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Abstract

When a mobile user dials 911, a key to arriving to
the emergency scene promptly is knowing the location of
the mobile user. This paper presents SkyLoc, a GSM
fingerprinting-based localization system that runs on a mo-
bile phone and identifies the current floor of a user in tall
multi-floor buildings. Knowing the floor in a tall building
significantly reduces the area that emergency service per-
sonnel have to canvas to locate the individuals in need. We
evaluated our system in three multi-floor buildings located
in Washington DC, Seattle and Toronto. Our system iden-
tifies the floor correctly in up to 73% of the cases and is
within 2 floors in 97% of the cases. The system is robust as
it works for different network operators, when the training
and testing sets were collected with different hardware and
up to one month apart. In addition, we show that feature
selection techniques that select a subset of highly relevant
radio sources for fingerprint matching nearly double the lo-
calization accuracy of our system.

1 Introduction

The pervasiveness of mobile phones makes them an
ideal platform for summoning emergency services. To en-
sure prompt emergency response, network operators need
to be able to pinpoint the location of the mobile phone
quickly and accurately. Unfortunately, despite significant
research [2, 12, 8] and several FCC mandates [19] to pro-
vide accurate mobile user location information, cellular
companies are still unable to determine the whereabouts
of mobile users with enough accuracy. This is particularly
the case for indoor environments where lack of direct line-
of-sight significantly reduces the effectiveness of GPS and
other localization techniques based on triangulation [12].

Automatic mobile phone-based localization is highly de-
sirable for emergency calls as relying on the individual
seeking assistance to provide localization information is
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both error prone and time consuming, and may not even
be possible if they are disoriented or incapacitated. More-
over, accurate localization technology would make possible
the wide spread deployment of life-saving devices carried
by the user such as fall or heart attack monitors, which au-
tomatically call for assistance in case of emergency.

This paper reports our experiences with SkyLoc, a sys-
tem that runs on a GSM mobile phone and determines the
floor within a building on which a user is located. Floor
level localization significantly reduces the area that emer-
gency service personnel have to canvas to locate individu-
als in a large indoor environment. For example, the Empire
State Building has a total floor area of 204,385 m? spread
over 102 floors [1]. Floor-level localization reduces the area
that needs to be searched by more than 99% to just 2,000 m?
(about 18,000 ft?). To the best of our knowledge, we are the
first to address the problem of localizing users using mobile
phones in tall multi-floor buildings. This is an important
problem since correct floor localization in emergency situa-
tions may be a matter of life or death.

SkyLoc determines the floor on which a user is located
using GSM signal strength fingerprinting. Fingerprinting
relies on a training phase in which a radio map of the
environment of interest is constructed by taking a series
of radio measurements in multiple locations. A measure-
ment records the strength at which signals emanating from
a group of radio sources are heard at a given location. Once
the training phase is complete, a client can estimate its lo-
cation by matching the current measurement to the set of
measurements collected in the training phase.

We tested SkyLoc in 3 tall buildings located in Toronto,
Seattle and Washington D.C. Our initial experience with
the system showed that simple fingerprint matching ap-
proaches used in previous research [2, 13] resulted in low
floor level localization accuracy. To increase the accuracy
of the system, we introduced the use of feature selection
techniques [3] for matching signal strength fingerprints. We
show that the implicit assumption made by previous work,
whereas the larger the number of radio sources that are used
for matching fingerprints the better the localization accu-



racy, is in fact incorrect. By using only a subset of highly
relevant radio sources for fingerprint matching we were able
to nearly double the accuracy of the system.

Overall, SkyLoc correctly identifies the floor up to 73%
of the time and is within 2 floors up to 97% of the time.
Moreover, we show that our system is robust. It works
when tested across a number of GSM network operators,
and when training and testing sets are collected by different
hardware and up to one month apart.

The remainder of this paper is organized as follows.
Background on GSM and fingerprinting is presented in Sec-
tion 2. We describe our prototype implementation of the
SkyLoc system in Section 3. Section 4 presents our floor
classification algorithms. Section 5 describes our data col-
lection process and presents evaluation results. Finally, we
discuss related work in Section 6 and conclude in Section 7.

