity data, both subcomponents at the primary
replica (the one the client replica changed and the one it did not change) will have full-
fidelity data and can be merged into a single full-fidelity component. In Section 7.1.3,
I describe systems that require subdividing components at the primary replica and
enable subdividing a component into an arbitrary number of subcomponents.

A partial-fidelity view can also be changed by an operation that does not produce
any full-fidelity data, for instance by applying a gray-scale filter. In some cases, the
operation rather than the resulting data can be propagated to the primary replica,
and applied there. Additional complications result from the fact that the adapta-
tion system may receive a higher-fidelity version of the component while it is being

modified by the user.
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7.1.2 Progressive Update Propagation

A system can support progressive update propagation by propagating a subset of
the modified components and/or by propagating partial-fidelity views of modified
components.

I first consider the implications of an implementation that supports progressive
update propagation but does not support transcoding components on read or edit-
ing partial-fidelity components. In such an implementation, client replicas have by
default full-fidelity views of the components they replicate. A client replica has a
partial-fidelity view for a component only when the component is being updated by
some other client and the updates are being progressively propagated. In other words,
the decision to propagate partial-fidelity data is made by the replica that is writing
the component and not by the reader, as was the case in the previous section. More-
over, independent of whether I implement a pessimistic or optimistic approach to
replication, once a partial-fidelity view has been propagated to the primary replica,
it can only be replaced with another view created by the same writer (i.e., a higher-
fidelity view or a more recent view). Replacing a partial-fidelity view with a view
created by a different writer would violate the restriction over editing partial-fidelity

components.

Pessimistic Replication

Supporting progressive fidelity propagation requires adding one new state to the pri-
mary replica’s state transition diagram (Partial-Clean) and two new states to the
client replica’s state transition diagram (Pseudo-Dirty and Partial-Clean).

Figures 7.4 (A) and (B) show the state transition diagram for an individual com-
ponent in a pessimistic replication model at a client replica and at the primary replica,
respectively. The transition diagram for the primary replica is simple. A component
at the primary replica can be in one of three states: Empty, Partial-Clean, and Clean.

A component is in the Empty state while it is being edited by a client replica. The
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Figure 7.4 : Pessimistic replication state transition diagram for components of the
client (A) and primary (B) replicas.

component transitions to the Partial-Clean and Clean states when the writer pushes
a partial-fidelity view or a full-fidelity view of the components, respectively.

A component in a client replica can be in one of five states: Empty, Clean, Partial-
Clean, Dirty, and Pseudo-Dirty. A component is in the Empty state while it is being
modified by some other client replica. A component transitions to Clean by reading
a full-fidelity view. If only a partial-fidelity view is available at the primary replica
because the last writer has not propagated a full fidelity view yet, the client replica can

read this view and transition Partial-Clean. The component transitions from Clean to
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Dirty after the client modifies its content. The client can then propagate modifications
to the primary replica in two ways. First, the writer can push a full-fidelity view of
the modifications, forcing the component at the primary and the writer’s replica
to transition to Clean. Second, the writer can propagate a partial-fidelity view of
the component, forcing the component to transition to Partial-Clean in the primary
replica, and to Pseudo-Dirty in the writer’s replica. The various replicas will remain
in these states until the writer pushes a full-fidelity view and the component at both
the primary and the writer’s replica transition to Clean. At this time, other client
replicas can read the full-fidelity view and transition to Clean. Alternatively, a writer
in Pseudo-Dirty can modify the component for a second time and transition to Dirty.
This can only happen, of course, if the last writer can regain exclusive access to the

component by, for example, acquiring a write lock or invalidating all other copies.

Optimistic Replication

In an optimistic replication scheme, before propagating modifications to a component,
the writer has to determine if these modifications conflict with other modifications
previously reflected at the primary replica. If there is a conflict, the client replica
will have to resolve it by merging (in a type-specific way) the full-fidelity views of
the conflicting modifications. After resolution, the client replica can propagate a full-
or partial-fidelity view of the component to the primary replica. If, however, the
primary replica has only a partial-fidelity view for a conflicting component (i.e., the
concurrent writer has not propagated a full-fidelity view of its modifications), the two
views can not be merged as this would violate the restriction on editing partially-
loaded components, as described in Section 7.1.2. In this case, conflict resolution has
to be delayed until the client replica, which propagated the conflicting partial-fidelity

view, propagates a full-fidelity view of its modifications.
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7.1.3 Combining Adaptation-Aware Editing and Progressive Update Prop-

agation

This section explores the implications of extending pessimistic and optimistic replica-
tion models to support both partial document editing and progressive update prop-
agation. I consider systems that support all the features presented in Sections 7.1.1

and 7.1.2.

Pessimistic Replication

Figure 7.5 (A) shows the state transition diagram for components at the client replica
for a pessimistic replication system that supports adaptation-aware editing and pro-
gressive update propagation. The state transition diagram for components at the
primary replica is the same as the one shown in Figure 7.4 (B).

The diagram in Figure 7.5 (A) is similar to that of Figure 7.4 (A) and most states
have similar semantics. The semantics of Partial-Clear are, however, a little different.
A component may be in the Partial-Clean state because the client requested a partial-
fidelity view to reduce its network usage, or because only a partial-fidelity view of the
component is available at the primary replica.

