
Crane: Fast and Migratable GPU Passthrough for OpenCL
Applications

James Gleeson, Daniel Kats, Charlie Mei, Eyal de Lara
University of Toronto

Toronto, Canada
{jgleeson,dbkats,cmei,delara}@cs.toronto.edu

ABSTRACT
General purpose GPU (GPGPU) computing in virtualized
environments leverages PCI passthrough to achieve GPU
performance comparable to bare-metal execution. However,
GPU passthrough prevents service administrators from per-
forming virtual machine migration between physical hosts.

Crane is a new technique for virtualizing OpenCL-based
GPGPU computing that achieves within 5.25% of pass-
through GPU performance while supporting VM migra-
tion. Crane interposes a virtualization-aware OpenCL li-
brary that makes it possible to reclaim and subsequently
reassign physical GPUs to a VM without terminating the
guest or its applications. Crane also enables continued GPU
operation while the VM is undergoing live migration by
transparently switching between GPU passthrough opera-
tion and API remoting.

CCS Concepts
•Computing methodologies → Graphics processors;
•Computer systems organization → Heterogeneous
(hybrid) systems; •Software and its engineering →
Virtual machines;

Keywords
virtualization, live migration, passthrough, GPU, GPGPU,
OpenCL

1. INTRODUCTION
General purpose GPU (GPGPU) is being used to accel-

erate parallel workloads as varied as training deep neural
networks for machine learning [2], encoding high-definition
video for streaming [42], and molecular dynamics [20].
GPGPU programming is primarily done according to one of
two APIs: CUDA for NVIDIA’s GPUs, and OpenCL, which
is implemented on many different GPUs from NVIDIA and
other vendors. Major cloud “infrastructure as a service”
Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
SYSTOR ’17 Haifa, Israel

© 2017 ACM. ISBN 978-1-4503-5035-8/17/05…$15.00
DOI: http://dx.doi.org/10.1145/3078468.3078478

(IaaS) providers now have virtualization offerings with ded-
icated GPUs that customers can leverage in their guest vir-
tual machines (VMs). For example, Amazon Web Services
allows VMs to take advantage of NVIDIA’s high-end GPUs
in EC2 [6]. Microsoft and Google recently introduced simi-
lar offerings on Azure and GCP platforms respectively [34,
21].

Virtualized GPGPU computing leverages modern
IOMMU features to give the VM direct use of the GPU
through DMA and interrupt remapping – a technique which
is usually called PCI passthrough [17, 50]. By running
the GPU driver in the context of the guest operating
system, PCI passthrough bypasses the hypervisor and
achieves performance that is comparable to bare-metal OS
execution [47].

Unfortunately, GPU passthrough is incompatible with
VM migration for two key reasons: (1) the hypervisor can-
not safely interrupt guest GPU access from the guest GPU
drivers and GPGPU applications, and (2) the hypervisor
cannot extract and reinject GPU state. Without the abil-
ity of the hypervisor to interrupt the guest OS’s access to
the GPU, it is impossible for the hypervisor to reclaim the
GPU from the guest OS without the guest OS crashing; we
confirm this behaviour in the Xen hypervisor (Section 2.1).
Without the ability of the hypervisor to extract GPU hard-
ware state prior to migration, any data stored by guest
GPGPU applications in GPU device memory are lost once
the guest moves to a new machine.

We present Crane, a new approach for achieving pass-
through GPU performance without sacrificing VM migra-
tion for virtualized OpenCL GPGPU applications. Crane
allows both stop-and-copy and live migration. Crane does
not require modification to applications, the hypervisor, and
importantly, guest OS drivers which are often proprietary.
Crane implements virtualization using only the portable
OpenCL API, allowing Crane to achieve vendor indepen-
dence: the ability to migrate any current and future GPU
model that supports the OpenCL API without vendor sup-
port.

Crane operationally consists of three main components:
a transparent interposition library, a guest migration dae-
mon, and a host migration daemon. When the guest OS is
not migrating, the OpenCL applications run at passthrough
speeds with OpenCL calls sent directly to the GPU. While
running, the interposition library interposes on OpenCL
calls by tracking state needed to recreate OpenCL objects.
When an administrator intends to migrate, Crane signals
their intent to the guest migration daemon, which coordi-

http://dx.doi.org/10.1145/3078468.3078478

nates the pre-migration stage. During pre-migration, the
guest migration daemon coordinates both extracting GPU
state to DRAM and safely interrupting guest GPU access.
Crane implements a universal GPU device memory extrac-
tion mechanism built using portable OpenCL APIs for sav-
ing GPU state to DRAM. Guest GPU access is safely paused
by releasing OpenCL objects, unloading OpenCL shared li-
brary handles, and removing guest GPU drivers. With the
GPU unused, the host migration daemon safely reclaims
the GPU and commences VM migration. Crane enables live
migration [13] by temporarily switching from passthrough
GPU execution to API remoting, which forwards OpenCL
commands over RPC to a stationary proxy domain on the
source host. The proxy domain is pre-provisioned with a
dedicated passthrough GPU to minimize the time to tran-
sition to API forwarding. Once the guest migrates, Crane
leverages support in modern OSes and hypervisors for hot-
plugging PCI devices to re-attach a passthrough GPU [17,
50], and executes the post-migration stage. During post-
migration, Crane coordinates resuming execution using the
passthrough GPU by reinjecting GPU device memory us-
ing its universal mechanism, and recreating OpenCL objects
from tracked API state.

This paper makes the following contributions:

• An approach to GPU virtualization that simulta-
neously achieves — Passthrough performance:
within 5.25% of bare-metal passthrough GPU perfor-
mance, Vendor independence: Crane uses vendor
standardized OpenCL APIs to implement virtualiza-
tion, allowing it to work for current and future GPU
models, VM migration: Crane supports both stop-
and-copy and live migration modes.

• A method for extraction/reinjection of guest GPU
state and safe interruption of guest GPU access with-
out terminating the guest or its OpenCL applications.
The approach makes use of standard OpenCL APIs to
maintain transparency thereby avoiding application,
driver, and hypervisor modifications.

• A method for transparently extracting and injecting
OpenCL state, enabling OpenCL applications to con-
tinue to execute (albeit at lower performance) while
the VM is undergoing live migration via API remot-
ing.

The rest of the paper is structured as follows. Section 2
provides a quick overview of OpenCL and introduces GPU
passthrough and how it prevents VM migration. Sections 3
and 4 describe the design and implementation of Crane.
Section 5 discusses our solution for dynamically offloading
close-source GPU drivers. Section 6 presents our experimen-
tal evaluation. Section 7 discusses related work. Section 8
discusses future work such as extending Crane to CUDA.
Finally, Section 9 concludes the paper.

2. BACKGROUND
We begin by explaining the key reasons why GPU pass-

through is incompatible with VM migration. Next, we ex-
plain how OpenCL is used as a GPGPU programming lan-
guage. This leads us to the design of Crane, which addresses
the barriers to using VM migration with OpenCL applica-
tions that use GPU passthrough.

2.1 GPU passthrough
Passthrough is a technique that allows guest OS GPU

drivers direct use of GPUs as if the guest OS was installed on
the system as a bare-metal OS. Passthrough takes advantage
of the input-output memory management unit (IOMMU)
found on modern chipsets, which allows guests unmediated
access to GPU device memory, thereby bypassing any hy-
pervisor involvement. As a result, the guest VM attains
GPU performance comparable to a bare-metal OS [54].