2  GSM Fingerprinting

Global System for Mobile Communication (GSM) is the
most widespread mobile telephony standard in the world,
with deployments in more than 210 countries by over 676
network operators [5]. In North-America, GSM operates
on the 850 MHz and 1900 MHz frequency bands. There
are 299 non-interfering physical channels available in the
1900 MHz band, and 124 in the 850 MHz band, totaling
423 physical channels.

A GSM cell is allocated a number of physical channels
based on the expected traffic load and the operator’s require-
ments. Channels are allocated in a way that both increases
coverage and reduces interference between cells. The chan-
nel to cell allocation is a complex and costly process that
requires careful planning and typically involves field mea-
surements and extensive computer-based simulations of ra-
dio signal propagation. As a result, the mapping between
cells and channels rarely changes, a very desirable property
for fingerprinting-based systems.

Every GSM cell has a special Broadcast Control Channel
(BCCH) used to transmit, among other things, the identi-
ties of neighboring cells to be monitored by mobile stations
for handover purposes. While GSM employs transmission
power control both at the base station and the mobile device,
the data on the BCCH is transmitted at a full and constant
power. It is these BCCH channels that we use for finger-
printing.

Fingerprinting-based location techniques [2] take advan-
tage of the fact that the strength of radio signals in the wire-
less bands used by GSM and 802.11 networks exhibits con-
siderable spatial variability at the 1-10M level, but is con-
sistent in time. In other words, a given radio source may be
heard stronger or not at all a few meters away, and the sig-
nal strength from a given source at a given location is likely
to be similar tomorrow and next week. In combination,

this means that there is a radio profile that is feature-rich
in space and reasonably consistent in time. Fingerprinting-
based location techniques take advantage of this by captur-
ing this radio profile for later reference.

Fingerprinting requires a preliminary training phase in
which a radio map of the environment is constructed by
taking a series of fingerprints in multiple locations. Each
fingerprint is composed of several signal strength readings,
one for each radio source in range (e.g., 802.11 access
points, GSM base stations, FM radio [8] or TV stations).
Once the training phase is complete, a client can estimate
its location by performing a radio scan (or equivalently col-
lecting a testing fingerprint) and feeding it to a localization
algorithm, which estimates the client’s location based on
the similarity of the signal strength signatures between the
testing and the training fingerprints. The similarity of signa-
tures can be computed in a variety of ways, but it typically
involves finding fingerprints in the training set that have the
same radio sources with similar signal strengths. We elabo-
rate on fingerprint matching in Section 4.

3 The SkyLoc Implementation

SkyLoc is a system that runs on a GSM mobile phone
and determines the floor within a building on which a user
is located. The system is implemented in C# and was tested
on an AudioVox SMT 5600 phone shown in Figure 1. The
phone runs Windows Mobile 2003 operating system. The
SkyLoc system has two components: a data collection ap-
plication called PlaceLogger and a fingerprint matching and
visualization application called SkyLoc.

The PlaceLogger supports creating a hierarchical rep-
resentation of places visited by a user and then collecting
GSM measurements for these places (e.g., floors in a build-
ing). The screen shot of the PlaceLogger application is
shown in Figure 2. The upper part of the PlaceLogger is
a tree of places entered by a user. In our case, the tree has a
depth of 2, having the names of buildings as root nodes and
the floors as leaf nodes. The PlaceLogger allows scrolling
through the nodes, adding new nodes, deleting nodes or se-
lecting nodes. Once the user selects a node, she can press
the Enter Place button to start the data collection pro-
cess. To stop the data collection, the user presses the Exit
Place button. The lower part of the screen shows the name
of the place for which measurements are being collected and
the number of measurements collected so far at the place.

The SkyLoc application shows the same hierarchical
view of places recorded by the PlaceLogger. However, once
loaded, SkyLoc continuously takes GSM measurements,
matches them to the training measurements collected by the
PlaceLogger, and presents the classification results to the
user. The results are represented in a hierarchical manner.
First, the probability of being at a leaf node is calculated
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and then these probabilities are propagated up the tree to the
roots. The screen shot of the SkyLoc application is shown
in Figure 3. The Options menu allows selecting the cur-
rent window size and the algorithm for matching between
the current measurement and the stored fingerprints.

Our preliminary experiences with the system are encour-
aging. Adding support for a building by collecting training
measurements is quite easy and not very time consuming.
Moreover, as we show in Section 5, the system has good
accuracy.

