
A Cross-Layer Approach to Service Discovery and
Selection in MANETs

Alex Varshavsky, Bradley Reid, Eyal de Lara
walex,brad,delara@cs.toronto.edu
Department of Computer Science

University of Toronto

Abstract— When a service is offerend by multiple servers in a
Mobile Ad Hoc Network (MANETs), the manner in which clients
and servers are paired together, referred to as service selection,
is crusial to network performance. Good service selection groups
clients with nearby servers, localizing communication, which in
turn reduces inter-node interference and allows for multiple
concurrent transmissions in different parts of the network.

Although much previous research has concentrated on service
discovery in MANETs, not much effort has gone into under-
standing the effects of service selection. This paper demonstrates
that service selection in MANETs has profound implications
for network performance. Specifically, we show that effective
service selection can improve network throughput by up to
400%. We show that to maximize performance service selection
decisions need to be continuously reassessed to offset the effects
of topology changes. We argue that effective service selection in
MANETs requires a cross-layer approach that integrates service
discovery and selection functionality with network ad hoc routing
mechanisms. The cross-layer approach leverages existing routing
traffic and allows clients to switch to better servers as network
topology changes.

I. INTRODUCTION

A multi-hop mobile ad hoc network (MANET) consists
of a group of mobile wireless nodes that self-configure to
communicate information beyond their individual transmission
range by routing packets over intermediate nodes [1], [2], [3].
MANETS have been proposed for disaster relief operations,
police and military applications, and other situations where
there is no deployed communication infrastructure or the
existing infrastructure is not available.

We anticipate that MANETs will be used to access services,
and that services are likely to be replicated across a number of
nodes. For example, imagine a network consisting of soldiers
equipped with video cameras and vehicles equipped with long-
range radios (i.e., services) that allow communication between
the soldiers and their commanders at the control center. The
cameras capture images and transmit them to any of the
radios, which forward the images to the control center. Another
example is a mobile sensor network consisting of light moving
sensors that collect observations and more computationally-
rich nodes capable of transmitting the observations to the base
station. Delivering observations to one of the computationally-
rich nodes is sufficient to accomplish the task.

While much previous work has concentrated on service
discovery in MANETs, not much effort has gone into un-
derstanding the performance implications of service selection,

the manner in which clients and servers are paired together
when multiple nodes in the MANET provide the same (or
equivalent) service.

This paper shows that service selection has a crucial ef-
fect on network capacity. Because of the broadcast nature
of wireless transmissions, the communication pattern affects
the number of concurrent transmissions that the network
can sustain. Good service selection localizes communication,
which reduces interference and allows for multiple concurrent
transmissions in different parts of the network. Less optimal
service selection spreads traffic over the network, increasing
interference and reducing overall network throughput. The
optimality of service selection in MANETs degrades rapidly
as a result of node mobility and the arrival and departure of
nodes that host services. Therefore, service selection decisions
in MANETs have to be continuously reevaluated to optimize
network performance.

We argue that effective service selection in MANETs re-
quires the cross-layer [4], [5] integration of service discovery
and selection functionality with MANET routing mechanisms.
A cross-layer service discovery and service selection approach
has two significant advantages over traditional application-
layer implementations that preserve the modularity of the
networking stack. First, because it leverages the routing mech-
anisms for service discovery and service selection, clients
learn about available servers and routes to them simultane-
ously. This routing information greatly reduces the cost and
increases the accuracy of service selection. More importantly,
the availability of explicit routing information, such as route
breaks or updates, enables clients to efficiently detect changes
in network topology and switch to closer servers without
additional cost.

We make the following contributions: (a) We present a
cross-layer service discovery and service selection architec-
ture that provides for efficient and timely reevaluation of
service selection decisions; (b) We present experimental results
that show that cross-layer service selection implementations
based on the DSR [1] and DSDV [2] routing protocols
consistently outperform application-layer implementations that
closely models the Service Location Protocol (SLP) [6].
The cross-layer implementations achieve up to 5 times higher
network throughput than standard SLP and 3.7 times higher
throughput than an extended variant of SLP that tries to
determine the closest server by sending ping messages; (c)
We show that due to interference from the underlying routing

traffic, application-layer timing-based mechanisms for service
selection, such as pinging, are highly inaccurate and fail to
localize communication.

In this paper, we focus on the problem of timely and
efficient service selection. We do not, however, address the
issue of migrating application [7] and connection state [8]
between servers. Instead, we consider a best case scenario
where there is no migration overhead, and clients can switch
between servers based solely on network proximity. Therefore,
our results represent an upper bound on the achievable network
performance.

The rest of this paper is organized as follows. Section II
describes our cross-layer architecture for service discovery and
service selection. Section III describes two prototype imple-
mentations of our cross-layer architecture based on the DSR
and DSDV routing protocols. Section IV presents experimental
results. We describe related works in Section V, and discuss
our conclusions in Section VI.