Unfortunately, using passthrough sacrifices the ability to
migrate VMs. To prove that the hypervisor cannot safely in-
terrupt GPU access, we conducted a small experiment with
the Xen hypervisor. Modern hypervisors are able to dy-
namically detach and reattach PCI devices in passthrough
without requiring a restart of the guest VM [49, 30]. Our ex-
periment consists of running an OpenCL application in the
guest OS, then issuing a detach of its GPU card while the
application is running. After the card detaches, the entire
guest OS crashes (for experimental setup see Section 6.1).
Hence, detaching the card in the hypervisor is equivalent to
ripping the physical GPU card out of the PCI-express slot
of a bare-metal OS installation.

Even if passthough GPU access could be interrupted by
the hypervisor, the hypervisor has no method of extracting
state from the GPU and reinjecting it into the GPU on the
new host. Proprietary GPU drivers provide no standard
API for GPU state extraction/reinjection.

A simple approach is to terminate the OpenCL applica-
tions before migrating then restart them on the new host;
however, sheer economic costs [5] in lost computational re-
sources precludes such an approach in industry for batch
processing jobs, which can takes many hours to execute [35].

2.2 OpenCL programming
The OpenCL API describes a cross-platform method

of writing and executing massively data-parallel programs
known as kernels on a device such as a GPU. The general
flow of an OpenCL application is as follows:

1. Device configuration: Query and select an available
GPU to use throughout the program.

2. Resource allocation: Kernels are compiled for the
target device, and OpenCL memory buffers are used
to write GPU memory as input.

3. Program execution: Kernels are enqueued for ex-
ecution on the GPU, and results are read from GPU
device memory back to DRAM.

4. Cleanup: Command queues are flushed, and any al-
located OpenCL resource handles are freed.

The standardized OpenCL API empowers developers with
application portability across all GPU vendors and mod-
els, including popular proprietary vendors like NVIDIA and
AMD. As a result, the OpenCL shared library provides a
universal API over all GPU models, and even other types of
data-parallel hardware (e.g. FPGAs [4]).

3. DESIGN
Crane allows OpenCL applications to achieve GPU

passthough performance without sacrificing VM migration.
Crane enables VM migration by tracking OpenCL API state

Guest Migration
Daemon

OpenCL
Library

GPU

GPU
Driver

Host
Migration
Daemon

OpenCL
Application

Interposition
Library

OpenCL
Library

GPU

GPU Driver

Proxy
Domain

Administrative
Domain

Guest
Domain

Crane enabled host

RPC
Stub

Proxy
Process

Figure 1: The Crane architecture consists of host/guest mi-
gration daemons and a transparent OpenCL interposition
library; Crane makes no modification to OpenCL applica-
tions, guest OS drivers, or the hypervisor. The dotted line
represents the user-kernel boundary.

as the application runs, and providing a universal state ex-
traction/reinjection API built using only portable OpenCL
API calls. When the hypervisor signals its intention to
migrate the VM, prior to detaching the card and migrat-
ing, Crane coordinates extracting GPU device memory into
DRAM and unloading the guest GPU driver. After migra-
tion completes and a new GPU is attached, Crane uses its
universal API to reinject GPU device memory and recon-
struct OpenCL API state.

Crane’s approach to VM migration has three important
benefits:

1. Vendor independence. Crane enables migration of
GPU guests for all GPU vendors and all GPU models
that support the OpenCL API. Crane will support fu-
ture GPU models as long as the OpenCL API remains
the same.

2. Passthrough performance. OpenCL applications
achieve passthrough GPU performance when a guest
is not migrating.

3. No application, hypervisor, or OS driver mod-
ifications. Crane is a highly maintainable approach
that does not require OpenCL application modifica-
tion or recompilation.

The rest of this section describes how Crane handles stop-
and-copy migration. We then discuss how this functionality
can be extended to support live migration.

3.1 Stop-and-copy migration
The simplest form of migration is stop-and-copy migra-

tion [38]. In stop-and-copy migration, the guest VM is sent
a suspend signal. The suspend signal triggers the guest OS
to read in device state from attached PCI-devices, save the
state to DRAM, and switch the DRAM into refresh mode.
After device state has been preserved in DRAM, devices can
be safely detached from the VM, and DRAM can be copied
as-is to the new host. When the guest is resumed, the de-
vices on the new host are powered back on, and the device
state is loaded back into the new devices.

 OpenCL state tracking
 OpenCL uses passthrough GPU

1) Tracked-passthrough

Host

Guest

GPU

Proxy

GPU

App

 Attach guest GPU
 Extract state from proxy GPU
 Reinject state on guest GPU

4) Post-migration

New Host

Guest

Host

Proxy

GPUGPU

App Stub

 Extract guest GPU state
 Reinject GPU state into proxy GPU
 Detach guest GPU

2) Pre-migration

Host

Guest

GPU

Proxy

GPU

App Stub

 OpenCL uses RPCs to proxy GPU
 Guest live migrates to new host

3) API remoting

Host

Guest Proxy

GPU

New Host

Guest

App Stub

Figure 2: Crane uses a passthrough GPU in tracked-
passthrough mode, and transitions to API remoting during
live migration.

Unfortunately, there is no standard programming inter-
face for (1) suspending GPU device state to DRAM, (2)
safely detaching a passthrough device from a running guest,
and (3) resuming GPU device state. Instead, during sus-
pend, the GPU remains powered on, with its device memory
being preserved on the device itself. Since there is no kernel
API to force GPU device state to be preserved in DRAM
during suspend, GPU PCI passthrough is incompatible with
guest migration.

3.2 Enabling stop-and-copy migration
Crane supports stop-and-copy migration from a source

host to a destination host by solving several challenges.
Extract GPU memory state: Before migration can

begin, GPU device memory must be preserved in DRAM.
The kernel provides no standard API for extracting GPU
device memory to DRAM, and proprietary drivers are a bar-
rier to creating one. However, the OpenCL API is already
standardized across all platforms. Crane leverages OpenCL
to create a universal GPU state extraction/reinjection API
that works across GPU vendors and models. Crane coordi-
nates GPU state extraction across all guest OpenCL appli-
cations prior to migration.

Track additional OpenCL API state: Unlike GPU
device memory, not all OpenCL state can be extracted us-
ing existing OpenCL API calls. Crane must track function
arguments used to create OpenCL objects, while retaining
GPU passthrough performance.

Source host reclaims the GPU from the guest: To
ensure the guest and its OpenCL applications do not crash
when the hypervisor reclaims the GPU, Crane must first
coordinate unloading the OpenCL shared libraries and the
guest GPU driver.

Perform migration: With the GPU state preserved in
DRAM, existing DRAM-based hypervisor mechanisms for
stop-and-copy migration can be used.

Destination host hot plugs the new GPU into the
guest: After migrating to the new host, the new GPU can
be “hot plugged” into the guest, and kernel GPU drivers
reloaded.

Reinject GPU state: Crane coordinates recreating
OpenCL API state and reinjecting GPU device memory into
the new GPU.

