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ABSTRACT

Peripheral blood oxygen saturation (SpO2) is a vital measure in healthcare. Modern off-the-shelf
wrist-worn devices, such as the Apple Watch, FitBit, and Samsung Gear, have an onboard sensor
called a pulse oximeter. While pulse oximeters are capable of measuring both SpO2 and heart rate,
current wrist-worn devices use them only to determine heart rate, as SpO2 measurements collected
from the wrist are believed to be inaccurate. Enabling oxygen saturation monitoring on wearable
devices would make these devices tremendously more useful for health monitoring and open up new
avenues of research.

To the best of our knowledge, we present the first study of the reliability of SpO2 sensing from the
wrist. Using a custom-built wrist-worn pulse oximeter, we find that existing algorithms designed
for fingertip sensing are a poor match for this setting, and can lead to over 90% of readings being
inaccurate and unusable. We further show that sensor placement and skin tone have a substantial
effect on the measurement error, and must be considered when designing wrist-worn SpO2 sensors
and measurement algorithms.

Based on our findings, we propose WristO2, an alternative approach for reliable SpO2 sensing.
By selectively pruning data, WristO2 achieves an order of magnitude reduction in error compared
to existing algorithms, while still providing sufficiently frequent readings for continuous health
monitoring.

Keywords Health monitoring · Wearable computing · Applied machine learning · Health sensors

1 Introduction

Peripheral oxygen saturation (SpO2) has many uses in healthcare monitoring and is a primary vital sign used by nurses
and physicians to monitor patients. It is a measure of the amount of oxygenated blood (expressed as a percentage)
and it’s usefulness extends across domains such as sleep apnea diagnosis [1], monitoring oxygen therapy results for
COPD patients [2], and patient recovery monitoring in the ICU [3]. However, most methods of SpO2 monitoring are
intermittent and require active user interaction. For example, in hospitals, nurses often record SpO2 by attaching a
fingertip device to patients during their rounds. At home, individuals concerned about their SpO2 level can purchase
similar commercial devices and record their SpO2 a few times per day. As part of the growing mobile health monitoring
movement, cell phone manufacturers have recently provided an onboard pulse oximeter on the back of smartphones
(e.g Samsung Galaxy S81) that require the user to press a fingertip against the sensor to obtain an SpO2 reading. These
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devices all make use of a sensor called a pulse oximeter, which works by emitting light and measuring how much of the
light is absorbed by the user’s blood.

Adding SpO2 measuring capabilities to wrist-worn devices seems like a logical next step. A significant advantage of
monitoring SpO2 on the wrist is that because the device would be in constant contact with the user’s skin, it eliminates
the need for active interaction from the user and consequently, allows more frequent measurements. The ability to more
frequency monitor oxygen saturation levels could provide a useful diagnostic tool, allowing for the development of
early interventions that could drastically improve health outcomes and reduce health care costs.

Interestingly, wrist-worn devices such as the Apple Watch, FitBit, and Samsung Gear already contain pulse oximeters.
However they only use the data from the pulse oximeter to derive heart rate and not oxygen saturation. The pulse
oximeters on these devices are fundamentally the same as the ones used in hospital and commercial fingertip SpO2

monitors, however calculating oxygen saturation from a wrist-worn sensor leads to mostly inaccurate and unreliable [4]
data. This is primarily an issue of a poorly fitting devices, wrist/arm movement, low blood perfusion, and interference
from ambient light.

Despite the fact that most pulse oximeter readings from a wrist-worn device are unreliable, it is our hypothesis that
occasionally readings taken from such a device will be sufficiently reliable. Even if a small fraction of oxygen saturation
readings are reliable, as long as they can be confidently identified among a majority of noisy readings, we believe that
we can improve the current state of personal oxygen saturation monitoring. Consider a patient that currently tracks her
oxygen saturation twice per day using an at home fingertip sensor kit. If she can use her smartwatch to identify a single
reliable SpO2 reading every ten minutes, we have succeeded in increasing the amount of available data by almost two
orders of magnitude. We have also removed the need for active user interaction.

In this work, we demonstrate that an intermittent reliable SpO2 signal can be taken automatically from the wrist
using sensors similar to those currently employed in existing wrist-worn devices, such as the Apple Watch, FitBit, and
Samsung Gear (given these devices employed a proper LED configuration). We develop a custom wrist-worn sensor
collection platform and record data from ten participants. We implement a system, which we call WristO2, that consists
of a pipeline of automated feature extraction and a gradient boosting classifier to label signals as reliable or unreliable.
WristO2 uses pulse oximeter and motion data to detect and reject unreliable data, which reduces the average error
from 14.5% to 1.5% compared to a baseline implementation while generating a reading on average at least every three
minutes. We also measure the effect of sensor placement and skin tone and show that WristO2 is robust to variations in
skin tone. Furthermore, we show that WristO2 generalizes to unseen skin tones and participants and explore whether
training participant specific models is beneficial.