Client replicas can also modify partially-loaded components (i.e., component in
Partial-Clean). If the client overwrites the partial-fidelity data with new client-
generated full-fidelity data, the component transitions to Dirty. In contrast, if the
client only modifies a portion of the component’s view, the component is split in two
as described in Section 7.1.1. The subcomponent that contains the new high-fidelity
data transitions to Dirty, and the subcomponent with the unmodified partial-fidelity
data remains in Partial-Clean. In contrast to Section 7.1.1, the client replica has to
split the component at the primary replica when it starts propagating partial-fidelity
views of its modifications.

Moreover, when the client replica releases the partial-fidelity subcomponent, other

client replicas can read and modify partial-fidelity versions of this subcomponent.
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optimistic (B) replication models.
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Since these other client replicas can also propagate partial-fidelity versions of their
own modifications, the subcomponent may be subdivided into an arbitrary number
of sub-subcomponents. However, even when multiple client replicas modify different
subcomponents of the same component, the document’s component structure always
remains consistent as client replicas need to achieve exclusive access before modifying

a partial-fidelity view and further subdividing the subcomponent.

Optimistic Replication

Figure 7.5 (B) shows the state transition diagram for an optimistic replication model
that supports partial document editing and progressive update propagation. The
state transition diagram is similar to that of the pessimistic replication model dis-
cussed in the previous section, with states and transitions with the same names having
equivalent semantics. The optimistic replication diagram differs however in two ways.
First, it has an extra state for conflict resolution. Second, it transitions from Clean
and Partial-Clean to Empty and from Dirty to Conflict when the client replica recon-
ciles with the primary replica and learns about a more recent or concurrent component
view.

The optimistic replication model also enables client replicas to resolve conflicts
even when the server’s primary-replica just has a partial-fidelity view for the compo-
nent. In such case, as in any other conflict, the client replica would read the conflicting
partial-fidelity view, resolve the conflict, and choose whether to propagate a full- or
partial-fidelity view of the modifications.

Finally, an optimistic replication system that enables the propagation of partial-
fidelity modifications made to partially-fidelity views also has to be able to resolve
conflicts that may arise in the document component structure. Figure 7.6 illustrates
a simple component structure conflict, which results from concurrent partial modi-
fications to partial-fidelity views. Initially, both client replicas read partial-fidelity

views of the same component. Then both client replicas split the component by mod-
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ifying different sections of their partial-fidelity view. When Client1 reconciles with
the primary replica, it partitions the primary replica’s component and propagates
a partial-fidelity view of its modifications. Later, when Client2 reconciles with the
primary replica it detects the concurrent modifications to the component. Client2
also realizes that its subcomponent structure differs from the primary replica’s sub-
component structure. Client2 resolves the conflict by reading the primary replica’s
subcomponent views and repartitioning the subcomponent structure. After resolving

the conflict, Client2 propagates a partial-fidelity view of its modifications.

7.1.4 Serverless Replication

The earlier state diagrams can be carried over from a primary replica configura-

tion to a serverless configurations without any change. In a serverless configuration,
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when a replica modifies a component it becomes the source for distributing these
modifications to other replicas. In practice, however, not all replicas have to read the
modifications directly from the source replica and replicas can get these modifications
from some other replica that in turn got the modifications from the source replica.
Independent of how the modifications are propagated, the last writer has a full-
fidelity view of the component and is perceived by other replicas as the source for
this view. Hence, the replica that writes the component last becomes effectively a
temporary “primary replica” for the component that it modified. The states and state
transitions otherwise remain the same. If a replica, other than the primary, wants
to progressively read the component from the primary replica, it needs to maintain
a Partial-Clean state. If the temporary primary replica for a particular component
wishes to progressively update its modifications, it needs to maintain a Partial-Dirty
state. If it wants to do that concurrently to more than one replica, it needs to maintain

the progress of each individual transmission as part of that state.

7.1.5 Summary

I have described the changes necessary to the state diagrams for pessimistic and
optimistic replication in order to support adaptation-aware editing and progressive
update propagation. In general, the changes involve adding states and transitions.
The existing states and transitions remain, with their original semantics. No other
changes are necessary if we disallow modifications to partially-loaded components.
Significant complications arise if this restriction lifted, requiring components to be

split to reflect old partial-fidelity data and new full-fidelity data.

7.2 CoFi Prototype

The mechanisms presented in the previous section allow for several possible imple-
mentations. One possibility is to modify applications to implement adaptation-aware

editing and progressive update propagation natively. An alternative is to implement
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Figure 7.7 : Puppeteer remote and local proxy architectures. Shaded components
show extension made to Puppeteer to implement CoFi.

these mechanisms as part of a centralized adaptation system. I believe that the latter
is a more profitable proposition, as it leverages the coding effort across a wider set of
applications.

This section presents a CoFi prototype implemented on top of the Puppeteer
adaptation system. The CoFi-enabled Puppeteer prototype (Puppeteer-CoFi) sup-
ports editing partially loaded documents, incremental update propagation, and con-

flict resolution.