II. ARCHITECTURE

Several factors have to be considered in the design of a gen-
eral architecture for cross-layer service discovery and service
selection. On the one hand, a cross-layer implementation has
to be closely coupled to the underlying routing mechanisms to
exploit routing traffic. On the other hand, the functionality that
the implementation needs to provide is largely independent of
the underlying routing protocol. Specifically, the architecture
has to propagate service information across the network, match
service discovery requests with advertisements, provide the
application with accurate information for selecting the best
server among those available, and track network topology
changes and inform the application so that it can take cor-
rective measures (e.g., switch to a closer server). Finally, the
cross-layer architecture should provide the means for efficient
service discovery and selection, but leave it to an application
to determine how to select servers and when and how to
reevaluate its choices.

These considerations lead to the split architecture design
shown in Figure 1, which consists of two main components:
a routing-protocol independent Service Discovery Library
(SDL), and a Routing Layer Driver (RLD) that is closely
coupled with MANET routing mechanisms. SDL provides a
consistent view of the cross-layer service discovery mech-
anism to client applications and service providers, isolating
them from much of the intricacies of the underlying routing
protocol. RLD interacts closely with the MANET’s routing
protocol to propagate service discovery messages and track
network topology changes.

SDL stores information about known servers in a service
table. Table entries have five fields: service description, service
location (e.g., “172.16.1.1:80”), minimum hop count from the
current host to a service provider, optional routing protocol
specific information provided by RLD (e.g., a list of available
routes to the destination), and optional service-specific metrics
supplied by a service provider (e.g., current load, CPU usage).

All interactions between client applications, service
providers and SDL, as well as between SDL and RLD,

CLIENT

service
discovery
request

User defined
callback
routine

service
registartion

Service
Discovery

Library (SDL)

INTERMEDIATE
NODE

SERVER

Service
Discovery

Library (SDL)

Service
Discovery

Library (SDL)

U
se

r
S

pa
ce

R

ou
tin

g
La

ye
r

Routing
Protocol

Routing Layer
Driver (RLD)

Routing
Protocol

Routing Layer
Driver (RLD)

Routing
Protocol

Routing Layer
Driver (RLD)

Fig. 1. Cross-Layer Service Discovery Architecture

follow well-defined interfaces. Clients and servers call on
SDL to issue service discovery requests and propagate service
advertisements. SDL notifies applications of changes to the
service table by invoking an application-specified callback
function. SDL calls on RLD to disseminate service discovery
requests and advertisements, and propagate service discovery
replies. RLD forwards service discovery messages it intercepts
from the network to SDL and informs it about changes in
network topology.

A. Discovery

Client applications learn about available servers by instruct-
ing SDL to find all entries in its service table that match a
service description. When no matching entries are found, the
application has to wait for servers to be discovered.

SDL supports two modes of service discovery: active
discovery and passive discovery. Active discovery is client
driven. In active discovery, SDL instructs RLD to disseminate
discovery requests for a specific service and waits for explicit
responses to flow back. The actual mechanisms used by RLD
to disseminate service discovery requests are implementation
dependent. For example, RLD implementations built on top of
on-demand routing protocols such as DSR and AODV would
disseminate discovery requests by broadcasting modified route
discovery messages. In contrast, an RLD implementation for a
hierarchical MANET protocol such as CBRP [9] would unicast
discovery requests to a cluster-head.

Passive discovery, in contrast, is server driven. In passive
discovery, SDL instructs RLD to periodically disseminate
advertisements for a specific service. The mechanism used by
RLD to disseminate advertisements depends on the underlying
routing protocol. For example, for proactive protocol such as
DSDV, RLD would extend route table entries with service
information.

RLD hands service discovery requests, replies and advertise-
ments it intercepts from the network to SDL, which inspects
them and modifies entries in its service table accordingly (e.g.,
adds an entry for a newly discovered server). On receiving a
service discovery request, SDL checks its service table for
a match. To make SDL independent of a particular service
description language, the matching between the service de-
scription as advertised by service providers and the service
discovery requests is performed by a pluggable matching
module. If SDL finds a match, it instructs RLD to compose
a service response. Otherwise, it instructs RLD to rebroadcast

reactive
proactive

(every X seconds)

route breaks to the server
[Eager, Loyal, Lazy, Conservative]

any change
[Swift]

reselection

rediscovery

route breaks to the server
[Eager]

no route to the server
[Loyal]

no route to any server
[Lazy]

never

Fig. 2. Reselection and rediscovery policies.

the request. The actual mechanisms used by RLD to propagate
service responses or forward service requests depends on the
underlying routing protocol.