The rest of this paper is organized as follows. Section 2 provides background on pulse oximeters, and shows why SpO2

measurement from the wrist is challenging. In Section 3 describes our approach for building reliable wrist-worn pulse
oximeters, and Section 4 details experimental setup and our data collection. In Section 5 we evaluate our approach
and compare it to current algorithms. In Section 6 we discuss practical deployment considerations. Section 7 reviews
related work, and Section 8 summarizes.

2 Background and Motivation

Pulse oximeters are small sensors that allow non-invasive monitoring of heart-rate, blood oxygen saturation, and other
health related metrics [5]. A pulse oximeter consists of one or more light emitting diodes (LEDs, usually red and
infrared), and a photodetector. Light emitted by the LED interacts with the users blood and is then captured by the
photodetector. Because oxygenated hemoglobin and non-oxygenated hemoglobin absorb different wavelengths of light,
the amount of each wavelength of light captured by the photodetector indicates the level of oxygen in the blood. This
signal (called a photoplethysmogram, or PPG), can be used to estimate heart rate, SpO2 and other metrics.

An estimate of oxygen saturation is produced from the PPG by calculating a ratio of ratios between the amount of red
(660nm, absorbed mostly by non-oxygenated blood) and infrared (940nm, absorbed mostly by oxygenated blood) light
detected, as described in Equation 1:

SpO2 = y0 −m×
(

ACRed/DCRed

ACIR/DCIR

)
(1)

AC and DC denote the alternating and direct current measured by the photodetector for each light source. These terms
arise from the periodic nature of the cardiac cycle and the fact that the level of oxygenated arterial blood fluctuates with

1https://www.samsung.com/global/galaxy/galaxy-s8/specs/
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Figure 1: Photodetector and LED placement for transmissive and reflective pulse oximeters (from [7]).

the cardiac cycle whereas the level of non-oxygenated blood in the veins stays fairly constant. The DC component
reflects the periodic oxygenated blood while the AC component reflects the constant non-oxygenated blood. This,
coupled with the fact that infrared is mostly absorbed by oxygenated blood means taking the ratio of ratios isolates the
proportion of oxygenated blood in the artery.

The currents for each reading are taken from a window of a fixed size, 4 seconds (100 samples at 25Hz) in most cases.
The y0 and m terms represent a linear fit for calibration, and would generally be provided by the manufacturer of the
specific sensor after they have calibrated the sensor against a ground truth. Equation 1 is based on Beer-Lamberts law,
and described in more detail in [6].

2.1 Oxygen Saturation Extraction Algorithms

Currently there are two implementations of the SpO2 algorithm, described by Equation 1. The first is a basic
implementation that is supplied by the manufacturer for testing purposes. This algorithm simply calculates the ratio of
ratios without any filtering of data. We use this algorithm as a baseline for comparing other algorithms and our own
implementation.

The second algorithm is an enhancement of the baseline algorithm that implements the same calculation of SpO2,
however it attempts to correct for the fact that the signal measured by the photodetector can be noisy. After performing
baseline levelling of each signal, a Pearson correlation is calculated between the incoming red and infrared channels.
Because the measurement site is the same the intensity of red and infrared light should be highly correlated. If they
aren’t correlated, it is most likely due to unwanted noise artifacts. Therefore, any signals that produce a correlation
value below 0.4 are discarded. The code and a description of the algorithm is available through 2.

Both aforementioned algorithms were originally implemented for an Arduino. For our analysis, we remove the Arduino
relevant code and compile the remaining C code to allow for offline analysis and direct comparison between the two
algorithms.

2.2 Transmissive and Reflective

Pulse oximeters are available in two types; transmissive and reflective. These are characterized by the relative location
of the LEDs and photodetector as shown in Figure 1.

In transmissive sensors the LEDs and photodetector sit across from each other so that when clipped to a user’s finger,
the light from the LED shines through the finger and into the photodetector. Medical settings, such as hospitals and
clinics tend to employ transmissive sensors because they are more accurate. However, because they require the sensor
to be clipped to the finger, can impede the wearers use of their hands, become uncomfortable after a few minutes, and
are generally not well suited for continuous monitoring where the user requires mobility. Other points of attachment,
such as the earlobe, are possible, but comfort and mobility remain an issue.

In reflective pulse oximetry [5], the photodetector sits beside the LEDs and measures light reflected off the user’s
tissue. This allows measurement on a wider range of sites on the body (for example, the forehead) and provides greater
mobility. The downside to reflective sensors is that the overall amount of light received by the photodetector is less than
in transmissive sensors, which means obtaining reliable data from them is more challenging [5]. Under ideal conditions,
reflective sensors can still reliable enough to be used in hospitals, but generally only when comfort is more important,
such as in NICUs [8]. In a mobile, wrist-worn device, however, conditions are far from ideal. Factors such as ambient
light and motion can significantly degrade the quality of PPG data. While this is true for both reflective and transmissive
sensors, because reflective sensors are already receiving a weaker signal, these factors have a much greater effect on
reflective sensors.