7.2.1 Puppeteer-CoFi

Puppeteer-CoFi implements an optimistic client-server replication model that sup-
ports adaptation-aware editing and progressive update propagation. The prototype
consists of a group of bandwidth-limited nodes, each running a Puppeteer-CoFi local
proxy, that collaborate by exchanging component data over a single Puppeteer-CoF'i
remote proxy, which stores the primary replica of the document. The Puppeteer-CoFi
remote proxy, in contrast to the Puppeteer remote proxy, stores hard state. When a
document is first opened, it is imported from its native data store into the Puppeteer-
CoFi remote proxy. Further accesses to the document, both reads and writes, are then

served from the Puppeteer-CoFi remote proxy’s copy. To enable communication with
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non Puppeteer-CoFi-enabled programs, Puppeteer-CoF'i exports document modifica-
tions back to their native data store, where it is assumed that no clients will directly
modify the data.

In Puppeteer-CoFi, several copies of a document can co-exist in various parts of
the system. Figure 7.8 exemplifies the state of the system for a single client editing
a PowerPoint document. The figure shows that there is one copy of the document in
each of the native data store, the Puppeteer-CoFi remote and local proxies, and the
application running on the client. Moreover, the figure shows that these copies differ
in their component subsets and component fidelities. In the example, the native data
store and the Puppeteer-CoFi remote proxy have full copies of the document. In
contrast, both the Puppeteer-CoFi local proxy and the application have just partial
copies: the first slide is empty and the images of the second slide are only present in
low fidelity. Finally, the application copy has an extra slide component.

The differences between the remote and local proxies copies result from subsetting
and versioning adaptations. In contrast, differences between the local proxy and ap-
plication copies result from user modifications. Finally, the native store and remote
proxy copies can differ because the two copies have not been synchronized (i.e., mod-
ifications have not been propagated to the native store) or when the native store copy
is being updated using out-of-band mechanisms (i.e., outside of the Puppeteer-CoFi
system).

The rest of this section describes how copies of the document converge by ex-
changing component data. First, I describe how Puppeteer-CoFi propagates user
modifications from the bandwidth-limited device to the Puppeteer remote proxy and
the data store. Second, I describe how the Puppeteer local proxy refreshes the appli-

cation’s document copy with new and higher-fidelity view.



91

User modifications propagation

Application-specific adaptation policies running on the Puppeteer local proxy (as
described in Chapter 4) control the propagation of user modifications to the Pup-
peteer remote proxy and the native data store. Update propagation involves four
stages: acquiring user modifications, detecting and resolving conflicts, transmitting
modifications to the remote proxy, and synchronizing the modifications with the doc-
ument’s native store system (SMTP, NFS; a relational database, etc). While these
stages need to be executed in order for a given component, they do not have to be
executed simultaneously or uniformally for all components. Specifically, the adapta-
tion policy determines for each component of the document when to resolve conflicts
(if there are any), when to propagate modifications and with what fidelity, and when
to reflect modification to the native data store. For example, if the adaptation policy
determines that modifications to a set of components conflict with the remote proxy’s
copy, it could choose to delay resolving the conflicts and propagate just modifications
to non-conflicting components; leaving conflict resolution for a later time (e.g., on

reconnection over high bandwidth).

Acquire modifications Users modify documents by changing their component
structure or by modifying individual components. Structure modifications include
adding, deleting, and reordering components. Changes to individual components
involve modifications to the component’s view (i.e., its native data). Finally, since it
is common for a component to encode the component structure of its children, any
changes in the children component structure usually implies a change in the parent’s
view (i.e., when a document rearranges its parts, the document itself has changed).
Puppeteer-CoFi uncovers user modifications by comparing the local proxy’s doc-
ument copy to the application’s copy. To compare the document copies, Puppeteer
needs to access the data that is currently loaded inside the application. This can be

done in two ways. The simplest one, although the least available one, involves using
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the application’s exported API to retrieve any user modifications. The alternative
is to instruct the application to serialize its data into a temporary document (e.g.,
a file or an email). The temporary document is then parsed using an import driver
(as described in Chapter 4) and compared to the local proxy copy. For the compar-
ison to be valid, it must be possible to uniquely identify each document component
independently of the data stored in its view. If I had to rely on the component view
(i.e., a hash of the view data or some other finger printing techniques) to determine
its identity, I would not be able to differentiate between a newly created component
and one that just changed. The easiest way to determine identity, of course, is for
the application to assign unique and immutable component IDs to components at
creation time. Unfortunately, many applications do not preserve the IDs of com-
ponents as the document evolves. For these applications, Puppeteer-CoFi requires
extra component-specific driver code that (while executing outside the application)
fixes the component IDs, ensuring that they remain immutable over the lifetime of
the document. I describe in Section 7.3.2 the steps I take to ensure that PowerPoint

preserves unique identifiers for slides and images.

Conflict detection and resolution Puppeteer-CoFi detects conflicting modifica-
tions by tagging component views with logical timestamps 78], which determine the
partial order of modifications in the system. Timestamps consist of the client IDs of
nodes that modified the component and the logical times of the modifications. We say
that timestamp A dominates timestamp B (i.e., is more recent) if A contains all the
client IDs of B and all logical times of A are equal or greater than in B. In contrast,
we say that timestamps A and B are concurrent if neither dominates the other.
Puppeteer-CoF'i implements both client- and server-based conflict resolution. In
client-based resolution, the local proxy fetches the conflicting view from the remote
proxy, resolves the conflict and creates a new view that dominates the two conflicting

views. In server-based resolution, the client pushes its view to the remote proxy,
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and a transcoder executing in the remote proxy creates a new view that merges the
conflicting modifications.