B. Selection

When multiple entries in the service table match a client’s
service description, the client application selects one based on
the metrics stored in the SDL service table. We expect that in
most cases, clients will choose the server with the lowest hop
count; however, other service or routing specific metrics can
be used in service selection (e.g., choosing a server that has
the least load).

C. Reevaluation

To optimize performance, MANET clients need to con-
stantly reevaluate their choice of service provider. Reevalu-
ation has two components: reselection and rediscovery. Re-
selection reconsiders service selection based only on the
current entries in SDL service table. Rediscovery involves
probing the network for up-to-date information about available
service providers, and is therefore available only on cross-layer
implementations that support active discovery. Rediscovery is
usually followed by reselection.

In designing a reevaluation policy, application developers
need to determine when to do reselection and (if available)
rediscovery. Figure 2 lays out the design space for reselection
and rediscovery policies. The names in brackets refer to
policies we have implemented as part of our cross-layer proto-
types. We discuss these policies in more detail in Section III.

The simplest reselection policy is not to do reselection at all.
This policy, however, will likely result in poor performance.
An alternative is do reselection in reaction to a change in
the SDL service table. There is a wide spectrum of possible
reactive reselection policies. On one end are policies that do
reselection in response to any change to the service table, such
as finding a new server, or learning of a change to a service-
specific metric (e.g., server is overloaded). On the other end
are policies that do reselection only when there is no valid

route to the current server. An intermediate approach is to do
reselection when the active route to the current server breaks1.

Applications may choose to trigger rediscovery either proac-
tively or in reaction to a change in the service table. There is
a wide spectrum of possible reactive rediscovery policies. On
one end, an eager reactive policy triggers rediscovery as soon
as the active route to the current server breaks. On the other,
a lazy reactive policy delays active rediscovery until it has
tried all known routes to all known servers that implement a
service. Between these two extremes a policy we found works
well in practice triggers a rediscovery after trying all known
routes to the current server.

III. PROTOTYPES

We implemented two prototype of our cross-layer architec-
ture based on the DSR [1] and DSDV [2] routing protocols. We
refer to these prototypes as CL ����� and CL ������� , respectively. In
both prototypes, matching of service descriptions with discov-
ery requests is done using a simple string based comparison,
and clients choose the server with the lowest hop count.

The rest of this section describes CL ����� and CL ������� . For
each prototype, we first describe the underlying routing algo-
rithm. We then describe our extensions for service discovery
and selection.

A. CL �����

Dynamic Source Routing (DSR) is an on-demand source
routing protocol. DSR has two operation modes: route discov-
ery and route maintenance. Whenever a node sends a packet,
DSR first checks its local cache for a route to the destination.
If DSR finds a route, it inserts the route into the packet and
forwards the packet toward its destination. If no route is found,
DSR switches to route discovery mode and broadcasts a route
request packet. On receiving a route request packet, a node
appends itself to the source route in the packet, and either (i)
identifies itself as the destination by sending a route reply to
the source via a reversed source route, or (ii) rebroadcasts
the route request packet. On receiving the route reply, the
source node adds the route to its cache and forwards the
data packet along the newly acquired source route. Route
discovery may result in many route responses (multiple routes
to a destination). These source routes are cached by DSR and
the shortest source route is used. DSR reduces the latency and
frequency of route discoveries by allowing intermediate nodes
to cache overheard routes and respond to route requests with
routes stored in their cache.

Route maintenance is DSR’s standard operation mode.
While in route maintenance, DSR routes data packets using
the source route. On receiving a data packet, a node unicasts
the packet to the node listed as the next hop in the source
route. When a route breaks, the sender attempts to find a new
route to the destination node in its cache, and if none is found,
switches to the route discovery mode.

1Some cross-layer implementations keep multiple routes to a destination.
The active route is the one that is currently being used to forward packets
between the client and the server.

1) Extensions: We extended the existing DSR route re-
quest/reply mechanisms to perform service discovery and ser-
vice selection by adding fields to the standard route request and
reply packet headers. We added two fields to the route request
packet: (1) service description, which contains a description
of the service to be discovered, and (2) service discovery
flag, which is set when the service description field is non-
empty. We added four additional fields to the route reply
packet: (1) service description, which contains a description
of the service as advertised by the service provider, (2) service
discovery flag, (3) service location, which contains the location
of the service and (4) service metric, which contains additional
metrics as advertised by a service provider.

When a client requests a service that is not in the local
SDL’s service table, RLD broadcasts a service discovery
request packet to the network. The packet is a modified DSR
route request with the service description field populated and
the service discovery flag set.

RLD examines all received packet and delivers service
discovery packets to the local SDL. In turn, SDL matches
the service description in the packet with the data found in
its local service table and on a successful match, instructs the
driver to issue a reply to the source node. RLD generates a
service discovery reply packet, which is a modified DSR route
reply packet, populates all the required fields and unicasts the
packet back to the original sender.