2https://www.instructables.com/id/Pulse-Oximeter-With-Much-Improved-Precision/
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Figure 2: CDF of absolute difference between reflective and transmissive fingerprint sensor readings, before and after
recalibration.

Today reflective pulse oximeters are widely available in wrist-worn devices such as smart watches, fitness bands, and
cell phones, but given the low accuracy of SpO2 measurement they are generally restricted to measuring heart rate.
In fact, major consumer devices have switched to using a single green LED for measurements as it provides better
accuracy for heart rate, despite the green LEDs inability to measure SpO2.

2.3 Reflective Oximetry from Fingertip

We first show that a reflective SpO2 sensor produces reliable measurements when placed on the fingertip. For this
purpose, we compare SpO2 measurements collected with a SpO2 reader we constructed using a MAX30102 reflective
sensor (Section 4.1.1), and measurements collected with a Berry BM3000B oximeter 3, a commercial device that uses a
transmissive sensor.

We collected data from 10 subjects who wore the two SpO2 readers on the non-dominant hand (reflective on the index
finger, transmissive on the middle finger) for a period of 12 minutes each.

The mean measurement difference between devices is 1.84%, with standard deviation of 1.32% – indicating good
agreement between sensors except bias, which remains constant across all users. This bias is most likely a calibration
error of one device or the other (the y0 parameter).

We recalibrate the reflective sensor using readings in the first half of each measurement session, resulting in offset of
1.46% over the first half of the data. Figure 2 shows the difference between the recalibrated reflective and transmissive
sensors over the second half of the data. After recalibrating the reflective sensor to remove bias, the mean absolute
difference drops to 1.01% with standard deviation of 0.77% indicating strong agreement. Over 99% of reflective sensor
readings are within ±2% of the transmissive. Therefore, we conclude that our reflective SpO2 sensor produces reliable
measurements when placed on the fingertip. In the reminder of this paper, we use measurements collected with our
reflective SpO2 sensor mounted on the fingertip as ground truth.

2.4 Reflective Oximetry from Wrist

Unlike reflective fingerprint oximetry which is accurate, a naïvly applying existing methods to PPG traces obtained
from the wrist results in unreliable SpO2 measurements.

Figure 3 shows the CDF of absolute error of readings taken from the wrist using both existing algorithms, as compared
to an identical fingertip sensor (Section 4 details our on implementation and data collection). Despite the increase in
performance of the enhanced algorithm, more than 10% of the readings across all users have an error of 5 percentage
points or more compared to the fingertip readings, which we consider to be too big given that the healthy range for
individuals is 90% to 100%.

Figure 4 shows two PPG traces obtained from the same user at the same time using identical reflective sensors. The left
PPG was captured from a fingertip-worn reflective pulse oximeter over several seconds. The strong periodic signal
captures the change in flow of oxygenated blood through the fingertip. The right PPG was taken from the wrist. Even

3http://www.shberrymed.com/usb-pulse-meter-bm3000b-p00037p1.html
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Figure 3: CDF of absolute difference between wrist and
fingertip readings.

Figure 4: PPG trace for a fingertip vs. wrist attached
sensor (taken from the PPG web platform described in
Section 4).

with a clean contact with the skin, this PPG is much noisier. The spike in the middle is caused by either motion
or ambient light artifact, demonstrating how poor contact with the skin or a user’s movements can cause errors and
discontinuity in the signal. Algorithms used to produce reliable SpO2 readings from a wrist-worn sensor must be able
to mitigate and compensate for these errors.

3 Approach

This section outlines WristO2, a new approach designed to identify which signal windows captured from the wrist-worn
sensor will produce highly reliable SpO2 readings. We still employ the original algorithms for calculating SpO2,
however, the goal is to only apply this algorithm to signal windows that will produce a reliable reading.

To identify which signal window will produce a reliable reading, we employ statistical machine learning techniques
to train a binary classifier that will classify input data as reliable or unreliable. As input to our classifier, we compute
approximately 1000 features Tsfresh[9] from 4 signal sources: red and infrared LEDs, gyroscope magnitude, and
accelerometer magnitude. We use a signal window size of 100 sensor readings, or approximately 4 seconds of data
when extracting features. This corresponds to the size of the window used to calculate SpO2 by the baseline algorithm.
Intuitively, the window size used to calculate the SpO2 will have the greatest effect on it’s outcome. To verify this
assumption we explore other potential window sizes in section 5.

We will use a level of agreement with a more reliably collected signal as our ground truth. Specifically agreement
between the same sensor applied to both the wrist and fingertip. By taking the fingertip readings as truth, we mark
wrist-worn readings as reliable if they are within a range of the fingertip readings.

We use various thresholds of agreement between the wrist-worn and fingertip reflective sensors to create the reliability
label for classification. Initially for experimentation we set this threshold to ±2.0%. That is, if the SpO2 output of the
wrist-worn device is within 2 percentage points of the fingertip sensor, we mark the output of the wrist-worn device
as reliable. Although we use this threshold in a majority of experiments, we explore the classification results of other
reliability threshold values in section 5.