I argue that most conflicts can be resolved automatically by application-specific
adaptation policies without requiring user intervention. I base this argument in the
observation that most conflicts detected by Puppeteer-CoFi result from a mismatch
between the application’s semantic consistency unit and the component structure ex-
posed to Puppeteer. In other words, modifications within a component usually occur
in non-overlapping parts, prompting Puppeteer-CoFi to detect a conflict that can be
resolved automatically. Moreover, since the sub-component structure of a component
is usually encoded in its view, non-overlapping changes to the sub-structure (e.g.,
adding new components in non-overlapping sections of the document) result in an
update conflict for the parent component.

When user intervention is necessary to resolve a conflict, i expect conflict resolution
to be client-based. The application-specific adaptation policy can use an export
driver to present the conflicting component views in the context of the applications
environment. The application-specific adaptation policy can then ask the user to fix
the conflict by either selecting one of the views or by merging the conflicting views

into a new view.

Modification transmission The Puppeteer-CoFi remote proxy implements a sim-
ple consistency model, where the remote proxy accepts only views that are either more
recent or have higher fidelity than the current view of the component. This limits
the Puppeteer local proxy to propagating only conflict-free modifications. Server-
based conflict resolution, as explained above, is somewhat of an exception to this
rule. While the client does propagate a conflicting view, a transcoder executing in
the remote proxy creates a new view by merging the user modifications with the
remote proxy view. At the end of this process, the remote proxy has a view that

dominates both conflicting views.
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As mentioned earlier, the application-specific adaptation policies select the subset
of component for which to propagate modifications to the server. For components
that encode their sub-component structure in their view, the adaptation policy needs

to take into consideration the following two constraints:

1. Adding, removing, or re-arranging a component also requires updating its par-

ent.

2. Any update to a component that has children, requires updating the structure

of its children (adding and removing).

These constraints ensure that the remote proxy does not service a view that ref-
erences a component for which the remote proxy does not yet have a view. It also
ensures that if a component has been removed, it will be removed from the document
subset of any client that reads the new view of the parent component, which no longer
references the deleted component.

The above constraints require that the transmission of views for components that
have a parent-child relationship appear as atomic to the remote proxy. Puppeteer-
CoFi provides atomicity by keeping shadow copies of the new views and re-evaluating
the constraints whenever a new view is transmitted to the remote proxy. When both
constraints hold for all related components, the remote proxy atomically declares the
shadow view to be the active views for all related components.

The fidelity with which to propagate a view is set by application-specific policies
running on the client, which can request transcoding transformations for the view. To
increase the fidelity of a previously propagated modifications, the application-specific

policy can re-select the component and push a higher-fidelity version of its view.

Synchronization with native storage [ extended the Puppeteer proxy archi-
tecture to include synchronization drivers that can export documents back to their
native storage system. I export documents to their native storage to enable infor-

mation sharing with client outside of the Puppeteer system and to leverage from the
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mechanisms that these storage systems implement (e.g., availability, fault tolerance,

security, etc).

Refreshing the application’s document copy

Application-specific adaptation policies may choose to refresh the application’s docu-
ment copy to reflect changes made by other users to the document or to increase the
fidelity of component present at low fidelity.

Refreshing the application’s document copy involves the following steps: fetching
the new component views, detecting and resolving conflicts, and reflecting the new
views in the application’s document copy. Fetching component view proceeds as
explained in Chapter 4 — the adaptation policy just chooses what components to fetch
and with what fidelity. Detecting and resolving conflicts is necessary to make sure the
system does example, if the user edits a low fidelity image that the prototype is trying
to upgrade, it is necessary to merge the user modifications with the higher fidelity
data fetched from the remote proxy. The prototype detects and resolves conflicts in
a similar manner as described did in Section 7.2.1. Finally, the adaptation policy
reflects the modifications in the application’s document copy by using the export

drivers.

7.3 Implementation Experience

This section reports on our experience using Puppeteer-CoFi to adapt the Outlook
email client and PowerPoint presentation system for document editing and collabo-
ration over bandwidth-limited links. I implemented progressive update propagation
for both applications, while for PowerPoint, I also support adaptation-aware editing.
Table 7.1 shows the lines of code written to support these two applications.

The rest of this section is structured as follows. Section 7.3.1 describes the pro-
gramming effort involved in writing Puppeteer-CoFi drivers and adaptation poli-

cies for the Outlook email client. Section 7.3.2 describes the programming effort



96

PowerPoint | Outlook
Import Driver 1790 1674
Export Driver 697 220
Tracking Driver 148 85
Policy 680 386
Total 3315 2365

Table 7.1 : Line counts for Puppeteer-CoFi drivers and policies.

involved in writing Puppeteer-CoFi drivers and adaptation policies for PowerPoint.
Section 7.3.3 presents experimental results that quantify the performance of the im-

plementation.