Although we envision our system being eventually
adapted, deployed and maintained by network operators or
other 3rd party companies, we decided that the fastest way
to get the system up and running today is to implement it
as a stand alone application running on a mobile phone. In
case of emergency, when a user dials 911 or the fall detec-
tion monitor instructs the phone to dial 911, the phone may
calculate the current floor locally and transmit it to the emer-
gency services. We analyze the run times and the memory
requirements of our current system in Section 5.6.

4 Algorithms

In this section, we describe the classification algorithms
we use to determine the floor in tall multi-floor buildings.
All algorithms use fingerprinting as their underlying tech-
nique. That is, the algorithms are given two separate sets
of training and testing data, which contain fingerprints col-
lected on floors of a building. The algorithm then tries to
determine the floor the testing fingerprints were taken on
based on the fingerprints in the training set. To determine
the floor given a testing fingerprint, our algorithm does the
following: (1) Scans through all training fingerprints and
calculates the Euclidean distance in signal space between
the current testing fingerprint and all the training finger-
prints; (2) Predicts the floor of the testing fingerprint as the
floor of the training fingerprint with the smallest Euclidean
distance.

Figure 2. PlacelLogger
collection application
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Figure 3. SkyLoc floor
display application

4.1 Naive

The naive fingerprinting algorithm uses all available ra-
dio sources to compute the Euclidean distance between the
training and testing fingerprints based on the assumption
that the more radio sources are available the better the lo-
calization accuracy will be. For example, if a training
fingerprint contains signal strength readings for 3 sources
{Ri", RY", R} and a testing fingerprint has signal strength
readings for the same 3 sources { Ri*!, Rit) RiS'} then the
Euclidean distance between the two fingerprints using the
naive fingerprinting approach will be calculated as:

V(B — B2 4 (RY — REYD? 4 (RY ~ BE')? (1)

In practice, however, some of the sources may be either
too noisy, too stable across all floors, or simply inappropri-
ate for fingerprinting-like algorithms [3] and including them
in the calculation of the Euclidean distance may actually re-
duce localization accuracy. The interesting question is then
how to identify these “bad” sources, so that only the re-
maining set of sources is used for matching in a given build-
ing. To perform the task of finding and eliminating “bad”
sources, we next make use of a machine learning technique
known as feature selection.

4.2 Feature Selection

We use feature selection techniques to identify “bad”
sources and eliminate them from the Euclidean distance cal-
culation. For example, if source 2 is identified as “bad”,
its readings can be ignored, and the Euclidean distance be-
tween the training and the testing fingerprint can be calcu-
lated as:

V(R = RE)? + (RY - REY? @



Formally, the feature selection problem is defined as
follows. We assume that a building has N floors F' =
{F!,..., FN} and that a set of training data for each of the
floors is available. Each sample in the training set consists
of a feature vector f = {f1, ..., fx }. In our case, the feature
vector is a vector of K signal strength readings correspond-
ing to K available sources. We are interested in finding
a ranking of the feature set R = {Ry,..., Rk} based on
the usefulness of the features in classifying between floors
correctly. Moreover, we are interested in finding a cut-off
fingerprint 7 for the ranked feature set such that adding fea-
tures beyond 7 does not significantly improve classification
accuracy. In our case, the feature selection process will re-
sult in a subset of cells overheard during the training pro-
cess. Localization algorithm is then going to use signal
strength readings from these cells for fingerprint matching.

Including only the most relevant features in the match-
ing process will not only improve the localization accuracy,
but will also reduce memory consumption and significantly
speed up the matching process. This is important because
our goal is to run our localization system on real phones
with limited memory and slow processors.

The simplest approach would be to try all possible com-
binations of features on the training data and pick the fea-
tures that result in the best performance. However, such
search is exponential in the number of features and therefore
intractable. Therefore, existing feature selection algorithms
revert to a heuristic search in the exponential feature state
space. We have implemented and evaluated 3 techniques for
feature selection: Forward Selection, Backward
Elimination and a new Per-Floor Feature Se-
lection.

4.2.1 Forward Selection and Backward Elimination

The Forward Selection algorithm starts with an empty set of
features and in each step adds one additional feature to the
set. The feature that is being added to the set is the feature
whose addition results in the maximal increase in accuracy.
In contrast, Backward Elimination algorithm starts with a
set that contains all available features and then, at each step,
removes features from the set. Once again, the feature that
is being removed is the feature whose removal results in the
largest increase in accuracy. Forward Selection and Back-
ward Elimination are two variants of greedy feature selec-
tion that although do not necessarily select the best features,
usually achieve good accuracy [3].