3.3 Live migration
The primary disadvantage of stop-and-copy migration is

that while sending guest memory over the network, the en-
tire guest OS and its applications are suspended; in our
setup, a guest OS with 2 GB of DRAM is forced to wait 40
seconds before resuming. It is essential that OpenCL ap-
plications that have a user-facing component (e.g. a video
encoder/decoder) continue to run with minimal stoppage
time during live migration, albeit at reduced performance.

To overcome VM stoppage times during migration, mod-
ern hypervisors perform live migration where the guest
OS is stopped for only a brief time on the order of mil-
liseconds [13]. Live migration starts with several pre-copy
phases, where the guest OS continues to run uninterrupted
while its pages are asynchronously copied to the destination
host. Pages modified during the pre-copy phase are marked
as dirty by the hypervisor. A much shorter stop-and-copy
phase delivers only the remaining dirty pages.

Unfortunately, the shadow page table mechanism used
for tracking dirtied guest OS pages will not work for guest
OS pages dirtied by DMA operations made by the GPU,
since GPU writes do not raise CPU exceptions needed to
track DMA writes. PCI express Address Translation Ser-
vices (ATS) [1, 7, 26] extensions needed to perform hypervi-
sor mediated DMA page faults and unmediated dirty page
tracking exist, but none of the high-performance GPU mod-
els investigated in this paper (Section 6.1) support this ex-
tension. Hence, we require an alternative mechanism for
enabling live migration.

3.4 Enabling live migration
In order to support live migration, Crane must allow ap-

plications to make OpenCL API calls during the pre-copy
phase. However, a GPU cannot be assigned to a guest OS
during live migration, since the stop-and-copy phase will
fail to capture GPU memory state. To support live migra-
tion, Crane allocates a permanent passthrough GPU to a
separate “proxy domain” running on the source host. The
application’s OpenCL calls are forwarded to an RPC stub
in a proxy process running in the proxy domain (Figure 1).

In the pre-migration phase, Crane transitions from
tracked-passthrough to API remoting mode. Crane achieves
this by extracting guest GPU state to DRAM, and sending
a copy over to the proxy process (Figure 2.2). The program
continues executing OpenCL calls over RPC, albeit with
degraded performance. With the guest GPU detached, the
guest continues to execute as it is migrated over to a new
host.

In the post-migration phase (Figure 2.4), Crane transi-
tions back from API remoting to tracked-passthrough. Crane
achieves this by extracting modified OpenCL state from the
proxy and restoring it on the new passthrough GPU.

3.5 Limitations
Crane currently only supports migrating VMs between

hosts with identical GPUs. The significance of this limita-
tion in cloud data centers is debatable given their homoge-
neous nature [33]. We discuss extending Crane to support
migration between heterogeneous GPU models in our future
work (Section 8).

4. IMPLEMENTATION
In this section, we go into more detail about the architec-

ture of Crane, which is shown in Figure 1. The interposition
library runs in the OpenCL application and takes care of
managing OpenCL state and API remoting. The guest mi-
gration daemon (running in the guest OS) and the host mi-
gration daemon (running in the host) coordinate with each
other to extract OpenCL state into DRAM prior to migra-
tion, and ensure that the GPU card is removed safely after
it is no longer in use by the guest OS.

4.1 Interposition library
The interposition library is a shim that wraps the OpenCL

API, and implements the core functionality of Crane using
only standard OpenCL APIs. Since the interposition library
is a dynamically linked shared library, Crane avoids appli-
cation modification and recompilation. The interposition
library has 3 key roles: (1) tracking and extracting OpenCL
state, (2) API remoting during live migration, and (3) rein-
jecting state into the new GPU after migration finishes.

4.1.1 Tracking and extracting OpenCL state
In order to ensure that all OpenCL and GPU device state

can be recreated after migration to the new host, Crane
must: (1) track all the arguments to OpenCL API calls that
create new objects, and (2) read dirty GPU device memory
from OpenCL memory buffer objects into DRAM before mi-
gration begins so it is not lost. To allow migration at any
time, Crane must do this throughout the app’s lifetime (i.e.
before, after, and even during live migration).

For each OpenCL object type that a user can create (e.g.
cl_kernel, cl_context) Crane maintains a shadow-object
that records the original function arguments passed to the
clCreate* function call. clSetKernelArg is wrapped to
record its function arguments in the kernel shadow-object.
Other OpenCL functions that manipulate OpenCL object
state are simply propagated to the shadow-object. Since the
OpenCL library state is encapsulated by APIs that modify
OpenCL objects, there is no need to record other OpenCL
functions calls and replay them later.

To read dirty GPU memory buffers into DRAM, Crane
uses the standard OpenCL APIs clEnqueueReadBuffer. As
an optimization, Crane tracks app writes to GPU device
memory (i.e. clEnqueueWriteBuffer) and keeps a cached
copy of them in DRAM; this reduces app stoppage time prior
to migration by avoiding unnecessary GPU memory reads.
While state-tracking can track simple buffer writes, it can-
not track modifications to OpenCL buffers used as output
arguments to an OpenCL kernel. Hence, any OpenCL buffer
argument to a kernel that is writable is assumed by Crane
to be “dirty”, and must either be read from GPU device
memory during pre-migration, or sent from the proxy to the
OpenCL app during post-migration.

4.1.2 OpenCL object introspection API
OpenCL provides functions for introspecting its object

handles. In particular, given an OpenCL object, a user can

query other OpenCL objects it depends on. The introspec-
tion API poses a challenge, since it can expose raw OpenCL
object handles that Crane must wrap with its own opaque
handle. Crane implements this behavior using a hash table
mapping raw object handles to opaque handles. To ensure
OpenCL applications that do not use introspection func-
tions do not pay the overhead of hash table inserts, Crane
inserts hash table entries lazily.

The astute reader may notice that state-tracking (Sec-
tion 4.1.1) would be unnecessary if we could use the in-
trospection API to query the function arguments used to
create an OpenCL object. However, the OpenCL introspec-
tion functions are limited in usage, and cannot be used to
obtain all function arguments, so state-tracking is required
by Crane.

4.1.3 API remoting
The hypervisor prohibits a passthrough device from be-

ing attached to a guest during live migration. To ensure
user-facing OpenCL apps continue running uninterrupted,
the interposition library forwards OpenCL API calls over
RPC to the stationary proxy domain residing on the same
machine (Figure 1). To optimize the RPC implementation,
Crane reduces RPC roundtrips by batching RPC calls. The
only RPC calls that the interposition library cannot batch
are OpenCL functions that introspect API state and re-
quire a return value, and functions that read/write to GPU
device memory using an OpenCL app data pointer (e.g.
clEnqueueWriteBuffer). The Interposition library is able
to batch all other OpenCL API calls, including clCreate*
calls that create new OpenCL objects. When Crane encoun-
ters a command that cannot be batched, it must flush any
accumulated commands that precede it; Crane makes no
attempt to infer whether non-batchable commands can be
reordered earlier to further delay a flush.

4.1.4 Reinjecting state
Recreating OpenCL objects simply requires calling the

corresponding clCreate* OpenCL API function with
the original function arguments tracked during state-
tracking (Section 4.1). To reinject GPU device memory,
Crane uses clEnqueueWriteBuffer on each recreated mem-
ory buffer handle.