Following DSR’s idiosyncrasy, CL ����� allows intermediate
nodes to (i) learn about available services by overhearing
service discovery reply messages, and (ii) reply to service
discovery requests, by checking their local service table and
responding if a match is found. If not used or updated, service
table entries are periodically invalidated.

We developed 3 reevaluation policies for CL ����� : Eager,
Loyal, and Lazy. All policies choose the server with the
shortest route. They differ, however, in the eagerness with
which they trigger a service rediscovery. Eager triggers service
rediscovery immediately after the current route to the server
breaks. Loyal triggers service rediscovery only if no valid
route exists to the current server. Loyal delays rediscovery
until it has tried all cached routes to a server (at this point
DSR would normally trigger a route discovery). Lazy triggers
service rediscovery only when there are no valid routes to any
of the servers that offer the service. Lazy defers rediscovery as
much as possible, waiting until all routes to all known service
providers prove to be faulty. Figure 2 shows the place these
policies occupy in the design space of reevaluation policies.

Figure 3 illustrates the behavior of the CL ����� reevaluation
policies for a network that consists of three servers (S1, S2
and S3) that provide the same service, one client node (C)
and three intermediate nodes (I1, I2, I3) that participate in the
communication but do not host or make use of the service.
Figure 3(a) shows the initial state of SDL service table for
node C, which contains two routes to server S1, one route to
server S2 and no routes to server S3. Let us assume that C
communicates with S1 over route (1), and that without notice
S1 and S2 leave the network. As a result, the next use of route
(1) will result in a routing failure. In this scenario, eager will
trigger rediscovery right away; loyal will first try the route (2),

Available Servers: S1, S2

Routing Cache:
 Server Routes

S1 (1) C->I1->I2->S1
(2) C->I1->I3->S1

S2 (3) C->I1->I2->S2

C

S1

I3I1

I2

S2

Available Servers: S3

Routing Cache:
 Server Routes

S3 (4) C->I1->S3

C I3

S3

I1

I2

(a) Before (b) After

Fig. 3. Rediscovery example

and then, on failure, will trigger rediscovery; whereas lazy,
will try routes (2) and (3) before triggering a rediscovery.
Figure 3(b) shows the state of the SDL service table after
rediscovery.

B. CL �������

Destination Sequence Distance Vector (DSDV) is a table-
driven proactive protocol, where every node has a routing
table with entries for all other nodes in the network. Each
routing entry includes a destination’s address, the next hop
to the destination, a sequence number and a metric (usually
route length). Nodes exchange route entries periodically and
on learning of a newer and shorter route.

1) Extensions: We extended the DSDV routing table entries
with three additional fields that store the service description,
location and extra service-specific metrics. Nodes learn about
available services while performing the regular routing table
exchange operation, and no additional service discovery pack-
ets are sent into the network.

CL ������� does not perform active service discovery. Instead,
the RLD monitors changes in the routing table and notifies
SDL when either changes in network topology occur or new
services are passively discovered during the routing table
exchange.

We have implemented 2 reselection policies for CL ������� :
Swift and Conservative. Both policies chose initially the server
with the shortest hop count. Swift switches servers as soon
it becomes aware of a server with a smaller hop count. In
contrast, Conservative switches servers only when there is no
longer a valid route to the current server. Figure 2 shows the
place these policies occupy in the design space of reevaluation
policies.

IV. EVALUATION

In this section, we compare the performance of our
CL ����� and CL ������� implementations to the performance of
application-layer implementations modeled after Service Loca-
tion Protocol (SLP) [6] running on top of unmodified versions
of DSR and DSDV.

This rest of this section is structured as follows. We first
describe the SLP protocol. We then describe our evaluation
environment. Finally, we present our experimental results.

A. Service Location Protocol

SLP is an IETF application-layer service discovery standard
that supports both centralized and distributed operating modes.
In the centralized mode, servers advertise their services to
Directory Agents (DAs), and clients unicast their requests
directly to the DAs, which respond with a list of services that
match the client’s request. In the distributed mode, no DAs
are present, and clients query servers directly by broadcasting
service discovery requests2. Matching servers then reply by
unicasting their responses back to the clients.

The SLP standard does not cover service selection, leaving
this decision entirely to the client. We consider two approaches
to service selection: RD, which picks one of the available
servers at random, and PING, which tries to select the closest
server by unicasting ping messages to all known servers and
choosing the server whose ping reply arrives first3. Because
the optimality of service selection in MANET degrades as
a result of mobility, PING probes the network periodically
by sending ping messages to known servers, and switches
the client to the server with the lowest round-trip-time. Ide-
ally, PING’s probing rate should closely match the rate of
changes in the network topology. However, given that explicit
topology-change information, such as route break events, is
not available at the application-layer, the optimal probing rate
has to be estimated empirically. We show in Section IV-C that
determining the optimal probing rate is not trivial.