4.2.2 Per-Floor Feature Selection

The main idea behind the Per-Floor Feature Selection algo-
rithm is that instead of selecting features that increase clas-
sification accuracy across all floors, the algorithm selects a
different set of features that increase localization accuracy

for a specific floor. In other words, for each floor F’ i the
algorithm produces a ranking of features { R}, ..., R%-} that
can be used by a naive fingerprinting classifier to identify
whether a testing fingerprint is on the floor ¢ or not. Each
per-floor classifier is assigned a weight based on its accu-
racy at identifying the floor correctly. At the end, the al-
gorithm combines the classification results for each of the
per-floor classifiers into the final classification decision.

5 Experiments

This section first describes our data collection process
and then presents our evaluation results.

5.1 Data Collection

We collected fingerprints in the hallways of 3 buildings:
(a) City Center Hotel, Washington D.C., USA; (b) Uni-
versity Hotel, Seattle, WA, USA; and (c) Tartu building,
Toronto, ON, Canada. The buildings are shown in Figure 4.
City Center Hotel is a 9-storey building, located in a quiet
midtown residential area of Washington DC. University Ho-
tel is a 12-storey building located in a midtown commercial
area of Seattle. Finally, Tartu is a 16-storey building, lo-
cated in downtown Toronto. Taking fingerprints in different
cities and different urban environments allowed us to assess
the robustness of SkyLoc in various environments. More-
over, we collected fingerprints during the day when people
were present on the floors. Although we knew that this will
result in less impressive localization results, we believe this
approach better represents the true achievable accuracy.

Table 1 summarizes the number of fingerprints collected
per-floor for each of the buildings'. The uneven number of
fingerprints collected per floor is the result of us increas-
ing the number of training and testing fingerprints collected
with every new building in the hope of achieving even better
localization results. Ironically, as we show in Section 5.5,
the number of training fingerprints had little bearing on the
localization accuracy.

We collected fingerprints for several available network
operators simultaneously (using different phones), scanning
the network every second. Once we started the data col-
lection, we walked with an average speed of about 2m/s
on each of the floors, collecting fingerprints. To investi-
gate the effects of using different hardware for training and
testing and the effects of separating the training and testing
in time, we collected additional fingerprints in City Center
Hotel two days after the initial fingerprints were collected
and in University Hotel a month after the initial fingerprints
were collected. In both cases, we collected fingerprints us-
ing different instances of the AudioVox phone.

I'The buildings are sorted by height



(a) City Center Hotel, (b)

Washington D.C.

University  Hotel,

Seattle, Washington

(c) Tartu, Toronto, On-

tario

Figure 4. The tall multi-floor buildings where the data was collected.

City Center Hotel | University Hotel | Tartu
Number of floors 9 12 16
Fingerprints per floor 110 30 130
Training file size 66KB 33KB 320KB

Table 1. Characteristics of the 3 buildings under study

5.2 Accuracy Evaluation

In this section, we evaluate how accurately the algo-
rithms presented in Section 4 can differentiate between
floors in tall multi-floor buildings. The algorithms are
(a) Naive fingerprint matching algorithm that uses all
available radio sources for matching; (b) Forward Se-
lection (FS) algorithm; (c) Backward Elimina-
tion (BE) algorithm; and (d) Per-Floor Feature
Selection (PFFS) algorithm. As described in Sec-
tion 5.1, we collected separate traces for training and testing
data in each of the 3 buildings and we used those traces as
input to the 4 algorithms.

Figure 5 summarizes the accuracy with which the algo-
rithms can correctly determine the current floor, be 1 floor
off (predict the adjacent floor as the correct floor) and be 2
floors off. The PFFS algorithm performs the best, achiev-
ing 57% correct floor classification accuracy for both the
City Center Hotel and the University Hotel buildings and
94% and 90% of correct classifications within 2 floors, re-
spectively. The FS and BE algorithms achieve comparable
accuracy with up to 52% of correct floor classifications and
up to 96% of correct classifications within 2 floors.