Some OpenCL object creation functions take only data
arguments; hence, these objects do not depend on other
OpenCL objects. However, some OpenCL object creation
functions take other OpenCL objects as arguments; these
objects depend on other OpenCL objects being recreated
before them. Crane ensures OpenCL object interdependen-
cies are respected by recreating OpenCL objects in order of
their type. For example, cl_context objects are created first
since they have no dependencies, followed by cl_program
objects which depend on recreated cl_context objects.

4.2 Proxy domain
The proxy domain is a pre-provisioned VM with a per-

manently assigned passthrough GPU. By having the proxy
pre-provisioned, we ensure minimal app stoppage times dur-
ing pre-migration (Section 3.4). To avoid DRAM and GPU
resource waste, multiple guest OSes share the same proxy
domain. This provides equivalent security guarantees to
previous approaches to GPU virtualization [15] that redi-
rect driver calls to a shared “Driver VM” [19].

Pre-migration Critical Path

Flush queues and
read GPU device memory

Release OpenCL objects Send OpenCL object state to proxy

Unload OpenCL library

RPC forwarding beginsUnload GPU kernel modules

Hypervisor reclaims GPU

Live migration begins

Thread 2Thread 1Thread 1

Figure 3: The pre-migration critical path is the transition
from tracked-passthrough to API remoting mode. OpenCL
API calls are blocked during this phase.

The proxy domain can support multiple VM migrations
simultaneously. However, there are two caveats. First, the
proxy domain’s ability to multiplex the GPU depends en-
tirely on the vendor-specific GPU driver implementation.
Second, if the aggregate GPU device memory usage of mul-
tiple VMs and their OpenCL programs exceed the total ca-
pacity of the proxy GPU, then either the start of some VM
migrations must be delayed, or all VMs can migrate simul-
taneously with some VMs migrating using stop-and-resume
migration to avoid using proxy GPU device memory.

Before the proxy process can handle OpenCL RPC calls, it
must first receive all OpenCL object state from the original
OpenCL app. The communication medium for state transfer
between the proxy and the guest is a TCP connection. Since
the proxy process runs in a separate address space from the
OpenCL app, the proxy process must translate the app’s
object handle addresses to its own object handles using a
hash table.

4.3 Migration daemons
The host migration daemon and the guest migration dae-

mon transparently intercept administrator migration com-
mands and coordinate in phases referred to pre-migration
and post-migration.

In pre-migration, before existing page-based migration
mechanisms can begin, GPU device memory must be ex-
tracted into DRAM to ensure it is preserved during migra-
tion and available on the new host.

In post-migration, the host migration daemon and the
guest migration daemon coordinate to reinject GPU mem-
ory state preserved in DRAM into the new GPU, and tran-
sition from forwarded OpenCL API calls back to guest local
OpenCL calls.

Both pre-migration and the post-migration incur stoppage
times where OpenCL API calls are blocked. Stoppage times
before and after live migration are determined by the pre-
migration critical path and the post-migration critical path
respectively. To minimize interruption of service in user-
facing workloads, minimizing stoppage times during these
paths is essential.

4.3.1 Coordinating pre-migration
The guest migration daemon coordinates extracting

GPU memory state to DRAM for each OpenCL app.

The guest migration daemon sends all OpenCL apps a
PREPARE_TO_MIGRATE message and waits for all their re-
spones, after which the guest migration daemon is assured
that all GPU memory state has been moved to DRAM, and
existing DRAM-based migration mechanisms can safely be-
gin.

The host migration daemon coordinates safe removal of
the GPU. The host migration daemon waits to hear back
from the guest migration daemon, and once the guest migra-
tion daemon has responded, the hypervisor is assured that
the GPU driver in the guest OS has been unloaded, and the
GPU can be removed without the guest OS crashing.

The pre-migration critical path is shown in Figure 3, and
the steps are as follows:

• Flush queues and read GPU device memory:
Wait for any outstanding OpenCL kernels to finish by
issuing clFinish, then read GPU device memory for
any dirtied OpenCL memory buffers (Section 4.1.1).

• Send OpenCL object state to proxy: For each
OpenCL object type, the function arguments and GPU
memory state needed to rebuild those objects must be
sent to and rebuilt on the proxy.

• Release OpenCL objects: Before the OpenCL li-
brary unloads, OpenCL objects must be released to
ensure that any memory allocated by the library is
not leaked.

• Unload OpenCL library: The vendor OpenCL li-
brary is unloaded, which decrements the reference
count of the GPU driver (described in Section 5).

After the pre-migration phase critical path has finished,
the interposition library unblocks any OpenCL API calls
and forwards them over RPC to the proxy. To minimize
stoppage time, Crane uses two threads to overlap sending
OpenCL object state to the proxy with releasing objects and
unloading the OpenCL library on the guest. The remaining
steps in Figure 3 are performed off the pre-migration phase
critical path in the background and do not contribute to
OpenCL app stoppage time:

• Unload GPU kernel modules: Unloading the GPU
driver prior to the hypervisor reclaiming the GPU card
ensures the guest OS does not crash (Section 2.1).

• Hypervisor reclaims GPU: The card is safely de-
tached from the guest, allowing it to be assigned else-
where.

4.3.2 Coordinating post-migration
Once live migration completes, the host migration dae-

mon attaches a GPU card to the guest and sends
PREPARE_TO_RESUME over a socket to the guest migration
daemon. With the card now attached, the guest migration
daemon loads the GPU drivers, then forwards the message
onto each OpenCL app. Once the OpenCL app receives
the message, is is assured that the GPU card is inserted
and the GPU driver is ready to use. Hence, the OpenCL
app reloads the OpenCL library and recreates its OpenCL
objects using the state it preserved in DRAM during pre-
migration. GPU device memory is reinjected by issuing
clEnqueueWriteBuffer on each recreated memory buffer

Post-migration Critical Path

Flush remaining commands
to proxy

Receive dirty buffers from proxy

Reload OpenCL library

Recreate OpenCL objects

Continue in passthrough mode

Hypervisor attaches GPU to guest

Live migration completed

Load GPU kernel drivers

Thread 1

Figure 4: The post-migration critical path is the transition
from API remoting to tracked-passthrough mode. OpenCL
API calls are blocked during this phase.

object. After OpenCL object recreation, OpenCL apps im-
mediately switch back over to native OpenCL calls without
any coordination.

The post-migration phase critical path is shown in Fig-
ure 4, and the steps are as follows:

• Flush remaining commands to proxy: Since
OpenCL commands are batched, any commands that
are still queued must be flushed to the proxy and com-
pleted.

• Receive dirty buffers from proxy: The proxy
flushes its command queues and reads GPU device
memory, then sends dirty memory buffers of completed
kernels back to the application.

• Reload OpenCL library: The OpenCL library is
reloaded, and function pointer hooks are reset.

• Recreate OpenCL objects: OpenCL objects are
rebuilt by executing the OpenCL clCreate* calls for
the corresponding object type (Section 4.1.4).

5. OPENCL LIBRARY UNLOADING
Crane requires idempotent loading and unloading of the

OpenCL shared library (libOpenCL.so). The naive ap-
proach is to use dlopen and dlclose.

However, reloading only libOpenCL.so proved unsuccess-
ful for our NVIDIA-based setup with the OpenCL library
returning an error code immediately when attempting to
use the OpenCL API. Upon closer inspection, we observed
that calling dlclose fails to recursively unload shared li-
brary dependencies initially loaded by libOpenCL.so. From
this, we suspected that an incomplete library reload resulted
in the error code.