We score the classifier on precision, the ratio of true positive labels over the number of positive instances returned by
the classifier, or:

Precision =
tp

tp+ fp

The precision of a reliability classifier is the ability of the classifier to only return with a positive score on a reliable result,
and minimize the number of false positives. Although this will not produce reliable readings as frequently, it is more
desirable for an SpO2 measurement device to provide few intermittent reliable results, rather than a continuous stream
of potentially false readings. Intuitively, due to the relatively low fluctuations of true oxygen saturation measurements,
SpO2 levels can be reliably interpolated with frequent enough measures. Therefore, we prefer a high true positive
score, and a low false positive, with little concern for false negatives.

5
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Considering precision allows us to quantify success of our classifier, we are ultimately concerned with reducing the
error in calculated SpO2 readings. Therefore, for a second metric we use the room mean squared error (RMSE) of
readings taken from the wrist-worn sensor as compared with the fingertip sensor. We take the RMSE before pruning
values with WristO2, and then calculate the RMSE after pruning to determine any improvement.

Because we can potentially remove a bulk of readings while pruning, we add a final metric described as the time
between valid readings. This measure describes the longest window of silence where WristO2 produces no reliable
signal with which to calculate SpO2. Although it is desirable for WristO2 to reduce our RMSE to zero, we do not want
to prune signals so aggressively that we are left with readings that are too infrequent.

Section 4 will describe the experimental setup used to accomplish these requirements, and section 5 will quantify the
results of our trained classifiers.

4 Implementation

Our work includes a hardware platform for collecting sensor data and a software platform for analyzing that data.

4.1 Hardware

Although it would have been desirable to utilize an existing consumer grade device to analyze the current state of
wrist-worn pulse oximeters, we encountered two major issues when attempting to select one. The first issue is that
the unreliability of SpO2 measurements taken from a wrist-worn pulse oximeter have led manufacturers to focus the
technology solely on measuring a users heart rate. Most manufacturers only install a single LED, since heart-rate
measurement algorithms implement peak detection and only rely on a single PPG trace. The second issue is that
manufacturer APIs are too limited, and do not provide LED reflectance level needed for the PPG trace. In the devices
we analyzed that did contain both LEDs required, such as the Apple Watch or various FitBits, the API access was
limited to high level interpretations of biometric data from the user. Metrics like sleep quality, step counts, or heart rate
were provided but access to the low level data was not. In order to adequately analyze the quality of PPG traces being
received from a wrist-worn pulse oximeter, we we built our own wrist-worn device to measure SpO2. The sensors used
and devices created for the purposes of experiments are described in the remainder of this section.

Figure 5: The data collection platform and sensors.

4.1.1 MAX30102 Sensor

We use the MAX30102 [10] reflective pulse oximeter from Maxim Integrated for our data collection. The sensor’s
provided by Maxim Integrated are the same as those commonly used by manufacturers such as Samsung for oxygen
saturation measurement on smart phones and other devices. The sensor is described by the manufacturer as an integrated
pulse oximetry and heart-rate monitor biosensor module. It provides red and infrared source LED’s onboard the chip
with an adjacent photodetector. Communication with microcontrollers is accomplished via the I2C protocol and where
the sensors publish readings with a sample rate of 25Hz.

4.1.2 Wearable Prototype

In order to measure SpO2 from a user with confidence, sensors are used to take measurements from two points of
contact on a single user, namely the fingertip and the wrist. During experiments, PPG traces and other data are collected
from all sensors simultaneously.

6
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4.1.3 Wrist-Worn Reflective Sensor with Motion Tracking

This is the primary sensor platform. The wearable consists of two sensors, including the MAX30102 sensor described
in section 4.1.1, and an MPU9250 IMU sensor to track acceleration and rotation of the wrist worn device. Readings
from the two sensors are captured and aligned using an Adafruit FLORA microcontroller. The three components are
sewn into a fitness band for stability and consistency across measurements. The wrist-worn device is attached to the
dominant hand of a user during experiments. The device allows for users to maintain range of motions in their wrist and
movement throughout the duration of experiments is encouraged. The implications of using the methods described in
this paper on a custom device versus a consumer grade device are discussed in section 6. The user wears the device with
the pulse oximeter facing the top of the wrist so that it matches the sensor placement in a vast majority of consumer
grade wristbands and smartwatches.

Figure 6: Custom Wrist Wearable and Sensor Bed

4.1.4 Fingertip-Worn Reflective Sensor

To establish a baseline for best-case signal from the MAX30102 sensor, we attach a second sensor to the index fingertip
of the non-dominant hand of the user. The sensor is attached with medical tape to ensure a consistently applied pressure.
The signal is again captured using an Adafruit FLORA microcontroller.

Our ground truth uses the exact same sensor applied to both the wrist and fingertip. This eliminates a variable in the
experiment: we are interested in reliability across different measurement sites (specifically, the wrist vs fingertips),
rather than across different hardware manufacturers. The MAX30102 was demonstrated to be a reliable sensor for
measuring signals from the fingertip in section 2.