The Naive fingerprinting algorithm achieves relatively
low accuracy compared with the other feature selection al-
gorithms (33% of correct floor classifications as opposed to
57% for PFFS). We found that the main reason for a low
performance of the Naive algorithm is the apparent differ-

ence of the training and testing data on many floors of the
buildings under study. Although the presence of people on
the floors may have increased the discrepancy, we believe
the main reason for the discrepancy lies in the way a mo-
bile phone picks cells and channels to listen to. Accord-
ing to the GSM specification [5], the phone gets the list of
neighboring cells to listen to from the associated cellular
tower, which is not necessarily, but often, the tower with
the strongest signal strength. The way the phone picks the
associated tower depends on the strength and quality of the
signal received from neighboring cells and on additional pa-
rameters, such as the time the phone was associated with the
cell. Overall, this occasionally results in the phone picking
different associated cells for the training and testing data
on the same floor, which in turn results in low localization
accuracy. Fortunately, even when the associated cells are
different, there is still an overlapping in the cells picked by
the two associated cells. It is these common cells that the
feature selection algorithms use to achieve higher localiza-
tion results.

One might expect to see better localization accuracy for
lower buildings because less floors means less chance of
getting the current floor wrong. For example, in a build-
ing with only 3 floors even an algorithm that guesses the
current floor at random will be correct roughly 33% of
the time. However, the results show that the accuracy in
higher buildings has not decreased significantly. For exam-
ple, PFFS, our best performing algorithm, achieved 93%
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Figure 5. Accuracy results across all build-
ing

accuracy within 2 floor in City Center Hotel, 89% in Uni-
versity Hotel and 87% in Tartu. As the following analysis
shows this is mainly due to the fact that when the classi-
fier is wrong, it is usually wrong within 1 or 2 floors and
therefore increasing the number of floors may not necessar-
ily affect accuracy. For instance, the radio environment on
a 2nd floor might be similar to the one on the 3rd or the 4th
floor, but it is as drastically different from the one on the
10th floor as it is from the one on the 20th.

5.3 Windowing

The previous section showed localization results for test-
ing fingerprints classified independently of one another. In
practice, the classification decision need not necessarily be
made on a single testing fingerprint, but may be made based
on a stream of testing fingerprints.

We implemented a simple algorithm that makes the clas-
sification decision based on a fixed-size sliding window of
testing measurements. For example, if the window size is
10, the classification decision is based on the current mea-
surement and the nine preceding measurements. The win-
dowing algorithm first classifies each measurement in the
window individually, and then selects the current floor as
the most frequently appearing floor among the individual
classifications.

Figure 6 shows the effect of basing the classification de-
cision on a stream of testing fingerprints with a fixed win-
dow size. The figure plots the classification accuracy for the
PFFS algorithm when the number of testing fingerprints in
the window varies from 1 to 20. For the City Center Ho-
tel, 97% of the testing fingerprints were classified within 2
floors; whereas, for the University Hotel, the accuracy of
correctly identifying the current floor has increased from
56% to 73%, reaching 94% of classifications within 1 floor.
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Figure 6. The effect of windowing on top of
the PFFS algorithm

Although in areas with large number of misclassifica-
tions, windowing does not help much, it does help to re-
move outliers when the overall performance is good, and
we believe it should be used by localization systems. Our
prototype SkyLoc system, described in Section 3, uses the
windowing technique. In the future, we plan to look at se-
quential filtering techniques [15] to improve the accuracy of
the system.

5.4 Per-Floor Analysis

Figures 7(a), 7(b) and 7(c) show the breakdown of the
per-floor classification accuracy of the PFFS algorithm for
City Center Hotel, University Hotel and Tartu building, re-
spectively. For example, the full bar for the 1st floor in the
City Center Hotel means that all testing fingerprints col-
lected on this floor were classified correctly. The figures
reveal that the bad performance on some of the floors pulls
the overall performance down. For example, no testing fin-
gerprints were classified correctly on the 3rd floor in the
Tartu building. We believe that identifying and improving
accuracy on the “bad” floors will drive our results higher up,
and we are planning to investigate this matter in the near fu-
ture.

We expected the middle floors to have higher errors than
the top and bottom floors because these floors have more
“competition”, or a larger number of adjacent floors. Al-
though it is the case in City Center Hotel and University
Hotel, it is not the case in the Tartu building. Also, we ex-
pected higher floors to have larger localization errors be-
cause of the possible lower coverage. This seems to be not
the case. Our data showed that there is no difference in aver-
age signal strength between the floors in the building across
all 3 buildings.
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Figure 7. The breakdown of classification accuracy per floor for the PFFS algorithm.

