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Abstract—In this paper we propose a new methodology for
performance modeling of applications deployed in the cloud
based on automatically discovered phases along with their inputs.
Our method is based on lightweight sampling that can predict
the performance of applications with up to 95% accuracy
for previously unseen input configurations at less than 5%
overhead. We show the effectiveness of the performance modeling
methodology in case of anomaly detection for a variety of real
world workloads. As compared to the state-of-the-art, our method
gives significant improvements in reducing both false positives
and false negatives for anomalous test cases.

Index Terms—Performance Modeling, Cloud Computing,
Anomaly Detection

I. INTRODUCTION

The use of Cloud environments is becoming increasingly
popular due to the ability to provide high quality of service
for millions of users, while taking the burden of designing
and deploying an expensive hardware platform away from
them. Performance modeling of cloud applications is necessary
for both resource provisioning and anomaly diagnosis towards
efficient management of cloud systems. Accurate performance
or resource usage prediction for any given workload is difficult
to achieve. An application may have several distinct phases
with radically different performance or resource usage profiles.
It is usually not feasible for the user to explicitly specify
anything more than coarse grained upper or lower bounds for
the expected application resource needs or other behavioral
expectations.

In this paper, we introduce a novel methodology that can
model and predict the behavior of application workloads
automatically. Our method recognizes the application mod-
eling granularity (phase) and the inputs that matter e.g., for
performance, on the fly, without user specified information
or other annotations. A phase is defined as a time slice
in the application’s life when it executes a stable set of
functions using a stable number of threads, resulting in stable
resource utilization. The per-phase application characterization
is performed using periodic thread dumps in order to capture
application stacktraces to characterize the phase. The relevant
inputs (meta-inputs) to each phase are identified automatically
by correlating the resource utilization and execution time
behavior for the previous phases of the current application
run.

Our approach is non-intrusive, does not require application
source code and is offered online, life-long, for all appli-

cations, with the cloud service provided. Our experimental
evaluation shows that our approach significantly improves
the modeling accuracy (up to 10% improvement with a pre-
diction accuracy of 95%) of traditional alternatives (RNN,
ARIMA) [1]–[4] but transparently, without requiring any user
input and at negligible, less than 5%, overhead. Our perfor-
mance modeling approach can be used for anomaly detection,
where it is able to reduce the number of false positives (normal
runs flagged as anomalous) and false negatives (anomalies
identified as normal execution) up to 60%.

II. GRANULARITY OF PERFORMANCE MODELING: PHASES

In this section, we discuss our first contribution, which is
finding a proper granularity for performance modeling with the
aim to achieve a better prediction accuracy. Our granularity
of modeling is per phase of an application. An application
running on a cloud goes through separate phases as workloads
are run on it. For example on a Spark [5] deployment, seman-
tically, a wordcount workload may show phases for: (a)
reading the file (b) counting the words from the file (c) saving
the output to a different file. Each of these phases can have
a single function or a set of functions executed by a number
of threads, performing the desired work, therefore resulting
in a particular resource utilization. Therefore modeling at the
phase granularity rather than the granularity of the entire run is
a better choice for resource utilization prediction. We formally
define a phase of an application as the following:

Definition 2.1: A phase P of an application is a time slice
during the application life-cycle when the application executes
a stable set of functions following a particular distribution by
a stable number of threads.

By stable, we mean an entity (a set or a real number) whose
value is not statistically significantly different from its last seen
values.

A. Application Phases

For detecting the phase boundaries, we sample periodic
threaddumps for the application, at 1HZ frequency (deter-
mined experimentally to trade-off prediction accuracy and
throughput drop). Then we aggregate an epoch of n samples
to extract statistical features from the threaddump data. We
develop an adaptive way of finding the epoch size tuned
per application, by mining the application trace generated by



appending the periodically collected threaddumps. In the next
section, we describe the mining technique in details.

2.1: Identifying exact patterns: Long running functions
and/or loops in the workload generate repeated stacktraces in
the application trace. Our method for identifying such phases
(exact repeats) is based on identifying all non-overlapping
repeated substrings from a long string (the trace) using the
method described by Crochemore et al. [6] in linear time. The
epoch size for exact matches is the number of threaddumps
that are needed to be collected for discovering the match.