4.1.5 Collecting and Aligning Sensor Signals

We wrote a custom Android application to capture and visualize signals from all sensors. The Android application
communicates with each device over the USB serial protocol. A USB hub is used to communicate with the devices
simultaneously as well as to provide power to each device. To later align the readings between devices, a timestamp is
attached by the Android application when each reading is received. Finally, the application saves the collected readings
to a remote database for offline processing.

4.2 Software

In addition to the Android application used to visualize data streams, we developed several Python applications to clean,
align, and transform incoming data to be used with various out of the box machine learning libraries.

4.2.1 Reliability Classifier

To train our classifier, we first extract features from the wrist-worn sensors to be used as inputs when predicting
the reliability of the signal. We use two radiance signals from the red and infrared LEDs, and two signals from the

7
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magnitude of the gyroscope and accelerometer in the MPU9250. As discussed in section 7, it has been shown that
motion of the device can be used to detect noise in the PPG reading. The magnitude of various motion readings from
the IMU are used to automatically filter motion artifacts during classification.

We use the Tsfresh [9] Python library to extract features from our time series data. The library automatically selects
features by calculating a comprehensive set of features on the provided data and then pruning the list of features based
on the provided labels being predicted. Feature significance is performed using the Benjamini Hochberg procedure [11].
Depending on the training data provided, approximately 900-1000 features are selected by the library. Many features
have a very low significance and can be pruned without affecting classifier performance. Table 1 shows the top 15
features of the 1000 total features. The first argument is the channel used, and additional parameters are dependent on
the feature extracted. Detailed descriptions of the features and the Python API used to generate them are available at 4.
Based on these tests, the infrared LED channel adds the most information with a smaller dependency on the red LED
and gyroscopic magnitude channels.

Table 1: Top 15 features.

Tsfresh Function Call
longest_strike_below_mean(‘ir’)
autocorrelation(‘ir’, 6)
autocorrelation(‘ir’, 5)
autocorrelation(‘ir’, 7)
autocorrelation(‘ir’, 8)
autocorrelation(‘ir’, 9)
cid_ce(’ir’, normalize=True)
autocorrelation(‘ir’, 4)
ar_coefficient(‘red’, {"coeff": 0, "k": 10})
spkt_welch_density(’red’, “coeff”: 2)
ar_coefficient(‘ir’, {"coeff": 0, "k": 10})
mean(‘gyro’)
sum_values(‘gyro’)
fft_coefficient(‘gyro’, {"coeff": 0, "attr": "abs"})
fft_coefficient(‘gyro’, {"coeff": 0, "attr": "real"})

Table 2: Optimal XGBoost parameters.

Parameter Value
Learning Rate 0.1
Estimators 100
Max Depth 3
Minimum Child Weight 3
Regularization Alpha 0.3
Subsample Ratio 0.9
Objective Logistic Binary

To select the classifier that best generalizes to unseen data, we compare several binary classifiers available in the
scikit-learn library [12] using multiple validation sets. We found gradient boosting classifiers to provide robustness,
generalizability, and the most consistently usable results. We use the XGBoost library [13], as it provides similar results
with faster training times. We perform a cross validated grid search of hyperparameters to further tune the classifier.
Evaluating performance based on data trained across several individuals yields the optimized parameters shown in
Table 2. Data was trained using 10-fold cross validation, individual folds were checked against multiple separate
validation sets.

During training in all experiments, non-overlapping windows are used to ensure that feature data is independent. Not
only does preventing overlap ensure data remains i.i.d., but it also reduces feature extraction and training time by a
factor equal to the windowing size, which is 100 in a majority of experiments. When applying the trained classifiers
to unseen data, sliding windows of features with a step-size of 1 are taken. This ensures that we have the maximum
number of output results with which to analyze.

4.3 Data Collection

We collect data from 10 participants. Each user has the wrist-band with the pulse oximeter and IMU sensor attached
to their dominant hand, and a MAX30102 sensor attached directly to their fingertip on the opposing hand. Trials on
each participant are conducted for approximately 12 minutes, during which time users are encouraged to continue
using their dominant hand in an effort to provide the most naturally acquired readings. To reduce motion artifacts when
acquiring ground truth readings, participants are asked to keep their non-dominant hand motionless for the duration of
the experiment. Table 3 shows a summary of the 10 participants. Users range from 20-55 years of age and vary greatly
in skin colour. 18000 readings are used from each user, corresponding to 12 minutes of readings acquired at a rate of
25Hz.