As a workaround to ensure libOpenCL.so and its depen-
dencies are all reloaded, we explicitly record recursive shared
library dependencies loaded by libOpenCL.so, so they can
be unloaded manually. Crane creates a wrapper for dlopen
that: (1) records the library handle of the loaded depen-
dency, and (2) rewrites the Global Offset Table to call the

wrapper instead of dlopen so that recursive library depen-
dencies are recorded.

Lastly, to ensure the GPU driver can be unloaded, we
must close GPU device driver file descriptors left open
by explicitly unloaded libraries. We achieve this on
Linux by scanning for open GPU driver file descriptors in
/proc/$PID/fd.

After performing our explicit unload procedure, we were
able to perform an idempotent reload of the OpenCL library
without any subsequent errors.

6. EVALUATION
There are three metrics of performance when migrating

OpenCL applications: (1) overhead from state-tracking dur-
ing tracked-passthrough mode that deviate from a pristine
GPU passthrough environment, (2) stoppage times during
pre-migration and post-migration, (3) live migration per-
formance during API remoting for continued but reduced
service.

Importantly, there are wildly different constraints on these
three metrics for the two different types of OpenCL work-
loads.

For batch processing workloads, total job completion
time is most important, and is impacted most by overhead
from state-tracking when the VM is stationary. Small but
continuous overhead for jobs that go on for hours [35] trans-
late to hours in lost computing resources. However, sub-
second stoppage during pre-migration/post-migration or re-
duced service during a 53 second live migration period are
unimportant for jobs that could go on for hours.

For user-facing workloads, stoppage times are critical
since they represent a delay in user experience. Continued
service during live migration is essential, albeit at reduced
performance that is within the real-time constraint of the
user (e.g. frames encoded per-second for a video encoder).
Overhead from state-tracking is negligible and will not vio-
late the user’s real-time constraints.

We structure the evaluation in order of the three met-
rics, and emphasize the importance of the metric based on
whether it is a batch processing or user-facing workload.

6.1 Platform
Our benchmarking setup for Crane consisted of two iden-

tical physical hosts connected via a 1 Gbps Ethernet link.
Each host contained two Intel Xeon E5-2609 2.4 GHz quad-
core processors and 32 GB of RAM. Both hosts were out-
fitted with an NVIDIA GRID K1 card. For software, Xen
4.7 was used as the hypervisor, CentOS 6 with Linux kernel
3.16.6 for the dom0, and Ubuntu 16.04 LTS with Linux ker-
nel 4.4.0 for the domU. The domU was configured with 2 GB
of memory and ran NVIDIA driver version 361 supporting
OpenCL 1.2.

To demonstrate Crane’s ability to support different GPU
models, we also ran experiments using a separate NVIDIA
GTX480 card. However, we omit these results from our
evaluation for clarity since they are identical.

6.2 OpenCL programs

6.2.1 Data-parallel microbenchmarks
We obtained the “Level One” programs from the Scalable

HeterOgeneous Computing (SHOC) benchmark suite [16],
which are designed to target common data-parallel tasks

found in existing GPGPU applications, including both batch
processing and user-facing workloads. We chose SHOC over
other benchmarking suites [12] since it provides benchmark
implementations for OpenCL, in addition to CUDA.

6.2.2 User-facing OpenCL application
x264: a video encoder. x264 [46] is a free software

library used in the popular open-source video player VLC.
x264 encodes video files from a lossless format into a lossy
compressed format suitable for streaming video playback to
a user. x264 allows users to make use of GPU acceleration
by using an OpenCL video encoder. We configured the x264
program to use the OpenCL video encoder and to output to
MKV format. The input video file is a 4.7GB, 360p video
in the uncompressed YUV4MPEG format.

6.2.3 Batch processing OpenCL applications
FAHBench: scientific computing. FAHBench [41] is

a benchmarking toolkit for GPU-based molecular dynam-
ics calculations. FAHBench performs the same calculations
as those used in Folding@Home [10], a crowd-sourced dis-
tributed computing platform for predicting protein folding,
which may assist in researching diseases involving protein
misfolding such as Alzheimer’s and Parkinson’s. We ran
FAHBench using its default configuration, without any pa-
rameters. By default, FAHBench runs a standard simulation
of the DHFR protein in an explicit solvent.

DeepCL: training a neural network. Batch process-
ing workloads such as training convolutional neural net-
works can take hours to complete [35]. It is essential that
these workloads are not terminated prematurely, even in
the presence of routine maintenance tasks that require mi-
grating a VM so a machine can be powered down. For an
image recognition task, the depth of the trained network
can lead to better prediction accuracy [40]. However, with
increased depth comes increased memory usage and train-
ing times [29]. As a result, a variety of machine learning
frameworks have begun to appear that make use of GPUs
to accelerate the training of large scale neural networks [2,
27, 14]. We consider DeepCL [25] which is one such frame-
work written on top of OpenCL. DeepCL runs a benchmark
referred to in the codebase as maddison-full. The neural
network contains 1 input layer, 12 convolutional layers, 1
fully connected layer, and 1 softmax layer.

6.3 Overhead from state-tracking
Figure 5 shows that in the common case, if an adminis-

trator is running a stationary guest OS with Crane enabled,
they can expect to see performance comparable to a GPU
passthrough environment.

For data-parallel microbenchmarks, the performance over-
head of state-tracking is low with a mean of 5.25% relative
to passthrough performance.

An excellent result is that both batch processing jobs
DeepCL and FAHBench are within measurement error of
a GPU passthrough environment, with a mean of −0.1%.

x264 does incur a noticeable state-tracking overhead of
12.5%. However, since x264 is a user-facing workload whose
real-time constraint is frames encoded per second, this over-
head is acceptable as can be seen in Figure 6 when compar-
ing Passthrough and Crane rates of encoding when the ap-
plication is not migrating. Upon further investigation, the
root cause of this overhead is that clSetKernelArg takes

Passthrough
Tracked−passthrough

5.8%

8.0%

1.1%

13.8%

1.3%

1.1%

5.9%

5.0%

FFT

GEMM

MD

Reduction

Scan

Sort

Stencil2D

Triad

1 10 100

D
at

a−
pa

ra
lle

l
m

ic
ro

be
nc

hm
ar

ks

−0.1%
−0.1%

12.5%

DeepCL
FAHBench

x264

1 10 100

Total time (seconds)

O
pe

nC
L

ap
pl

ic
at

io
ns

Figure 5: Overhead from state-tracking during GPU pass-
through operation

both OpenCL object handles and non-OpenCL object han-
dles as arguments, but does not distinguish type information
in the call. This forces the state-tracking layer to perform
hash table lookups to determine if the argument is a memory
buffer.

6.4 Stoppage times
Stoppage times are incurred during pre-migration before

live migration begins, and during post-migration after live
migration ends. We first look at pre-migration and post-
migration stoppage times and their individual bottlenecks
for each application, then we summarize the importance of
total stoppage times to the application. Unlike the other
applications, stoppage times for DeepCL are bottlenecked by
state transferred during pre-migration and post-migration.
We provide a breakdown of total state transferred during
pre-migration and post-migration for all applications.