7.3.1 Outlook

In collaboration with Rajnish Kumar, I implemented an email service that supports
the progressive propagation of images embedded in or attached to emails. Figure 7.9
shows the architecture of the email service. On the sender side, the progressive email
service uses Outlook’s email client to generate emails. On the receiving end, the email
service supports both Puppeteer-CoFi-enabled clients running Outlook and standard
third-party email readers.

The email service implements emails as Puppeteer-CoFi shared documents that
are written only by the email’s sender but are read by one or more recipients. We im-
plemented a sender adaptation policy that propagates the text content of new emails
and transcodes image attachments into a progressive JPEG representation and sends
just portions of an image’s data. The sender can propagate fidelity refinements for the
attached images by selecting the email from a special Outlook folder and re-sending
it. The image fidelity refinements are available to Puppeteer-CoFi-enabled recipients
as soon as they reach the Puppeteer-CoFi remote proxy. For Puppeteer-CoFi-enabled
recipients, we implemented an adaptation policy that fetches the email’s text content

and transcoded versions of its image attachments. Readers request fidelity refinements
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by clicking a refresh button added on Outlook’s toolbar. Finally, the progressive email
service supports third-party email readers by composing a new email message every
time all of the email’s image attachments reach a predetermined fidelity level. For
example, if the progressive email service is configured to assume that images have
two fidelity levels (one-seventh and full), the service will send each third-party email
reader two versions of the same email; each containing the same text body but with

images of progressively refined fidelities.

7.3.2 PowerPoint

This section describes how the prototype propagates user modifications and updates

PowerPoint with more recent or higher-fidelity data.

User Modification Propagation

Acquire Modifications PowerPoint’s exported API does not provide facilities for
determining which presentation objects have been modified or for extracting these
modifications. Instead, the prototype serializes the state of the presentation by in-
structing PowerPoint to save a temporary copy of the presentation in the client’s local
file system. The prototype saves the temporary copy in the new XML-based Power-
Point file format [95] (i.e., SaveAs Web Page) because the human-readable nature on
XML simplifies the task of writing import drivers to parse the presentation.

Before the prototype can acquire the user modifications by parsing the temporary
copy and comparing it with the local proxy’s copy, it needs, however, to perform an
intermediate step to account for the fact that the techniques used to update slides
and to increase the fidelity of embedded images change the Ids of these components.

The PowerPoint exported API does not provide a mechanism for directly replac-
ing the contents of presentation components (e.g., slides, images). The Puppeteer-
CoFi PowerPoint adaptation policy, instead, upgrades slides and images by loading

an auxiliary presentation that contains the components with their more recent or
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higher-fidelity data and uses the clipboard to copy slides and the images to the user’s
presentation. The PowerPoint policy then deletes the old versions of the slides and
images from the user’s presentation.

To the user, the above process is transparent. The presentation looks mostly the
same, it just shows more recent or higher-fidelity data. To PowerPoint, however, the
update and refinement of slides and images modifies the component structure of the
presentation. From PowerPoint’s perspective, the older or lower-fidelity components
were deleted from the presentation and the more recent or higher-fidelity components
were added to the presentation as new components. This results in a situation where
an updated component, while appearing to be the same component to the user, is
actually assigned a different component Id by PowerPoint.

Fortunately, PowerPoint allows querying the Ids of components pasted into the
user’s presentation. The prototype uses this functionality to record the new Ids of
updated or upgraded components. The prototype then pre-processes the temporary
copy of the presentation stored in the client’s local file system and rename all com-
ponents to their original Ids. At this stage, the prototype can parse the temporary
copy and compare it with the local proxy’s copy to acquire user modifications.

As Table 7.1 shows, implementing the import drivers for PowerPoint required 1790
lines of Java code. Of this line count, an estimated 250 lines implement the code that

renames the component Ids.

Conflict Detection and Resolution A conflict occurs when: one user modifies
a slide while another user deletes it, two users move a slide to different positions in
the presentation, or two users concurrently modify the same slide. I refer to these
conflicts as edit-delete, move-move, and edit-edit, respectively. For simplicity, for the
rest of this section, I will refer to the copy of the presentation available at the remote
and local proxies as the remote and local copies, respectively.

I now describe how the PowerPoint policy I implemented resolves the above con-



100

flicts. This is, however, just one of the possible ways to resolve conflicts, and I can
easily envision multiple variations or extensions to the simple policy I implemented.
The PowerPoint policy resolves edit-delete conflicts by giving priority to slide editing
over deletion. If the remote copy has a new view for a slide, while the local copy
shows the slide as deleted, the PowerPoint policy fetches the new view for the slide
and inserts it into the running application, effectively canceling the slide deletion. If
the situation is the opposite and the remote copy shows the slide as deleted and the
local copy shows a new view for the slide, the policy will just undelete the slide from
the remote copy.

The PowerPoint policy resolves move-move conflicts by giving priority to the local
copy. This is achieved by simply updating the root component of the remote copy
(i.e., the document) to reflect the new position of the slide.

The PowerPoint policy resolves edit-edit conflicts by using the PowerPoint export
driver to present to the user the two conflicting slides. Once the user has resolved
these conflicts, either by choosing one of the slides or by merging their content, the
PowerPoint policy propagates the new slide view (which dominates both the old local

and remote views) to the remote copy.