4https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
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Table 3: Participant Information and proportion of reliable labels for each.
User Age Relative Skin Tone Proportion of reliable readings

(within ±2 of fingertip)
1 28 Light 47.3%
2 24 Light 17.6%
3 32 Dark 72.0%
4 38 Light 44.8%
5 20 Dark 0.3%
6 31 Medium 28.3%
7 24 Dark 2.1%
8 31 Medium 6.0%
9 26 Light 7.3%

10 55 Light 16.5%

We also how how much of the data collected from the wrist sensor is within 2 percentage points of the fingertip sensor.
This shows that without adequate filtering, generally, very few readings from the wrist are accurate. Also notable, is the
drastic variation between users in the proportion of readings considered reliable. These differences could stem from a
large variety of variables that cannot be controlled in the wild. Variables such as; skin colour, device tightness, wrist
thickness, movement, and ambient light, can all affect how much of a signal collected from a user is reliable.

5 Experimental Evaluation

We evaluate the ability of WristO2 to correctly identify clean PPG readings for the purposes of measuring peripheral
oxygen saturation. Through our data analysis we answer the following questions:

1. How does WristO2 perform compared with existing algorithms?

2. How effective is WristO2 across different measurement sites?

3. Does classification translate to unseen skin tone colours?

4. Can we calibrate WristO2 on a per-user basis?

5. How does the IMU effect performance?

6. How do domain-specific hyper-parameters effect performance?

Our main performance metric is the root mean square error (RMSE) of readings taken from the wrist, compared to the
fingertip ground truth. We also evaluate the precision of the WristO2 classifier, as defined in Section 3.
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Figure 7: CDF of RMSE for existing algorithms and
WristO2 for all users.
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Table 4: Mean (Std. Dev.) of classification results across all 10 users, trained and tested on the top of the wrist.
WristO2 Precision Baseline RMSE Enhanced RMSE WristO2 RMSE

73% (19%) 14.5% (6.9%) 6.7% (4.4%) 1.5% (0.7%)

5.1 Performance of WristO2

We perform leave-one-out cross validation across participants, where a single participant’s signal is classified given
training data from all others. Figure 7 shows the resulting absolute errors of wrist sensor readings across all readings
for both existing algorithms and WristO2, and Table 4 shows a summary of classification and algorithm performance.
Pruning results with WristO2 shows a drastic reduction in error compared to existing methods. WristO2 reduces RMSE
of SpO2 measurement by an order of magnitude compared to the baseline algorithm, and by more than 4 times for the
enhanced algorithm.

Figure 8 shows a trace for a single user, to better illustrate the effect of WristO2, The blue line representing the enhanced
algorithm applied to a PPG trace collected from the wrist over 12 minutes, and the orange line representing the enhanced
algorithm applied to the signal collected from the fingertip during the same session. Finally, the green line in Figure 8
represents the readings remaining after WristO2 prunes unreliable results. Spikes and inaccuracies are clearly visible
even with the Enhanced algorithm. WristO2 successfully rejects many of these unreliable readings.
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Figure 9: CDF of longest delay between valid readings.

The reduction in error comes at the cost of producing less readings compared to the existing algorithms. Figure 9 shows
the CDF of the maximum size of an interval with no reliable values for all users across the leave-one-out validation. In
other words, the longest silent window for each user where the classifier is returning no reliable readings. The worst
case scenario for a no reading window was approximately 6 minutes and 40 seconds, while the average worst-case
across all users is approximately 3 minutes. Given that the method for acquiring reliable readings currently requires a
user to actively clip a commercial pulse oximeter to their fingertip and wait, the time between readings from existing
methods would be collected in the order of several hours or even half a day. A mean interval of less than 3 minutes for
automatic collection of reliable readings is a dramatic improvement.

5.2 Comparing Measurement Sites

Each participant listed in table 3 participated in a second trial where the wrist-worn pulse oximeter was applied to the
bottom of the wrist, rather than the top. Using the same approach described in section 5.1, we run leave-one-user-out
cross-validation to test the performance of WristO2 with a signal collected from the bottom of the wrist. Table 5 presents
the results.

Table 5: Mean of classification results across all 10 users for varied measurement sites.
Training Site Testing Site WristO2 Enhanced WristO2 Participants with

Precision RMSE RMSE no readings
Bottom of Wrist Bottom of Wrist 23% (33%) 14.7% (13.1%) 12.0% (3.7%) 5
Top of Wrist Bottom of Wrist 25% (28%) 14.7% (13.1%) 8.9% (10.3%) 2

The 10 users had an average RMSE of 14.68% when measurements were taken from the bottom of the wrist with the
enhanced algorithm. After pruning using the classifier trained on this data, the average RMSE is reduced to 12.0%.
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Despite the slight improvement, it should be noted that for half of the users, WristO2 pruned all values, meaning no
readings in the 12 minute window were marked as reliable.

Applying WristO2 to the bottom of the wrist when trained on signals from the top shows improved. The original 14.68%
RMSE is further reduced to 8.84%. Furthermore, only two out of the ten trials in this instance provided no reliable
readings. So, given a situation where data must be collected from the bottom of the wrist, the original classifier trained
in section 5.1 can still be used to prune less reliable labels. It is also notably less aggressive in pruning than the classifier
trained on readings from the bottom of the wrist.

It is clear that it better to collect traces, and train classifiers using data acquired from the top of the users wrist. This is
a positive result when considering that this is where almost all consumer grade devices choose to collect data from
already.