6.4.1 Pre-migration stoppage time
Figure 7a shows stoppage time during the pre-migration

phase when transitioning to API remoting on the proxy,
which corresponds to the steps in Figure 3. During pre-
migration, we first need to wait for outstanding kernels
to finish executing, after which we can extract GPU de-
vice memory (Thread 1, a). Once this data is extracted to
DRAM, it can be sent to the proxy (Thread 1, b). While ob-
jects are sent to the proxy, OpenCL objects on the guest can
be released concurrently in a separate thread (Thread 2, a),
after which the OpenCL library can be unloaded (Thread 2,
b).

Pre-migration stoppage time in FAHBench and x264 is
bottlenecked by unloading the OpenCL library (Figure 7a,
(Thread 2, b)), and only moderately affected by waiting for
outstanding kernels to finish (Thread 1, a). We investigated
the kernel execution times of the three applications, and
found that the median kernel execution times for x264 and
FAHBench are less than 5 ms, and for DeepCL is 5 seconds.
DeepCL has the longest kernel execution times with a 85-th
percentile kernel execution time of 10 seconds, whereas the

99-th percentile of x264 and FAHBench are less than 10 ms.
The longest kernel execution time for DeepCL is 62 sec-
onds, so in the worst case Crane could incur a 62 second
pre-migration stoppage for DeepCL. Pre-migration stoppage
time in DeepCL is bottlenecked by large state transfers from
the guest to the proxy.

6.4.2 Post-migration stoppage time
Figure 7b shows stoppage time during the post-migration

phase when transitioning back to tracked-passthrough mode
on the guest, which corresponds to the steps in Figure 4.
During post-migration, the guest sends any remaining RPC
calls to the proxy (Thread 1, a), after which it receives any
dirty memory buffers from the proxy (Thread 1, b). Then,
the guest reloads the OpenCL library using dlopen (Thread
1, c) and recreates the OpenCL objects on the guest (Thread
1, d).

Post-migration stoppage time in FAHBench and x264 is
bottlenecked by time spent recreating OpenCL objects (Fig-
ure 7b, (Thread 1, d)). Again, DeepCL post-migration
stoppage times are bottlenecked by large state transfer sizes
(Thread 1, b).

6.4.3 Total stoppage time
Total stoppage time for pre-migration and post-migration

corresponds to the height of the bar graphs in Fig-
ures 7a and Figure 7b respectively. The total pre-migration
stoppage time corresponds to time spent waiting for the
slowest of the two pre-migration threads to finish. The to-
tal post-migration stoppage time corresponds to the sum of
all the post-migration steps, since they occur synchronously
without any overlap.

In total, x264 incurs 0.1 seconds of stoppage time dur-
ing pre-migration. Similarly, x264 incurs 0.83 seconds of
stoppage time during post-migration. This is an excellent
result, since the user-facing workload will incur sub-second
stoppage times when servicing encoded video frames.

For the batch processing workloads, stoppage times are
less important, since they add a negligible fraction to the
total job completion time. However, we include them to
provide the reader with insight into the variability of stop-
page times between different OpenCL applications.

In total, FAHBench incurs small stoppage times during
pre-migration (0.073 seconds) and post-migration (0.52) sec-
onds. These stoppage times are acceptable since they are a
small fraction of total job time (342.94 seconds).

In total, DeepCL has the largest stoppage times, since
it sends a large amount of state during pre-migration and
post-migration. However, the stoppage times during pre-
migration (1.57 seconds) and post-migration (4.90 seconds)
are acceptable since they are a small fraction of total job
time (475.90 seconds).

We were not able to measure stoppage times for data-
parallel algorithm microbenchmarks since their runtime is
less then the 53 second migration time itself.

6.4.4 State transfer
OpenCL object state is sent from guest to proxy dur-

ing pre-migration, and from proxy to guest during post-
migration. For DeepCL, state transfer time bottlenecks both
pre-migration and post-migration stoppage times. In all
three applications, state transfer is bottlenecked by GPU
device memory (cl_mem).

Figure 8c shows the worst case maximum state transfer
size that could be sent during either pre-migration or post-
migration. This corresponds to the maximum GPU device
memory allocated by the app over its lifetime, since the
amount of GPU device memory transferred is a function of
when the VM happens to be migrated by the administrator.

Figure 8a shows OpenCL state sent during pre-migration
from the guest to the proxy for recreating OpenCL objects
in the proxy process. State sent during pre-migration spans
all different OpenCL object types, as recorded during state-
tracking (Section 4.1.1). Data being sent includes func-
tion arguments needed to recreate the OpenCL objects (e.g.
OpenCL source code strings for cl_program). The cl_mem
memory buffer type includes GPU device memory.

Figure 8b shows OpenCL state sent during post-migration
for any memory buffers dirtied by kernels that ran on the
proxy process. The proxy only needs to send back dirty
memory buffers, since all other OpenCL object state is al-
ready present on the guest since from performing state-
tracking.

DeepCL stoppage times are bottlenecked by sending GPU
device memory, with 256MB of data transferred during
both pre-migration (Total, Figure 8a) and post-migration
(cl_mem, Figure 8b). The upper bound on these state trans-
fers is 1GB (cl_mem, Figure 8c).

x264 sends 16 MB during both pre-migration and post-
migration. The 16 MB sent during pre-migration is not the
bottleneck for x264; unloading the OpenCL library is. The
16 MB sent during post-migration is a small contribution to
stoppage and is bottlenecked by recreating OpenCL objects.

FAHBench only sends 1 MB during pre-migration re-
sulting in a small contribution to pre-migration stoppage
time. For post-migration, FAHBench is the only workload
that does not dirty any of its memory buffers during live
migration resulting in zero bytes transferred during post-
migration; it allocates 16MB of GPU memory later on in its
execution after post-migration.

6.5 Live migration performance
Since live migration only lasts 53 seconds, it has little

impact on long batch processing workloads. Hence, we limit
our analysis to the x264 user-facing workload.

Figure 6 shows the rate of encoding over the lifetime of
an OpenCL application running with Crane. The admin-
istrator issues a live migration request in the hypervisor 8
seconds into the application running. After pre-migration
stoppage, the OpenCL application transitions to API remot-
ing mode. Crane makes use of batching RPC to minimize
TCP roundtrips and achieves an average of 20.1 FPS (with-
out batching it is 4.5 FPS; for clarity this line is omitted).
While 20.1 FPS is less than the ideal 60 FPS used in to-
day’s video streaming, poor performance during live migra-
tion is not an inherent limitation in Crane’s API remoting
approach and can be optimized by using an inter-VM com-
munication mechanism; we discuss two different approaches
in Section 8.1.

Besides the sub-second pre-migration and post-migration
stoppage times highlighted in Figure 6, there are other brief
periods of reduced frame encoding rates. Following pre-
migration stoppage, detaching the GPU PCI device from the
hypervisor results in a 1.1 second pause in the VM. How-
ever, Crane allows unblocked OpenCL calls over API remot-
ing during this PCI detach-induced pause. We consider any

pause from PCI detach to be an artifact of the device that
could change between models, hence it is not included in
Crane’s pre-migration critical path. At roughly 45 seconds
into the experiment, the post-copy phase of live migration
pauses the VM for 2.5 seconds. The post-copy phase of live
migration is always present both with and without Crane, so
it does not belong on Crane’s post-migration critical path.
GPU PCI device reassignment automatically triggers reload-
ing GPU drivers in the VM, and Linux provides no reliable
way of being notified of this completing. As a result, we
artificially add 10 seconds of additional API remoting after
the post-copy phase to avoid a race condition when switch-
ing from API remoting back to tracked-passthrough mode.
If the guest OS provides a reliable way to block and wait
for kernel drivers to load, this additional 10 seconds of API
remoting can be removed.