Modification Transmission I experimented with incremental propagation by im-
plementing a policy that transcodes new images into a progressive JPEG representa-
tion. I assume that images have 3 fidelity levels, which I will refer to as low, medium,
and high. T chose these levels to correspond to the first one-seventh, next two-sevenths,
and last four-sevenths of the bytes in the progressive JPEG representation.

The first time the user requests to save the changes, the policy propagates the
new images to the remote proxy at low fidelity. On subsequent save requests, the
policy upgrades the fidelity of the images available at the remote proxy to medium

and high fidelity.
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Synchronization with Native Storage Our present implementation assumes
that the PowerPoint presentation is only edited by Puppeteer-CoFi-enabled clients.
This assumption affords the implementation of a simple synchronization driver that
recreates in the native storage the PowerPoint presentation in its XML-based for-
mat. If the assumption were to be violated, and users were to modify the PowerPoint
presentation outside of Puppeteer-CoFi, the synchronization driver would need to
acquire any modifications made to the native copy, and resolve any conflict before

regenerating the document in the native store.

Refreshing the Application’s Document Copy

The PowerPoint policy uses the copy-and-paste mechanism described earlier to add
new components to the presentation and to replace components with more recent or
higher-fidelity data. The PowerPoint policy also uses the PowerPoint exported API
to delete and reorder slides to reflect changes to the presentation by other users.
Before any changes or upgrades can be reflected in the user’s presentation, it is
necessary to detect if the components we are about to add, delete, move, or upgrade
have not been modified by the user, resulting in a conflict. The prototype detects
modifications and resolves conflict by following the acquire modifications and conflict

detection and resolution steps described in the Section 7.2.1.

7.3.3 Experimental Results

I measure the performance of our adaptations on an experimental platform consisting
of three 500 MHz Pentium IIT PCs running Windows 2000. Two of the machines are
configured as clients and one as a server. Client machines run the user application
and the Puppeteer local proxy. The server machine runs the Puppeteer remove proxy.
Clients and the Puppeteer server communicate via a fourth PC running the Dum-
myNet network simulator [117]. This setup allows control over the bandwidth between

clients and server to emulate various network technologies. I use our departmental
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Figure 7.10 : Latency for sending emails with and without progressive update prop-
agation over 56 Kb/sec link.

NFS and IMAP servers as the native stores for our experiments with PowerPoint and

Outlook, respectively.

Outlook

Figure 7.10 plots the latencies for transmitting a set of synthetic emails consisting
of a few text paragraphs and a variable number of image attachments each of size
100 KB over 56 Kb/sec link. The figure shows results for a run that uses Outlook
without any adaptation support (Native), and two Puppeteer-CoFi runs, one that
sends the full attachments (Full) and another that uses versioning to convert images
into a progressive JPEG representation and transfers only the initial one-seventh of
the images’ data (Partial). For the Native run, I measure only the time it takes to

transmit the emails between the mobile client running Outlook and an SMTP server
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on the other end of the bandwidth-limited link. This accounts for the time that the
mobile client has to wait before disconnection in order to propagate the email. T do
not include the time it takes the SMTP server to deliver the email to the recipients,
as these operations can be done asynchronously and do not require the mobile client
to remain connected. Similarly, for Puppeteer-CoFi runs, I measure only the time it
takes to transmit the emails between the Puppeteer-CoFi local and remote proxies
and do not include the time needed to compose and send emails to third-party email
recipients, or the time it takes Puppeteer-CoFi-enabled recipients to adaptively read
the email. The Full run demonstrates that the Puppeteer-CoFi overhead is small,
averaging less than 5% over all emails. In contrast, the Partial run shows, as was to
be expected, that progressive propagation of the attachments reduces the latency by
roughly 80%.

I measured the time it takes a Puppeteer-CoFi-enabled recipient to upgrade the
fidelity of an image attachment from one-seventh of the image’s content to full-fidelity.
This time was less than 12% and 2% of the transmission time for 10KB image and
100KB image attachment, respectively, on 56 Kb/sec link. This time is proportional
to the size of the image attachment, and partly it is also proportional to the size
of text body if the image is embedded in the body. On average, the time taken to
upgrade the fidelity of an embedded image increased only by 8 milliseconds for every
1 KB increase in text body, and only by 2 milliseconds for every 10 KB increase in
size of embedded images, while the increase in transmission time is 1.2 seconds for

every 10KB increase in the email size.

PowerPoint

I adapted PowerPoint to support adaptation-aware editing and progressive update
propagation. Adaptation-aware editing reduces download time by enabling mobile
clients to edit PowerPoint presentations that have been aggressively adapted. For

example, in Chapter 5, I demonstrated that loading text-only versions of PowerPoint
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Figure 7.11 : Latency for saving modifications to PowerPoint presentations with and
without adaptation over 56 Kb/sec link.

presentations can reduce download latency by over 90% for large presentations over
bandwidth-limited links. The rest of this section evaluates the benefits of progressive
update propagation.