5.3 Effect of Skin Tone

As discussed in section 7, it has been shown that it is more difficult to collect a reliable signal when darker pigment
exists on the skin, whether naturally or artificially from tattoo ink. This section aims to quantify potential difficulty
in collecting reliable PPG traces from users of various skin tones. Five of the participants had skin colour that we
qualitatively define as light, relative to the other users. We separate the users qualitatively into two groups, lighter- or
darker-skinned, and train classifiers with all permutations of these groups. Mean (and Std. Dev.) are shown across users
of the Testing Group. In cases where the training and testing groups are the same, leave-one-out cross-validation is used
across user’s of the group.

Table 6: Effects of skin tone with various training and testing permutations.
Training Group Testing Group WristO2 Precision Enhanced RMSE WristO2 RMSE
Dark Dark 37% (28%) 8.0% (5.0%) 1.6% (0.5%)
Dark Light 80% (20%) 5.2% (3.2%) 1.3% (1.0%)
Light Dark 42% (32%) 8.0% (5.0%) 4.3% (3.3%)
Light Light 69% (27%) 5.2% (3.2%) 2.6% (2.0%)

Table 6 shows that precision is improved when classifying on lighter skin as opposed to darker skin, regardless of the
skin-tone used during training. Unexpectedly, results are slightly improved for predicting lighter skin signal reliability
when the darker skinned group was used for training. Given the high variance in results, it is likely that this discrepancy
is due to the small sample size. There is also slightly less data with the light-to-light experiment since leave-one-out
cross validation is used. Utilizing 4 users for training, instead of 5 for the dark-light experiment, means less data is
available for training and performance could be affected.

We caution that sample size is too small to draw strong conclusions about the magnitude of effects, and much more data
will be needed to prove performance discrepancies between pigment groups. Regardless, in both groups the error is
reduced by WristO2; and we have shown that the classifier will generalize to pigment colours that it was not trained on.

5.4 Per-User Training

This experiment attempts to show the viability of WristO2 to provide on-the-fly training to build a personalized classifier
on a per user basis. Consider a user that has a wrist-worn device with a pulse oximeter capable of measuring SpO2, such
as a smart watch, and a similar fingertip sensor such as those that exist in the back of various Samsung smart phones.
During a calibration phase, the user can be instructed to wear the smart watch while simultaneously pressing their finger
against the sensor on the smart phone. Once sufficient calibration data can be captured, aligned, and preprocessed, the
classifier can be retrained with the additional data to provide the user with more reliable readings from the wrist-worn
device.

We train a classifier with 9 users and test it on an unseen user. We then retrain the classifier with 2 minutes of additional
calibration data, and again with 10 minutes. The results are summarized in Table 7. Pruning signal windows with
WristO2 reduces the RMSE to 3.8% even when no calibration data is used. Using a small amount of user specific
training data on top of the original training set further reduces the RMSE up to 0.7%.
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Table 7: Adding user calibration data to increase WristO2 performance.
Calibration Data WristO2 Precision Enhanced RMSE WristO2 RMSE
None 33% 9.3% 3.8%
+ 2 minutes 34% 9.3% 3.3%
+ 10 minutes 41% 9.3% 3.1%

5.5 Importance of Accelerometer and Gyroscope

To study the effect of the features extracted from the IMU signal on classification, we run a similar experiment to
section 5.1 with varied combinations of features from the LEDs and IMU sensor. Table 8 summarizes the results of the
experiments

Table 8: Effects of IMU features on classification.
Signal Channels Num. Features WristO2 Precision Enhanced RMSE WristO2 RMSE
LED Only 489 69% (19%) 6.7% (4.4%) 1.8% (0.9%)
IMU Only 497 47% (35%) 6.7% (4.4%) 5.5% (5.2%)
LED + IMU 986 73% (19%) 6.7% (4.4%) 1.5% (0.7%)

Approximately half of the features extracted and selected by the Tsfresh pipeline are features from the IMU. Although
features from the LED channels alone contribute to a significant reduction in the RMSE, adding the 497 features
extracted from the IMU signals further reduces the RMSE to a very low 1.5%. It is sensible that the LED channels
contribute a majority of the performance increase considering the LEDs are used directly to calculate SpO2. We verify
that this is the case by training the classifier with traces solely from the IMU, which shows a negligible increase in
performance.

5.6 Effects of varied thresholds and window sizes

This section aims to tune two parameters discussed in section 3, namely the window size for feature extraction, and the
threshold of reliability.
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Figure 10: RMSE for different signal window size.
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Figure 11: RMSE for different thresholds.

5.6.1 Window Size

Figure 10 shows varied window sizes and their resulting RMSE with a window size of 100 providing the lowest.
However, it is useful to know that acceptable results can be achieved with smaller window sizes. This is useful if
performance is an issue. Because the feature extraction takes longer with larger window sizes, we can use smaller
feature windows at less frequent intervals to decrease feature extraction time with only a small performance penalty.