7. RELATED WORK
Dowty & Sugerman [19] provide a taxonomy covering dif-

ferent approaches to GPU virtualization. Front-end virtu-
alization runs the driver in the hypervisor and uses API
remoting or device emulation for handling guest VM GPU
access. Back-end virtualization runs the driver in the guest
VM using passthrough for maximum performance but sac-
rifices migration. Hybrid virtualization dedicates a “Driver
VM” and uses front-end techniques to provide access to the
GPU. Crane fills a unique position in this taxonomy that
uses back-end virtualization when the VM is stationary for
maximum performance, and falls back to hybrid virtualiza-
tion during live migration to minimize pauses in VM execu-
tion.

Front-end GPU virtualization: Many methods focus solely
on virtualizing the GPU at the API level, such as forward-
ing API calls [23, 31, 44, 51, 52, 55]. Unlike Crane, they
do not take advantage of new GPU passthrough features
for performance. Like Crane, LoGV [22] acknowledges that
GPU drivers cannot support migration and proposes sav-
ing GPU state to DRAM before migration. However, since
LoGV modifies GPU drivers, it only works for 1 GPU model
(NVIDIA GTX480), whereas Crane benefits from vendor in-
dependence (Section 3) by implementing all state extraction
and GPU virtualization using vendor standardized OpenCL
APIs that work across all GPU models supporting OpenCL.

Back-end GPU virtualization: AMD and NVIDIA pro-
vide GPUs tailored to virtualized environments that have
a limited form of GPU sharing that configures the GPU to
appear either as a single high-performance virtual GPU, or
multiple lower performance virtual GPUs assigned via pass-
through [8, 36]. Unlike Crane, this does not enable guest
VM migration. GPUvm [43] virtualizes the GPU at the
hypervisor level by using reverse engineered NVIDIA GPU
drivers [32]. However, GPUvm [43] is limited only to GPU
models that have been reverse engineered whereas Crane is
vendor independent (Section 3). Intel provides an open-
source driver (gVirt/Intel GVT) for providing GPU virtu-
alization of its integrated graphics offerings [56, 45]. Since
integrated graphics have a shared memory space, GVT is
able to use standard shadow page-table mechanisms [9, 3] to
trap-and-emulate page table writes needed to share the GPU
between VMs, leading to performance degradation that au-
thors refer to as the “Massive Update Issue” [18]. Crane
does not suffer from the “Massive Update Issue” by design,
since Crane tracks dirty GPU memory at the granularity

0
20
40
60
80

100
120
140
160
180
200
220
240
260

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Time (Seconds)

F
ra

m
es

 e
nc

od
ed

pe
r

se
co

nd
Crane
Passthrough

Figure 6: Encoding video frames using the GPU. The administrator issues a live migration command 8 seconds into running
the application. Live migration occurs between the boxes and lasts for 53 seconds. The first box shows pre-migration stoppage
time; the second box shows post-migration stoppage time.

(Thread 1, a) Flush queues and read GPU device memory
(Thread 1, b) Send OpenCL object state to proxy
(Thread 2, a) Release OpenCL objects
(Thread 2, b) Unload OpenCL library

0.0

0.5

1.0

1.5

Thread 1

Thread 2

T
im

e
(s

ec
on

ds
)

DeepCL

0.00

0.02

0.04

0.06

Thread 1

Thread 2

FAHBench

0.000

0.025

0.050

0.075

0.100

Thread 1

Thread 2

x264

(a) Pre-migration

(Thread 1, a) Flush remaining commands to proxy
(Thread 1, b) Receive dirty buffers from proxy
(Thread 1, c) Reload OpenCL library
(Thread 1, d) Recreate OpenCL objects

0

1

2

3

4

5

Thread 1

T
im

e
(s

ec
on

ds
)

DeepCL

0.0

0.2

0.4

0.6

Thread 1

FAHBench

0.00

0.25

0.50

0.75

Thread 1

x264

(b) Post-migration

Figure 7: Application stoppage time. Pre-migration stoppage makes use of multiple threads to reduce stoppage time, but
post-migration stoppage cannot (Sections 4.3.1 and 4.3.2).

DeepCL
FAHBench
x264

 1 B
 4 B

 16 B
 64 B

256 B
 1 KiB
 4 KiB

 16 KiB
 64 KiB

256 KiB
 1 MiB
 4 MiB
 16 MiB
 64 MiB

256 MiB

cl_command_queue

cl_context

cl_device_id

cl_kernel

cl_mem
cl_platform_id

cl_program

Total

OpenCL object

D
at

a
tr

an
sf

er
re

d

(a) Pre-migration: OpenCL API state sent from guest
to proxy

 1 B
 4 B

 16 B
 64 B

256 B
 1 KiB
 4 KiB

 16 KiB
 64 KiB

256 KiB
 1 MiB
 4 MiB
 16 MiB
 64 MiB

256 MiB

cl_mem

OpenCL object

D
at

a
tr

an
sf

er
re

d

(b) Post-migration: dirty GPU
device memory sent from proxy
to guest

 1 B
 4 B

 16 B
 64 B

256 B
 1 KiB
 4 KiB

 16 KiB
 64 KiB

256 KiB
 1 MiB
 4 MiB
 16 MiB
 64 MiB

256 MiB
 1 GiB

cl_mem

OpenCL object

D
at

a
al

lo
ca

te
d

(c) Maximum GPU device mem-
ory allocated.

Figure 8: OpenCL API state breakdown. State transfer is bottlenecked by GPU device memory (cl_mem); the graph on the
right provides an upper bound on GPU device memory that could be transferred during either pre-migration or post-migration.

of OpenCL memory buffers (Section 4.1.1). GVT does not
yet support VM migration, whereas Crane is vendor inde-
pendent and will work on any platform supporting OpenCL,
including Intel’s.

Address Translation Services: The ATS specification [1, 7,
26] includes a standard wire protocol for performing (1) dirty
page tracking through page table entry dirty bit flipping
without host processor coordination, and (2) page faults de-
tected by the IOMMU and handled by the host processor.
ATS has been shown to work for integrated graphics offer-
ings that share a unified graphics and system memory [24].
However, neither of the high-performance GPU models used
in this paper (Section 6.1) support ATS. Crane supports all
GPU models both now and in the future, regardless of their
support for ATS extensions.

Virtualizing passthrough NIC devices: Numerous studies
have investigated enabling VM migration for passthrough
NICs [57, 28, 37]. However, all these approaches virtualize
at the driver-level, requiring modification of each driver that
is virtualized [37], thereby sacrificing vendor independence
(Section 3). To avoid guest driver modifications, SRVM [53]
modifies the hypervisor to track dirty DMA pages during
migration using VM introspection of the guest driver. How-
ever, tracking dirty pages with introspection requires polling
guest memory using a dedicated CPU in order to keep up
with the incoming packet rate. Crane avoids needing to
track DMA buffers entirely by instead tracking OpenCL
memory buffers and their dirty status (Section 4.1.1).