Although we have implemented both centralized and dis-
tributed versions of SLP, we do not consider the distributed
version of the algorithm further in this paper. This is because
both centralized and distributed versions use the same service
selection algorithms, and therefore their performance beyond
the initial service discovery phase is virtually identical. Finally,
we identify the routing algorithm over which SLP operates
with a subscript (e.g., RD ����� stands for the centralized version
of SLP running on top of the DSR protocol that selects a server
at random).

B. Evaluation Environment

We ran our experiments on the ns-2 simulator with CMU
wireless extension [11]. We report results for a network of
100 nodes randomly placed on a rectangular 300m x 2000m
flat space. Similarly to [12], [13], the rectangular shape was
chosen to force the use of longer routes between communi-
cation pairs. Each node is equipped with a WaveLAN radio
with a 250m nominal transmission range and a raw capacity
of 2Mb/s. Clients and servers move following the random
waypoint model [12] with no pause time to stress test the
implementations.

Clients communicate with servers by sending 100-byte
packets at a constant bit rate (CBR) of 7.5 packets/sec.
Similarly to [12], we chose not to use TCP communication to

2Whereas the SLP standard includes support for multicasting, we opted
instead for an implementation based on application-layer broadcast to avoid
the high cost associated with maintaining multicast groups in MANETs [10].

3SLP is an application-layer service discovery implementation, and as such
does not have direct knowledge of network topology.

0

200

400

600

800

1000

1200

1400

1600

1800

1
0
0

1
3
0

1
6
0

1
9
0

2
2
0

2
5
0

2
8
0

3
1
0

3
4
0

3
7
0

4
0
0

4
3
0

4
6
0

4
9
0

5
2
0

5
5
0

5
8
0

6
1
0

6
4
0

6
7
0

7
0
0

7
3
0

7
6
0

7
9
0

Time

N
e
tw

o
rk

 T
h

ro
u

g
h

p
u

t
(P

k
ts

/s
e
c
)

CLdsr

PINGdsr

RDdsr

Fig. 4. [DSR] Mobility degrades service selection optimality, and in turn,
overall network throughput (4 servers, 50 clients)

allow more accurate comparison between protocols4. We vary
the number of servers (1 to 4) and the maximum node speed
(2m/s and 20m/s). All results are averages over 5 movement
scenarios. All servers in the network offer the same service.

To eliminate transient initializations effects, clients start
sending data after a 100 sec. initialization phase where all
clients discover all available servers, make an initial service
selection and obtain at least one route to the selected server.
Motion starts at 200 sec., and the experiments ends at 800 sec.

C. Experimental Results

Figure 4 plots the network throughput over time after
the 100-second initialization phase for CL ����� , RD ����� and
PING ����� for 4 servers and 50 clients. Nodes move with a
maximum speed of 20 m/sec. The static phase of the simu-
lation (up to the 200 sec. mark) shows that service selection
has a critical effect on overall network performance, with both
CL ����� and PING ����� achieving more than 3 times the network
throughput of RD ����� . There is a strong correlation between the
average path length between clients and servers and network
throughput. The average route lengths for CL ����� PING �����

and RD ����� are 2.67, 3.02, and 5.02 hops, respectively. The
average optimal route length (defined as the shortest route
between a client and the closest server) is 2.47. CL ����� picks

4TCP source varies the time at which it sends packets based on its
perception of the network’s congestion state. Consequentially, the time at
which packets are sent and the position of nodes at that time will differ
between protocols.

0

200

400

600

800

1000

1200

1400

1600

1800

1
0
0

1
3
0

1
6
0

1
9
0

2
2
0

2
5
0

2
8
0

3
1
0

3
4
0

3
7
0

4
0
0

4
3
0

4
6
0

4
9
0

5
2
0

5
5
0

5
8
0

6
1
0

6
4
0

6
7
0

7
0
0

7
3
0

7
6
0

7
9
0

Time

N
e
tw

o
rk

 T
h

ro
u

g
h

p
u

t
(P

k
ts

/s
e
c
)

CLdsr-Loyal

CLdsr-Lazy

CLdsr-Eager

RDdsr

PING60dsr

Fig. 5. [DSR] Effectiveness of reevaluation policies (4 servers, 50 clients).

optimal routes most of the time. The difference that exists
between CL ����� and optimal route length results from packet
losses due to collisions that lead CL ����� to choose sub-optimal
routes. PING ����� has a longer average route because it performs
service selection based on limited knowledge of the network
topology. PING ����� attempts to find the closest server by
measuring the round-trip time between the client and all
known servers. Unfortunately, the time to unicast a message
from the client to a server and back varies greatly based on
the availability of DSR routes. As a result, a remote server
for which the client caches a valid route may reply ahead of
a closer server for which the client will have to discover a
route. The RD ����� picks servers randomly and is obviously the
worst case. Therefore, we conclude that near-optimal service
selection based on route length clusters clients and servers
together, localizing communication and increasing network
capacity. Poor service selection, on the other hand, results in
interference that severely limits network throughput.