Puppeteer-CoFi-enabled PowerPoint propagates modifications progressively by
saving subsets of the modified slides or embedded objects, or by transcoding em-
bedded images into a progressive JPEG representation and saving just portions of
the images’ data. The adaptation policy I have implemented propagates modifica-
tions every time the user saves the document. The policy propagates the text content
of any new or modified slide and transcoded versions of new or modified embedded
images. Image fidelity refinements are then propagated on every subsequent save

request untill all images at the Puppeteer-CoFi remote proxy reach full fidelity.
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I evaluated the effectiveness of progressive update propagation by measuring the
latency for saving modifications to a set of synthetic PowerPoint documents. I con-
structed our synthetic documents by replicating a single slide that contained 4 KB of
text and a 80 KB image.

Figure 7.11 shows latency measurements for saving PowerPoint documents with
up to 50 slides over a 56 Kb/sec network link. The figure shows latency results for
transferring the documents over F'TP and adaptation policies that use subsetting and
versioning to reduce the data traffic. The FTP measurements provide a baseline for
the time it takes to transfer the full document without any adaptation. T use this
baseline to determine the effectiveness of our adaptation policies.

Figure 7.11 plots the results of 5 experiments that use subsetting to reduce la-
tency. The numbers on the right hand side of the figure, next to each line, show the
proportion of document slides that was saved to the remote proxy. In this manner,
the topmost line corresponds to documents that were saved in their entirety, while
the lowest subsetting line corresponds to documents where modifications to only 20%
of the slides were saved. In all experiments, I assume that the text and the single
image in each slide were modified and had to be saved. The topmost subsetting
line, which corresponds to saving the full document, shows that the Puppeteer-CoF'i
overhead is small, averaging less than 5% over all documents. In contrast, as was to
be expected, all other subsetting experiments show significant reductions in upload
latency. The last five lines in Figure 7.11 show the results for an adaptation policy
that uses subsetting and versioning of images to further reduce upload latency. This
policy converts images embedded in slides into a progressive JPEG representation
and transfers only the initial one-seventh of the image’s data. As was to be expected,
the versioning policies achieve even larger reductions in upload latency.

Figure 7.12 shows the breakdown of the execution time for updating a single
slide to reflect changes made by some other user. The figure shows that the API

calls to replace the content of the slide (Refresh) account for a small portion of the
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overall latency. More significant, the figure shows that for large documents, roughly
60% of the reconciliation time is spent making sure the user did not change the
slide the prototype is about to update (Detect). Detecting modifications is time
consuming because PowerPoint’s API does not support querying if a components has
been changed. Instead, the prototype detects modifications by saving a temporary
copy of the presentation, parsing this copy, and comparing it with the local proxy
copy of the presentation.

The time to detect modifications places a hard bound on how frequently the pro-
totype can save modifications or refresh the application’s copy with new or higher-
fidelity data. While the 23 seconds that it takes to acquire modifications for the 100-
slide synthetic presentation will probably not bother the user when saving changes (a
rather infrequent operation), it limits the ability to load the document incrementally
and the speed and frequency with which the system can reflect modifications made
by other users. Moreover, this result exposes the inefficiency of detecting user modi-
fications by serializing documents into temporary files. Since serialization time grows
roughly linearly with the size of the presentation and is independent of how much
the document was changed, it is to be expected that the proportion of time spent
detecting modification will increase as the presentation grows. It is important to note

that this is a limitation of the PowerPoint API and not of the CoFi mechanisms.

7.4 Related Work

While several adaptation systems [10, 36, 45, 53, 72, 80, 89, 98, 103, 123] use subsetting
and versioning to reduce document download time, to the best of our knowledge, CoFi
is the first to provide adaptation support for document editing and collaborative work
over bandwidth-limited devices.

WebDAV [143], and LBFS [99] implement file systems for wide-area and low-
bandwidth networks. Coda [85], Locus [111, 142], Ficus [116], and Bayou [137] pro-

vide support for document editing on disconnected devices. CoFi differs from these
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previous efforts in that it assumes that update propagation and conflict resolution
can occur over bandwidth-limited connections and that do not have to wait for the
device to be strongly connected.

Other systems have experimented with reducing the size of the consistency unit
to prevent concurrent modifications that result from a mismatch between the con-
sistency units of the application and the system. Some examples are Shasta [125],
Cashmere [132] and Millipage [68].

Several efforts [28, 55, 91] have used component-based technologies to implement
collaborative applications that adapt to variations on network connectivity, or im-
plemented collaborative applications that use the document’s component structure
to reduce conflicts or limit the amount of data that needs to be present at the de-
vice [24, 38, 39, 81, 106, 120]. These efforts, however, do not allow the propagation
of low-fidelity versions of modifications. MASSIVE-3 [59] uses transcoding to reduce
data traffic necessary to keep users of a collaborative virtual world aware of each other.
MASSIVE-3, however, implements a pessimistic single-writer consistency model.

An alternative to shipping data between replicas to achieve consistency is opera-
tion shipping. In operation shipping, the set of operations applied to the local replica
is logged and later replayed in every replica in order to bring all replicas into an
equivalent state. Some systems that implement operation shipping are Orca [15, 16],

Globus [141], and a variant of Coda [87].