2.2: Identifying fuzzy patterns: There are workloads that
have a mixture of functions [7] or follow a specific distri-
bution [8]. Capturing stacktraces from such workloads may
not generate exact repeats in the trace, but fuzzy repetitions.
The input to our function distribution (fuzzy repeats) finding
algorithm is the trace after removing exact matches found in
the previous step. Our goal is to identify time-slices within
the trace that have similar distributions. We perform a greedy
search to find such phases by sliding a window across the trace,
starting with bigger window sizes and gradually evaluating
smaller windows. For matching a couple of windows, we
develop the following two metrics:

fsim =
|(Ttest

⋂
Tref )|

max(|Ttest| , |Tref |)
(1)

tsim =

n∑
i=1

(√
Hcur−

√
Hnext)

2 (2)

fsim represents the fraction of common functions between
the two windows under comparison and tsim calculates the
similarity in the distribution of the set of common functions,
using the Squared-Chord distance [9]. We consider a match
when both values of fsim and tsim are ≥ 0.95 (indicating
at least 95% match), a value that is empirically determined
by us. The epoch size for fuzzy matches is the number of
threaddumps that are needed to find the match.

B. Populating phase database and characterization

After the phase patterns (and therefore the corresponding
epoch sizes for the phases) have been identified from the
trace file using the text mining techniques described in the
previous section, we populate a database with the discovered
phases. We also track the execution order of the phases by
recording information about the preceding two phases of any
given phase.

While characterizing phases online, we pick the epoch size
ps of the smallest phase from the phase database. We match
an epoch of ps samples from the testing trace with all the
phases from the phase database with epoch size ps. If matches
are found (using both fsim and tsim values), the same size
is used for matching with the consecutive epochs. If any
phase from the phase database reaches a certain confidence
for the epoch size, we have characterized the phase. If not,
we restart the characterization with the next bigger epoch size
from the phase database. Each match for subsequent epochs
increases the confidence by 1, while a mismatch decreases the
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Figure 1: Resource Utilization profile and stages for NWeight
workload.

confidence by 1. We buffer the trace data until we have found
a characterization with confidence 5 (empirically determined).
Once a match has been found with the above confidence,
we have successfully characterized the phase. After successful
characterization, we keep comparing the fsim and tsim values
with the same epoch size until a point where a mismatch is
found. This denotes a phase transition point, and we have to
reset the epoch size and start the characterization again by
comparing the phase database.

If no accurate characterization has been done for the trace,
we keep buffering the trace until we have reached a certain
length that allows us to run our text mining method and update
our database with newly discovered phases. This buffer size
for learning can be selected by the performance engineer given
the time and resources he has for training. Therefore, our
method gives the opportunity to learn and relearn continuously
in an online fashion and populate the phase database with
newly discovered phases as new workloads are run on the
deployed application. In the next section, we provide an
example workload and its phases, along with experiments to
validate our choice of stacktraces for identifying phases.

C. Phases in NWeight

In this section, we try to identify the correlation between
the set of functions executed by a statistically constant number
of threads (our definition of phase) and the various resource
utilization of the application. We aim to justify the use
of threaddumps in detecting phases. We discover phases in
NWeight workload by varying the set of features. We use
(1) resource utilization features (R) (2) stacktrace features (S)
(3) resource utilization + stacktrace features (RS) ; and then
identify how many phase change points are identified in each
case. We also check whether the phase change points coincide.
This gives us an idea about the correlation of features used
for phase detection.

Figure 1 shows the resource usage profile of the NWeight
workload and the identified phases while using different sets
of features for the workload. The vertical lines show each
phase change transition points identified when R features are
used. This gives rise to a lot of fine grained phases detected
due to small variations in any of the resource utilization



dimensions. These variations also affect the performance of
the performance model as it becomes difficult for the model
to identify performance repeatability across workload runs due
to the fine grain non-determinism. The numbered braces on
the top of the figure show the three phases identified while
using the S and RS features. The corresponding code sections
from the workload for the discovered phases are given on the
right. The first phase is reading an input file and distributing it
over the nodes for processing, giving rise to slow increase in
memory and CPU utilization and the spike in network and disk
accesses. The second phase is running a processing loop over
the graph, which shows the recurring pattern across multiple
dimensions of resource utilization. The persist operation across
the loop iterations causes the spikes in disk writes. The third
and final stage is writing the output to a file, which is identified
as the spike in disk write towards the end. Therefore, for
performing modeling at a granularity that provides better
prediction accuracy, we choose to use S features. Though RS
features provide the same benefit as S features, but it costs
higher to generate models and perform prediction (due to
significant increase in the number of features); that may be
detrimental in an online setting. In the next section, we discuss
the details of generating performance models per phase.

III. INPUT AWARE PERFORMANCE MODELING

In this section, our goal is to predict the behavior of future
runs of an applications (and its phases) using previously
unseen inputs without requiring user supplied information.