Once nodes begin to move (200 sec. mark), however, the
optimality of service selection degrades rapidly, which causes
all protocols to converge to the same throughput. This is
an expected result, as the initial service selection becomes
irrelevant after a period of movement. Note that in this
scenario, clients can still communicate with the servers, albeit
less efficiently. Experiments with maximum node speed of 2
m/sec present a similar trend (not shown), with the caveat that
it takes longer for the protocols to converge because more
time is needed at the low speed to “shuffle” the nodes into
a random topology. Experiments with CL ������� and SLP over

0

200

400

600

800

1000

1200

1400

1600

1800

1
0
0

1
3
0

1
6
0

1
9
0

2
2
0

2
5
0

2
8
0

3
1
0

3
4
0

3
7
0

4
0
0

4
3
0

4
6
0

4
9
0

5
2
0

5
5
0

5
8
0

6
1
0

6
4
0

6
7
0

7
0
0

7
3
0

7
6
0

7
9
0

Time

N
e

tw
o

rk
 T

h
ro

u
g

h
p

u
t

(P
k

ts
/s

e
c

)

CLdsdv-Swift

CLdsdv-Conservative

RDdsdv

PING60dsdv

Fig. 6. [DSDV] Effectiveness of reevaluation policies (4 servers, 50 clients).

DSDV present similar trends, and are therefore not shown.
Figures 5 and 6 compare the performance of the service

selection reevaluation policies we implemented for CL ����� and
CL ������� to PING60 and RD. PING60 is a version of PING that
pings all known servers every 60 sec., and selects the one with
the shortest round-trip time. RD is included for comparison.
All protocols run on a network with 4 servers and 50 clients
with a CBR sending rate of 7.5 packets/sec. Nodes move with
a maximum speed of 20 m/sec.

For CL ����� , Loyal achieves the best performance, validating
the DSR policy of trying all cached routes to a given node
before issuing a route discovery. Eager suffers from network
congestion as a result of sending discovery requests as soon
as the active route breaks. Lazy, on the other hand, is too con-
servative and ends up trying (unsuccessfully) a large number
of stale routes before finally sending a discovery request. Lazy
also chooses longer routes over initiating a discovery request
leading to poor locality.

For CL ������� , Swift achieves the best performance. Since
no additional packets are being transmitted into the network,
Swift does not incur any penalty for switching to a better
server when one becomes available. Conservative, on the other
hand, waits for a route break and thus misses opportunities of
switching to better servers.

PING60 shows (in both its DSR and DSDV variants) that
service selection based on timing measurements, such as
pinging, increases network throughput. However, a substantial
gap still remains between the best cross-layer reevaluation
technique, and the application-layer implementation. Two fac-

0

200

400

600

800

1000

1200

1400

1600

1800

1
0
0

1
3
0

1
6
0

1
9
0

2
2
0

2
5
0

2
8
0

3
1
0

3
4
0

3
7
0

4
0
0

4
3
0

4
6
0

4
9
0

5
2
0

5
5
0

5
8
0

6
1
0

6
4
0

6
7
0

7
0
0

7
3
0

7
6
0

7
9
0

Time

N
e
tw

o
rk

 T
h

ro
u

g
h

p
u

t
(P

k
ts

/s
e
c
)

CLdsr(1,50)

CLdsr(2,50)

CLdsr(4,50)

Fig. 7. [DSR] Effects of mobility on throughput with different number of
servers (1, 2 and 4 servers, 50 clients)

tors account for PING60’s lower performance. First, pinging
adds a significant amount of message overhead to an already
heavily-loaded network, creating more congestion and inter-
ference. Second, to be effective, the pinging period needs
to be compatible with the rate of network topology change.
To determine the sensibility of PING ����� to the reevaluation
period, we varied the pinging period between 30 and 90
sec. While the 60 second pinging period achieves the best
throughput, overall network throughput was not significantly
affected.

Figure 7 presents an interesting result. The figure plots the
network throughput over time for CL ����� for networks with 1,2,
and 4 servers and 50 clients. Nodes move with a

�������
of 20

m/sec. Before mobility starts, network throughput goes up with
the number of servers. With mobility, however, an increase in
servers leads to a decrease in network throughput. While the
average path length to a server degrades with mobility to the
same value independent of the number of servers, the increased
number of servers in the network causes more interference
between client-server pairs. Therefore, we conclude that for
mobile networks where the service selection is not reevaluated
(and where server processing capacity in not the bottleneck),
decreasing the number of servers can actually increase network
performance. This result is not specific to CL ����� . The graphs
for RD ����� and PING ����� (not shown) present a similar trend.
It is compelling that as the number of servers in a network
increases, the need to reevaluate service selection becomes
more urgent.