5.5 Sensitivity Analysis

In this section, we quantify the sensitivity of the clas-
sification accuracy to different network operators, different
hardware, separation of training and testing in time and the
number of training fingerprints collected per floor.

Figure 8 shows the localization results for the University
Hotel for different network operators. The results suggest
that our system works across different network providers,
as there seems to be no significant difference in terms of
achievable accuracy between different network operators.
The results for City Center Hotel and Tartu buildings (not
included) show a similar trend.

Figure 9 shows that collecting the training and testing
fingerprints with different phones does not significantly af-
fect localization accuracy. In the University Hotel, the per-
centage of correct floor classifications has reduced from

57% to 56% and for the Tartu building it has reduced from
44% to 35%. In both buildings, the percentage of correct
classifications within 2 floors has slipped 2%. Although we
have experimented with different phones we used the same
phone models. In the future, we plan to investigate how the
effect of taking fingerprints with a different phone model
impacts the overall localization accuracy.

Figure 10 shows the effect of taking the training and test-
ing fingerprints 2 days and a month apart for the City Center
Hotel and the University Hotel. The results show that tak-
ing testing fingerprints a few days or even a month apart
does not significantly affect localization accuracy. For the
City Center Hotel, the percent of correct floor classifications
within 2 floors did not change, and the number of correct
floor classifications has reduced from 57% to 54%. For the
Tartu building, the performance actually increased, rising to
48% correct floor classifications from 44%.
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Figure 11 shows the effect of reducing the number of
training fingerprints collected per-floor for each of the 3
buildings. The figure plots the percentage of correct floor
classifications as a function of the percentage of training
fingerprints used. For example, 58% of the testing points
were classified correctly in the City Center Hotel with both
one forth and one tenth of the originally collected train-
ing points. Surprisingly, the reduction in accuracy between
100% of training fingerprints to only 5% is small across all
buildings. This is a thrilling result because it means that
only a small number of training fingerprints needs to be
collected per-floor, or in other words we could train any of
the buildings under study in less than 30 minutes and still
achieve good localization results.
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Figure 11. The effect of reducing the num-
ber of training fingerprints

5.6 Preliminary Performance Evaluation

In this section, we present our preliminary performance
evaluation of the SkyLoc system in terms of memory and
storage footprint and localization run times.

The amount of training data that needs to be stored on the
phone depends on the building size. The taller the building
and the larger the floor size, the larger the training file. Our
current prototype stores the data in a raw text format with-
out performing any storage optimizations. The training file
sizes are summarized in Table 1. It follows that with the cur-
rent flash card sizes of 1GB it is possible to store training
files of more than 7000 buldings on a single card. More-
over, the training files may be stored in an archive file (e.g.,
zip) most of the time and extracted only on demand. This
optimization reduces the storage requirement on the phone



by an order of magnitude (archiving the 320KB training file
from the Tartu building produces a 30KB zip file). Note
that instead of storing all fingerprint maps on the phone, the
phone may be able to simply download them upon entering
a building.

The SkyLoc application takes about 200KB storage
space including all the necessary libraries. When loaded it
takes about 1600KB of memory, plus any additional mem-
ory needed for the training data. So, the SkyLoc application
and the Tartu building training file take about 2MB of mem-
ory out of the 32MB available on our AudioVox SMT 5600
phone.

Next, we measured the scalability of SkyLoc in terms
of the time it takes to locate a single testing fingerprint
on AudioVox’s 200Mhz ARM processor. Determining the
location of a fingerprint requires matching the fingerprint
against the current training set. Note that in order to locate
a fingerprint there is no need to match the fingerprint to all
fingerprints stored on a phone, but only to a set of relevant
fingerprints. One approach that we found to work well in
practice is matching only against training fingerprints that
have at least one cell ID in common with the current testing
fingerprint.

We conducted a series of experiments, each time varying
the training file size and measuring the time it takes to locate
a single testing fingerprint. On average, it takes 0.002 sec-
onds to match a single testing fingerprint to a single training
fingerprint or equivalently the phone can match a testing fin-
gerprint to 500 training fingerprints a second. For instance,
in the University Hotel, it takes about 0.72 seconds to local-
ize a fingerprint. We are planning to develop faster finger-
print matching techniques in the future.