5.6.2 Reliability Threshold

Figure 11 shows varied sizes of reliability thresholds and their corresponding RMSE results. Although it would appear
that lower threshold values improve results overall, it is worth noting that the frequency of acquired readings is inversely
proportional to the expected RMSE, as Figure 12 demonstrates for the varied threshold sizes.
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Figure 12: The trade-off between quantity and quality of readings for different reliability thresholds. For every threshold,
the X axis shows the resulting worst-case interval between reliable readings, and the Y axis shows the resulting RMSE.

6 Discussion

This section covers future work for WristO2, including necessary steps for deploying it in the wild on consumer grade
devices.

Reducing Compute Costs For WristO2 to be deployed on existing wrist-worn mobile devices, measures must be taken
to ensure the performance and battery life of mobile devices are not affected. First, the feature set could be pruned
far enough that the computational cost of feature extraction is reasonable to perform on live data directly onboard the
device taking the measurements. In addition to pruning features, work similar to Sidewinder[14] could be used to
offload signal reliability calculation to a lower powered processor, and subsequently wake the device when a usable
signal is detected.

Alternatively, instead of optimizing the feature extraction, we could utilize a cloud service to stream the collected data,
offload the computation, and collect the results. The data is small enough that an hours worth of data can be transferred
within seconds to a remote server that processes the data.

Improving Classification Although the classifier is trained, tested, and validated on a diverse group of people, the
small number of people used in the study could be limiting the ability of the classifier to predict some values if they are
all within a healthy range. Future work will include more participants, and incorporate participants with lower SpO2.

We are also considering extending the classifier to multi-label classification or regression. That is, predict not whether a
signal will produce a reliable label within a certain threshold, but predict the confidence that the label will be produced
within various different thresholds. For example 1%, 3%, and 10%. We leave this to future work.

Extending to Existing Wearable Devices The next obvious iteration of the wrist-worn device is to either build or
utilize a consumer grade device. WristO2 could be applied in consumer grade devices if low level access to the LED
sensor were to be provided. The use of a consumer grade device could potentially improve results solely based on the
quality of the hardware.

7 Related Work

To our knowledge this is the first work that applies state-of-the-art feature extraction and machine learning approaches
to increase the reliability of SpO2 measurements taken from the signals of wrist-worn devices.

Much of existing work on reflective sensors focused on heart rate measurement, such as rule based detection of heart rate
for reliability [15]. Ra et al. perform reliability detection in the context of wrist heart-rate measurement using hidden
Markov models applied to a single LED source on existing smart watches [16]. There has been work done to improve
reading reliability in fingertip sensors at the algorithmic level for both heart rate and SpO2 through signal preprocessing
and noise reduction [6][17]. Possible wearability sites, including the wrist, and various sensor configurations have been
considered in the context of telehealth monitoring [4, 18]. Other work has documented the process of building transitive
pulse oximeters from scratch [19]. Reflective pulse oximeters are widely used and studied in medicine in places where
transitive pulse oximeters are not feasible, such as infant monitoring [20].

Accuracy and reliability of fingertip worn pulse oximeters have been analyzed in great detail, such as quantifying
quality of SpO2 measurements in patients with specific conditions or qualities. Severinghaus et al.[21] showed that
bias in SpO2 measurements increases during a state of anemia (low red blood cell count). Emery et al. [22] and Cote et
al. [23] showed the effects of dark skin pigmentation and ink in convoluting measurements of fingertip worn pulse
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oximeters. Additionally Lee et al. [24] showed that lower true pulse oximetery values were overestimated for a specific
set of people from Singapore due to darker pigmentation.

Yao et al.[25] used simple motion sensing to remove noise from movement artifacts to improve signal reliability in
ambulatory environments. Yan et al.[26] used a more sophisticated feature extraction to remove motion and other noise
artifacts in the context of at home fingertip pulse oximeters used for telehealth monitoring.

Liaqat et al. are currently working on using wrist-worn devices to aid COPD patients in treatment and disease
management in the context of the WearCOPD project [27]. Although they currently do not employ SpO2 in their
consideration of patient health, this project could aid their work by providing a reliability measure for SpO2 readings.

8 Conclusion

In this work we study the reliability of SpO2 measurements from a wrist-worn pulse oximeter, and show that existing
algorithms do not provide reliable readings. We propose WristO2, which uses automated feature extraction and
statistical machine learning to identify reliable peripheral oxygen saturation readings taken from the wrist. After pruning
unreliable results with WristO2, we show that we can reduce error in the measurements taken from the wrist by up to an
order of magnitude. Additionally we demonstrate that even after pruning results, the frequency of reliable readings is
still high enough to be useful, and in fact significantly better than current methods that require user intervention. We
discuss the effects of sensor placement and skin tone on WristO2, explore the effect of IMU information, and propose
platforms for user level calibration. Finally, we discuss next steps to deploy this technique in the wild. We present this
research as a proof of concept for manufacturers and developers to implement reliable data collection platforms with
which to build useful applications based on peripheral oxygen saturation.
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