0

200

400

600

800

1000

1200

1400

1600

1800

1
0
0

1
3
0

1
6
0

1
9
0

2
2
0

2
5
0

2
8
0

3
1
0

3
4
0

3
7
0

4
0
0

4
3
0

4
6
0

4
9
0

5
2
0

5
5
0

5
8
0

6
1
0

6
4
0

6
7
0

7
0
0

7
3
0

7
6
0

7
9
0

Time

N
e

tw
o

rk
 T

h
ro

u
g

h
p

u
t

(P
k

ts
/s

e
c

)

CLdsr-Loyal(1,50)

CLdsr-Loyal(2,50)

CLdsr-Loyal(4,50)

Fig. 8. [DSR] Effects of reevaluation on throughput with different number
of servers (1, 2 and 4 servers, 50 clients)

Figure 8 plots the network throughput over time for CL ����� -
Loyal (the best-performing CL ����� variation) with the same
network configuration as in Figure 7. In contrast to CL ����� ,
CL ����� -Loyal is able to keep traffic localized despite network
mobility, and therefore can take advantage of an increase in
the number of servers.

V. RELATED WORK

There has been significant research on application-layer
service discovery solutions for MANET. Tchakarov et al. [14]
propose a resource location protocol for multi-hop ad hoc
networks that uses geographical information to reduce service
advertisement and discovery traffic. The Intentional Naming
System (INS) [15] is an example of a service discovery
system that allows sending data to a service provider without
discovering its address a priori. The network of Intentional
Naming Resolvers (INRs) routes packets based on a service
description included with the data payload. The user can
either choose to send the data to any service provider that
matches the requirement (anycast) or to all of them (multicast).
Chen and Kotz [16] have extended INS with context-sensitive
service discovery and Bisdikian et al. [17] propose an intel-
ligent middleware for context-based services. Works that use
ontologies or some level of hierarchy for service description to
reduce the amount of service advertisement information that
gets propagated over the network include GSD [18] and Multi-
Layer Clusters [19]. Azondekon et al. [20] argue for a need
to select services based on a physical proximity (line of sight)

and proposes two protocols based on a combination of infrared
communication and SLP.

Our approach differs from these efforts in that it exploits a
close integration of service discovery and service selection
functionality with the routing mechanisms of MANET. As
a result, nodes in our system can exploit available topology
information to optimize service selection and improve network
performance.

Cross-layer design for MANETs has been an active topic of
research in the recent years. Shakkottai et al. [5] suggest using
cross-layer design to improve performance in MANETs. Conti
et al. [4] propose a cross-layer design that maintains the layer-
ing principle. Carter et al. [21] show that the application-layer
communication on top of routing protocols suffer from a large
control message overhead and argue for a need of a routing-
layer support for group communications. Kozat and Tassiulas
[10] propose a distributed service discovery architecture that
relies on a virtual backbone for locating and registering
available services within a dynamic network topology. Service
Broker Nodes constitute a dominating set and act as directory
agents, replying to discovery requests and registering service
advertisements. The approach proves to be less costly than
service discovery based on the multicast ODMRP protocol, but
more costly than anycast based approaches. Raman et al. [22]
argue for extensive cross-layer optimizations in Bluetooth
scatternets. As a result, scatternet wide floods are minimized
by caching service discovery results at all intermediate nodes
(this can be thought of as a distributed implementation of an
SLP Directory Agent). Koodli et al. [23] propose extensions
to MANET routing protocols to support service discovery.
Cheng [24] suggests using On-Demand Multicast Routing
Protocol for service advertisement and discovery. In this
approach, each server and all its consumers make a multicast
group. Servers advertise their services periodically and clients
discover services by sending multicast requests to the group.
However, the creation and maintenance of multicast groups
requires significant control message overhead [10].

In contrast to our work, these efforts focus on initial service
discovery, and do not consider the problem of reevaluating
service selection, which we have shown to be fundamental for
good performance in MANETs.

VI. CONCLUSIONS AND FUTURE WORK

We presented a new cross-layer architecture that integrates
service discovery and service selection functionality with
existing routing protocols, thus allowing nodes to learn about
available servers and routes to them simultaneously. Our cross-
layer approach helps clients select the best possible server, and
allows them to register call-back routines to be notified once
a better server is available nearby.

We explored the benefits of cross-layer service selection
over a typical application-layer implementation. The experi-
mental results show that the cross-layer implementation suc-
ceeds in localizing communication in the presence of topology
changes, and achieves up to five times higher network through-
put than a typical application-layer solution.