5.7 Discussion and Recommendations

Should floor identification be added to the E911/E112
specifications, we recommend regulatory bodies start with
the requirement of “within 2 floors of the actual floor num-
ber 95% of the time.” We have demonstrated that the 2
floor-95% goal is achievable in software on mobile phones
and thus it represents a good starting point for any discus-
sions of extending regulations of the third dimension. While
alower error margin might be necessary for some E911 sce-
narios, we believe regulation works best if it starts with what
is possible and then evaluates if it is sufficient.

The largest barrier to wide-scale adoption of our ap-
proach is probably the requirement to gather training data
for each building. However, we believe such calibration
could be made a part of the regulated zoning procedures for
large buildings and is probably low overhead compared to
the many stringent building codes and maintenance proce-
dures already in place for a multi-floor building like elevator
maintenance and emergency exit lighting and signage. The

fact that calibration maps seem capable of being transferred
between devices without significantly impacting accuracy
also supports this deployment model.

6 Related Work

Indoor location systems have successfully employed a
variety of technologies including infrared [7, 20] and ultra-
sound [14, 16]. While these system can achieve accuracies
of a few centimeters, their requirement for custom infras-
tructure has hindered their wide-scale deployment. On the
other hand, fingerprinting-based localization systems pro-
vide accurate indoor localization by making use of the ex-
isting wireless infrastructure, obviating the need for infras-
tructure investment and greatly increasing the possible area
in which the system will work.

Most of the research on fingerprinting-based localiza-
tion has focused on the use of 802.11 radio sources [2, 18,
10, 17, 6]. GSM-based fingerprinting, however, has the
main advantage that it works with existing mobile phones,
whereas 802.11 is available only on high-end PDAs and
laptops. Moreover, due to higher coverage, GSM works in
more places than 802.11 does.

A number of systems have used GSM to estimate the
location of mobile clients. Place Lab [12, 4] system em-
ployed a map built using war-driving software and a sim-
ple radio model to estimate a mobile phone’s location with
100-150 meter accuracy. Laasonen et al. used the transi-
tion between GSM cell towers to build a graph represent-
ing the places a user goes [9]. Laitinen et al. [11] used
GSM-based fingerprinting for outdoor localization. They
have collected sparse fingerprints from the 6-strongest cells,
achieving 67" percentile accuracy of 44m.

In our previous work, we demonstrated that GSM-based
indoor localization is feasible [13]. We collected measure-
ments with a specialized Sony Ericsson GSM modem con-
nected to a laptop and using a naive fingerprinting algo-
rithm we reported within-floor median error of 5 meters and
showed that it is possible to differentiate between a couple
of floors in a building. In contrast, this paper reports on our
experiences with SkyLoc, a fully functioning system that
runs on a commodity mobile phone and identifies the cur-
rent floor in tall multi-floor buildings. This paper also pio-
neers the use of feature selection techniques for the domain
of localization and shows that it can significantly improve
localization accuracy. Finally, this paper investigates prac-
tical deployment issues, such as using different hardware
for training and testing, using different network operators
and collecting testing measurements up to one month after
the training measurements were collected.



7 Conclusions and Future Work

We presented SkyLoc, a localization system that identi-
fies the current floor of a mobile phone user in tall multi-
floor buildings. Knowing the floor in a tall building signif-
icantly reduces the area that emergency service personnel
have to canvas to locate the individuals asking for help. We
evaluated our system in three multi-floor buildings located
in Washington DC, Seattle, and Toronto. Our system iden-
tifies the floor correctly in up to 73% of the cases and is
within 2 floors in 97% of the cases. Our system is robust;
it works for different network operators, when the training
and testing sets were collected with different hardware and
up to one month apart. We also showed that feature selec-
tion techniques that select a subset of highly relevant radio
sources for fingerprint matching nearly doubled the local-
ization accuracy of our system.

In future direct extensions to this work, we plan to test
the system in higher buildings, compare with technologies
like pressure sensors that require hardware modifications,
and conduct a user study to test satisfaction with our proto-
type in the context of usage scenarios like building rescue.
We also plan to improve our system in terms of memory and
CPU consumption. Finally, we plan to test the applicability
of feature selection techniques to within-floor localization
as well.
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