A. Input specification

Our assumption is that there are phases in the application
whose behavior depends on the input to the application [10].
We generate performance models for (1) the resource behavior
and (2) the execution time of phases. These behaviors are
guided by the values of the input parameters. Some examples
of input parameters are the number of records accessed from
the database, percentages of reads or writes, the size of the
file being read by the application, etc.

B. Meta-Input Identification

The original input parameter values to the application
regulate the performance of the phases of that application.
The main idea for meta-inputs comes from the fact that
we can characterize the behavior of the current phase from
the behavior of phases that are related by a happens-before
relation with the current phase. We keep information about
the execution order of phases in the phase database. In order
to quantify the behavior of a phase, we first identify the set
of functions, including their full stacktraces that are executed
during the phase. We use information from the collected
samples of the application to identify this set of functions
T. With this set T, we create a thread-vector V , where each
index of the vector corresponds to each function in T and the
value for that index is the number of threads that executed that
particular function during the phase.

V = (tv1, t
v
2, . . . , t

v
n) (3)

Here tvi represents the number of threads that executed a
function ti during the phase.

Along with this thread-vector, in order to create the com-
plete meta-input set for the current phase, we also consider
the (1) CPU, (2) memory usage (3) I/O behavior and (4) the
execution time of the previous phases that happened-before
the current phase. We extract aggregate statistical features
(e.g. average, standard deviation, skewness etc.) to quantify
the resource characteristics of the phases. The meta-input
set is formed by a union of the meta-inputs (thread vectors
and resource features) for two (found empirically) preceding
input-dependent phases of the current phases. We build mod-
els for the execution time and resource consumption (CPU,
Memory, Disk I/O, Network I/O) for different phases. We
compare the performance of four algorithms that are popular
and have been explored in performance modeling before:
Logistic regression [11], LASSO Regression [12], Support
Vector Regressor [13] and SGDRegressor.

IV. EXPERIMENTAL EVALUATION

We present results for various HiBench workloads [14]
running on a 4-node Spark [5] cloud and various YCSB appli-
cations running on a 4-node Cassandra [15] cloud. For each of
the workloads, for the generation of performance models, we
train with 200 runs using 15 different input configurations.
For testing purposes, we run the workloads with 4 unseen
inputs that have not been used during training. For the YCSB
workloads, different read and write ratios are used as the
input. For testing, each accuracy number in the next section
represents the average accuracy from 16 prediction instances
(4 test runs with each of the 4 unseen input configurations).
LASSO performs best among the modeling algorithms we
tried, therefore we only include the results using LASSO.

A. Accuracy Comparison Among Modeling Techniques

In this section, we compare the prediction accuracy among
different techniques to check where our technique stands as
compared to the state-of-the-art: (1) Naive: The prediction
for the future time is same as the current value, (2) ARIMA
models [1], [16], (3) Recurrent Neural Network model [2]–[4],
[17]. The state of the art models are input and phase unaware.

Figure 2 shows the comparison among the prediction ac-
curacies for CPU consumption of workload phases using
different modeling techniques. The prediction accuracy is
calculated by subtracting the Mean Absolute Percentage Error
(MAPE) from 100. For reference, we also provide the accuracy
from building models using user-supplied input (the best case)
and LASSO as the modeling algorithm.

Our technique outperforms RNN and ARIMA without
requiring any user supplied information about the running
application. Also running algorithms, such as RNN, is compu-
tationally expensive than running LASSO, therefore RNN may
not be suitable for online settings where faster learning and
predictions are necessary. On average, our phase-aware mod-
eling improves the prediction accuracy by 10% as compared
to the state-of-the-art. Also, modeling using meta-inputs gives



Figure 2: Comparison of prediction accuracy of State-of-the-
art and our input-aware technique. For comparison we show
the results from using both user supplied input and meta-inputs
discovered by us.

an accuracy that is very close to the accuracy of the model
generated by user-supplied inputs. This shows the strength of
our technique, requiring very minimal information about the
workload from the user. In the next section, we show how
much impact this accuracy improvement has for the use case
of anomaly detection.

B. Use Case: Anomaly Detection

We detect two types of anomalies as use case: (1) perfor-
mance regression and (2) algorithmic imbalances (stragglers
in Spark).

We assume that during training there are no/ statistically
insignificant number of anomalous events. While testing, we
identify the phase of the application and sample the target
metric (resource utilization and/or execution time) for the
phase. Then we compare the predicted value with the actual
value for that metric, and based on a threshold difference, we
flag the occurrence as anomalous/ normal.