We showed that periodic application-level timing-based
mechanisms for service selection, such as pinging, add sig-

nificant amount of overhead to an already congested network
and fail to capture the rate of network topology change.

In the future, we plan to extend our technique to support
other routing protocols (e.g., AODV), as well as session
migration of stateful services.

REFERENCES

[1] David B Johnson and David A Maltz, “Dynamic source routing in ad
hoc wireless networks,” in Mobile Computing, Tomasz Imielinski and
Hank Korth, Eds., vol. 353, chapter 5, pp. 153–181. Kluwer Academic
Publishers, 1996.

[2] Charles Perkins and Pravin Bhagwat, “Highly dynamic destination-
sequenced distance-vector routing (DSDV) for mobile computers,” in
SIGCOMM, 1994, pp. 234–244.

[3] Charles E. Perkins and Elizabeth M. Royer, “Ad hoc on demand distance
vector routing,” in WMCSA, 1999.

[4] Marco Conti, Gaia Maselli, Giovanni Turi, and Silvia Giordano, “Cross-
layering in mobile ad hoc network design,” IEEE Computer, 2004.

[5] S. Shakkottai, T. S. Rappaport, and P. C. Karlsson, “Cross-layer design
for wireless networks,” IEEE Communications Magazine, Oct. 2003.

[6] Erik Guttman, “Service location protocol: automatic discovery of IP
network services,” IEEE Internet Computing, vol. 3, no. 4, pp. 71–80,
July 1999.

[7] Richard A. Golding, “A weak-consistency architecture for distributed
information services,” Computing Systems, vol. 5, no. 4, pp. 379–405,
1992.

[8] Alex C. Snoeren and Hari Balakrishnan, “An end-to-end approach to
host mobility,” in Proc. of MobiCom, 2000.

[9] Jiang Mingliang, Li Jinyang, and Y.C. Tay, “Cluster-based routing
protocol (cbrp),” IETF Internet Draft draft-ietf-manet-cbrp-spec-00.txt,
Aug. 1999.

[10] Ulas C. Kozat and Leandros Tassiulas, “Network layer support for
service discovery in mobile ad hoc networks,” in Proc. of INFOCOM,
2003.

[11] “Wireless and mobility extensions to ns-2,” Oct. 1999.
[12] Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu, and

Jorjeta Jetcheva, “A performance comparison of multi-hop wireless ad
hoc network routing protocols,” in Proc. of MobiCom, 1998.

[13] Samir Ranjan Das, Charles E. Perkins, and Elizabeth E. Royer, “Per-
formance comparison of two on-demand routing protocols for ad hoc
networks,” in Proc. of INFOCOM, 2000, pp. 3–12.

[14] Jivodar B. Tchakarov and Nitin H. Vaidya, “Efficient content location
in mobile ad hoc networks,” in Proc. of MDM, 2004.

[15] William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan, and Jeremy
Lilley, “The design and implementation of an intentional naming
system,” in Proc. of 17th SOSP, 1999.

[16] Guanling Chen and David Kotz, “Context-sensitive resource discovery,”
in Proc. of PerCom, 2002.

[17] Chatschik Bisdikian, Isaac Boamah, Paul Castro, Archan Misra, Jim
Rubas, Nicolas Villoutreix, Danny Yeh, Vladimir Rasin, Henry Huang,
and Craig Simonds, “Intelligent pervasive middleware for context-based
and localized telematics services,” in Proc. of Workshop on Mobile
Commerce, 2002.

[18] Dipanjan Chakraborty, Anupam Joshi, Yelena Yesha, and Tim Finin,
“GSD: A novel group-based service discovery protocol for manets,” in
Proc. of MWCN, 2002.

[19] Michael Klein and Birgitta Konig-Ries, “Multi-layer clusters in ad-hoc
networks - An approach to service discovery,” in Proc. of the Workshop
on Peer-to-Peer Computing, 2002.

[20] Victor Azondekon, Michel Barbeau, and Ramiro Liscano, “Service
selection in networks based on proximity confirmation using infrared,”
in Proc. of ICT, 2002.

[21] Casey Carter, Seung Yi, Prashant Ratanchandani, and Robin Kravets,
“Manycast: Exploring the space between anycast and multicast in ad
hoc networks,” in Proc. of MobiCom, 2003.

[22] Bhaskaran Raman, Pravin Bhagwat, and Srinivasan Seshan, “Arguments
for cross-layer optimizations in bluetooth scatternets,” in Proc. of SAINT,
2001, pp. 176–184.

[23] Rajeev Koodli and Charles E. Perkins, “Service discovery in on-
demand ad hoc networks,” IETF Internet Draft draft-koodli-manet-
servicediscovery-00.txt, Oct. 2002.

[24] Liang Cheng, “Service advertisement and discovery in mobile ad hoc
networks,” in Proc. of CSCW, 2002.