7.5 Summary and Conclusions

I described CoFi, a novel architecture for supporting document editing and collab-
orative work on bandwidth-limited devices. CoFi consists of two component-based
mechanisms: adaptation-aware editing and progressive update propagation. Both
mechanisms decompose documents into their components structures (e.g., pages, im-
ages, paragraphs, sounds) and keep track of consistency and fidelity at a component

granularity. Adaptation-aware editing enables editing partially-loaded documents by
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differentiating between modifications made by the user and those which result from
adaptation. Progressive update propagation shortens the propagation time of com-
ponents created or modified at the bandwidth-limited device by transmitting subsets
of the modified components or transcoded versions of the modifications.

I demonstrated that support for adaptation-aware editing and progressive update
propagation can be added to optimistic and pessimistic replication protocols in an
orthogonal fashion. Specifically, new states are added to the state machines that
describe the replication protocols, but the existing states and transitions remain un-
affected.

I implemented adaptation-aware editing and progressive update propagation on
top of the Puppeteer component-based adaptation system and experimented with doc-
ument editing and collaboration in two real world applications. For these applications,
the ability to read and edit partially loaded documents and progressively propagate
fidelity refinements of modifications substantially reduces upload and download laten-
cies, improving application responsiveness and increasing awareness about concurrent
changes to documents. Finally, the programming effort to support each additional

application is moderate, and the system overhead is low.
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Chapter 8

Conclusions and Future Work

In this thesis, I presented the concept of component-based adaptation. Underlying
component-based adaptation is the idea that the adaptation policies control appli-
cations by calling methods in the APIs that the applications already export. This
approach has a number of advantages, allowing for a wide variety of adaptation poli-
cies to be implemented with popular office productivity applications, and achieving
significant latency reductions over low-bandwidth links, yet requiring no modifications
to the applications.

I implemented the concept of component-based adaptation in the Puppeteer sys-
tem and evaluate the extent to which existing APIs can be used for the purposes
of adaptation. Although I found some limitations in the APIs of existing applica-
tions, I was able to implement a large number of adaptations policies without much
complexity and with little overhead.

Puppeteer’s modular architecture is specifically designed to limit the amount of
development for integrating new applications and new adaptations. Overall, I have
found that the bulk of the code is platform- and application-independent. Due to
the lack of uniform document formats, APIs and event handling mechanisms, some
amount of development remains necessary for a new application. Writing new adap-
tation polices proved much easier.

In experimenting with adapting existing applications, I identified limitations in
these application’s interfaces and file formats that either complicate the task of adding
adaptive behavior or limit the ways in which applications can be adapted.

Investigating how to maximize the adaptation potential of applications and propos-
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ing design guidelines for adaptation-friendly run-time APIs and document formats,
remain open research questions. Specifically, more research is needed in order to an-
swer the following questions. What is the best way to structure an application in
order to maximize its adaptation potential? What is the functionality that an ap-
plication’s API should provide in order to support the broadest set of adaptations?
What are the characteristics of an application’s document format which promote or
prevent adaptation?

In this thesis, I also described a system that is capable of adapting multiple appli-
cations running concurrently on a bandwidth-limited device. Specifically, I described
the design and evaluated the performance of the Hierarchical Adaptive Transmission
Scheduling (HATS), which I implemented as an extension of the Puppeteer adaptation
system. Together, Puppeteer and HATS support centralized transmission scheduling
for bandwidth-limited devices and supports dynamic system-wide adaptation policies
based on the semantics of the applications, documents, and components running on
the mobile or wireless device.

Wireless networks are by nature broadcast channels. When multiple clients share a
wireless access point, they compete for the available network resources. When clients
are being adapted, there is a correlation between adaptation decisions made for one
client and the bandwidth available to other clients. Developing scheduling techniques
that support adaptation policies that span across clients remains an open question.
More research in necessary in order to implement policies that provide fairness to
multiple wireless clients, while delivering bandwidth where it will be most effective.
In particular, more research is necessary to determine how to achieve QoS guarantees
by doing adaptation.

Finally, I described CoF1i, a novel architecture for supporting document editing and
collaborative work on bandwidth-limited devices. CoFi consists of two component-
based mechanisms: adaptation-aware editing and progressive update propagation.

Adaptation-aware editing enables editing partially-loaded documents by differentiat-
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ing between modifications made by the user and those which result from adaptation.
Progressive update propagation shortens the propagation time of components created
or modified at the bandwidth-limited device by transmitting subsets of the modified
components or transcoded versions of the modifications. I demonstrated that support
for adaptation-aware editing and progressive update propagation can be added to op-
timistic and pessimistic replication protocols in an orthogonal fashion. Specifically,
new states are added to the state machines that describe the replication protocols,
but the existing states and transitions remain unaffected.

While the focus of this thesis has been on providing mechanisms that enable adap-
tation, these mechanisms are only as effective as the adaptation policies that drive
them. To be effective, adaptation policies need to be tailored to the capabilities of the
device and the user’s access patterns and preferences. Requiring users to configure
adaptation policies is unrealistic, as few users are willing to spend time reconfigur-
ing their system. More research is necessary to develop techniques that monitor the
user’s behavior and automatically generate adaptation policies by deducing the user’s

intent and the relationships between components.
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