1) Performance Regression: For software bugs, we con-
sider two standard bug reports, i.e., Cassandra-6949 [18],
which causes high CPU utilization due to redundant checks,
and Cassandra-8559 [19], which is a memory leak bug. For
hardware defects, we simulate a faulty disk in one of the Spark
cluster nodes using Systemtap [20] tool. We also simulate an
unusual traffic scenario that produces I/O discrepancy in Log-
structure merge (LSM) systems where spilling to the disk will
be the bottleneck when the update rate grows dramatically.
For each anomaly type, we have 25 normal test runs and 25
anomalous test runs. Figure 3 shows the differences between
a normal and an anomalous run.

Table I compares the anomaly detection accuracies of dif-
ferent state-of-the-art methods to our phase aware method. We
report the False Positive Rate (FPR) and False Negative Rate
(FNR) across all the modeling methods.

As seen in Table I, our method reduces both the FPR and
FNR for the test cases significantly as compared with the state-
of-the-art methods. Naive performs poorly with high FPR as
it looks into the immediate past to take decisions. ARIMA

Table I: FPR and FNR for different methods for all the
anomalous cases.

Naive ARIMA RNN Ours
FPR FNR FPR FNR FPR FNR FPR FNR

CPU 0.5 0.7 0.41 0.65 0.3 0.6 0.02 0
Mem 0.6 0.3 0.4 0.2 0.2 0.1 0.01 0
Disk 0.52 0.4 0.2 0.3 0.1 0.22 0.01 0
Traffic 0.65 0.6 0.43 0.53 0.4 0.4 0.01 0

and RNN both perform better than Naive because they learn
the trend better than naive by looking at windows in the past.
This effect is most visible in the unusual traffic scenario, where
at each peak and trough, the Naive method generates a false
positive (normal runs flagged as anomalous). Our phase aware
method generates the lowest FPR.

But our method really shines while reducing false negatives
(anomalous cases not detected). In cases of CPU anomaly
and the unusual traffic scenario, the steady anomalous pattern
results in poor performance of the naive method. For the CPU
anomaly case, both the ARIMA and RNN suffer from high
FNR without knowledge of the phase (as high CPU utilization
from other workloads pollutes the model). But our method
considers the phase information and is able to reduce the FNR
to 0, thus resulting in a maximum of 80% reduction in false
negatives.

2) Algorithmic Imbalances: In this section, we compare
detection of stragglers using Spark default technique and
our phase-based technique. For iterative workloads such as
KMeans and NWeight, Spark generates stages that are too
fine grained, due to the data dependency among them, while
our epoch based phase detection technique consolidates them.
This is particularly helpful because, due to data skew issues,
the fine grained stages learn from execution time values that
have high variation.

On the other hand, for workloads such as WordCount, the
opposite happens. Our phase detection is able to identify and
model garbage collections and shuffling phases separately,
while in Spark stages, they often belong to a coarse grain
stage, therefore affecting the performance of the generated
performance model, therefore higher false positives in terms
of detecting stragglers. Our phase based granularity lowers
both the FPR (on average 58%) and FNR (on average 80%)
for detecting Spark stragglers, as compared to Spark default
straggler detection technique, in all the workloads.

C. Scalability

The main overhead for deploying our system at large scales
in the real world comes from communicating the collected
stacktraces to a central processing server. From our experience,
the exchange of stacktraces produces, on average, 200Kbps
of bandwidth on the network per node. Therefore, without
causing significant interference to inter-node traffic for the
workload, for a 25Gbps multi-flow traffic (very typical from
cloud providers these days), our method can scale up to 25,000
nodes.
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Figure 3: Different anomalies: (left to right) Cassandra bug 6949, Cassandra bug 8559, Faulty Disk, Unusual Traffic. Anomalous
runs are dark colored lines.

V. RELATED WORK

The use of performance modeling manually has been ex-
plored before. Hoefler et al. aimed to popularize performance
modeling by defining a simple six-step process to create
application performance models [21]. Bhattacharyya et al. [12]
show the use of LASSO regression to build performance model
of scientific applications. But none of these approaches talked
about discovering inputs automatically from applications.

The Autoregressive Integrated Moving Average (ARIMA)
model was applied to estimate the future need of applica-
tions [1]. There have been work on using hardware and
software features to characterize applications and predict their
performance using Recurrent Neural Networks [22], [23].
Although these methods have good prediction effects in the
case of special scenarios, none of them addressed the issue
of input awareness to the application behavior. Also, none of
these approaches has good prediction accuracy for behavior
with unseen inputs.

VI. CONCLUSION

In this paper we propose a new methodology for perfor-
mance prediction for applications running in the cloud based
on automatically identified phases. We introduce the concept
of meta-inputs that drive the performance of different phases
of a running application on the cloud. We show one use case
of anomaly detection where we can detect the anomalies with
a precision of 94.3% and a recall of 98% at very low (less
than 5%) overhead.
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