8. FUTURE WORK

8.1 Improving live migration performance
During live migration of the x264 video encoder in Sec-

tion 6.5, we experience poor OpenCL performance in API
remoting mode since we rely on a socket as a communication
medium between the proxy OS and the guest OS. While we
optimized the performance slightly by batching RPC calls,
we can also examine the benefits of using shared memory
as a communication medium between the proxy OS and the
guest OS instead, similar to other approaches that make use
of front-end virtualization techniques like API remoting [23,
39].

Several studies have investigated optimized forms of
inter-VM communication that make use of shared memory.
XenLoop is a paravirtualized approach that provides high
performance by avoiding guest-to-host switches that cause
TLB and cache flushes by forgoing page table remappings
used in other approaches (e.g. netfront-netback) [48].
XenLoop works by intercepting packets from the source
guest destined for guests on the same machine, and copies
the packets into a preallocated shared memory FIFO buffer.
Fido [11] aims to further reduce inter-VM communication
costs by eliminating data copies, which it achieves by
pre-mapping a read-only view of every other VM’s entire
physical memory at fixed virtual offsets. Pre-mapping elim-
inates page-mapping and data copying costs, but sacrifices
isolation guarantees of the data sender by exposing its
entire physical memory to the receiver. If all the software
in proxy guest OS is trusted, mechanisms like Fido can be
used in Crane; otherwise, it is safer to limit the scope of
potential guest data leaks to GPU communication by using
XenLoop.

8.2 Extending Crane to CUDA
The techniques used in Crane needed to support migra-

tion with fast passthrough GPU performance can be ex-
tended to support the CUDA framework. Both the CUDA
and the OpenCL API treat library-specific objects as opaque
handles, and do not allow manipulation of the underlying
data except via the library APIs. An API’s use of opaque
handles ensures we can achieve API remoting and state ex-
traction/reinjection without requiring application modifica-
tions, since we can interpose on the opaque handles when
referencing recreated or remote API objects. vCUDA [39]
takes advantage of opaque handles in CUDA to achieve API
remoting without application modifications.

8.3 Migration between heterogeneous GPU
models

In this paper, Crane built a universal mechanism for ex-
tracting GPU state, and reinjecting GPU state once the VM
has migrated to a new host with a new GPU. Since, state
extraction/reinjection is not tied to a specific GPU driver,
and is performed entirely in user space in vendor indepen-
dent portable OpenCL, the VM could instead reinject GPU
state into a new heterogeneous GPU. However, heteroge-
neous GPU migration will not work with Crane as is. GPUs
have different hardware limits such as GPU device memory
and levels of available parallelism. Migrating to a weaker
capacity GPU will cause the application to fail when it at-
tempts to use resources beyond what are available. In fu-
ture work, we will explore both application transparent and
non-transparent mechanisms for dealing with GPU hetero-
geneity.

9. CONCLUSIONS
We have described Crane, a solution to GPU virtualiza-

tion that provides both stop-and-copy and live VM migra-
tion while simultaneously achieving passthrough GPU per-
formance. Since Crane implements GPU virtualization us-
ing only vendor standardized OpenCL APIs, it achieves two
important benefits. First, Crane avoids application, hyper-
visor, and OS modifications. Second, Crane is vendor in-
dependent, thereby enabling virtualization of current and
future GPU models that support the OpenCL API without
any vendor support.

10. REFERENCES
[1] PCI express - address translation services revision 1.1.

2009.
[2] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,

J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
et al. TensorFlow: A system for large-scale machine
learning. In Proceedings of the 12th USENIX
Symposium on Operating Systems Design and
Implementation (OSDI). Savannah, Georgia, USA,
2016.

[3] K. Adams and O. Agesen. A comparison of software
and hardware techniques for x86 virtualization. ACM
SIGOPS Operating Systems Review, 40(5):2–13, 2006.

[4] Altera. Implementing FPGA design with the OpenCL
standard. Whitepaper, 2013.

[5] Amazon Web Services. EC2 Pricing.
https://aws.amazon.com/ec2/pricing/on-demand/.

https://aws.amazon.com/ec2/pricing/on-demand/

[6] Amazon Web Services. Linux Accelerated Computing
Instances. http://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/using_cluster_computing.html.

[7] AMD. AMD I/O virtualization technology (IOMMU)
specification. 2011.

[8] AMD Corporation. AMD FirePro S Series.
https://www.amd.com/Documents/
FirePro-S-Series-Datasheet.pdf.

[9] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In
ACM SIGOPS operating systems review, volume 37,
pages 164–177. ACM, 2003.

[10] A. L. Beberg, D. L. Ensign, G. Jayachandran,
S. Khaliq, and V. S. Pande. Folding@home: Lessons
from eight years of volunteer distributed computing.
In Parallel & Distributed Processing, 2009. IPDPS
2009. IEEE International Symposium on, pages 1–8.
IEEE, 2009.

[11] A. Burtsev, K. Srinivasan, P. Radhakrishnan,
K. Voruganti, and G. R. Goodson. Fido: Fast
inter-virtual-machine communication for enterprise
appliances. In USENIX Annual technical conference.
San Diego, CA, 2009.

[12] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer,
S.-H. Lee, and K. Skadron. Rodinia: A benchmark
suite for heterogeneous computing. In Workload
Characterization, 2009. IISWC 2009. IEEE
International Symposium on, pages 44–54. Ieee, 2009.

[13] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migration
of virtual machines. In Proceedings of the 2Nd
Conference on Symposium on Networked Systems
Design & Implementation - Volume 2, NSDI’05, pages
273–286, Berkeley, CA, USA, 2005. USENIX
Association.

[14] R. Collobert, K. Kavukcuoglu, and C. Farabet.
Torch7: A MATLAB-like environment for machine
learning. In BigLearn, NIPS Workshop, number
EPFL-CONF-192376, 2011.

[15] C. I. Dalton, D. Plaquin, W. Weidner, D. Kuhlmann,
B. Balacheff, and R. Brown. Trusted virtual platforms:
a key enabler for converged client devices. ACM
SIGOPS Operating Systems Review, 43(1):36–43, 2009.

[16] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith,
P. C. Roth, K. Spafford, V. Tipparaju, and J. S.
Vetter. The scalable heterogeneous computing
(SHOC) benchmark suite. In Proceedings of the 3rd
Workshop on General-Purpose Computation on
Graphics Processing Units, pages 63–74. ACM, 2010.

[17] Debian Wiki. KVM VGA Passthrough.
https://wiki.debian.org/VGAPassthrough.

[18] Y. Dong, M. Xue, X. Zheng, J. Wang, Z. Qi, and
H. Guan. Boosting GPU virtualization performance
with hybrid shadow page tables. In USENIX Annual
Technical Conference, pages 517–528, 2015.

[19] M. Dowty and J. Sugerman. GPU virtualization on
VMware’s hosted I/O architecture. ACM SIGOPS
Operating Systems Review, 43(3):73–82, 2009.

[20] P. Eastman, M. S. Friedrichs, J. D. Chodera, R. J.
Radmer, C. M. Bruns, J. P. Ku, K. A. Beauchamp,
T. J. Lane, L.-P. Wang, D. Shukla, T. Tye,

M. Houston, T. Stich, C. Klein, M. R. Shirts, and
V. S. Pande. OpenMM 4: A reusable, extensible,
hardware independent library for high performance
molecular simulation. Journal of Chemical Theory and
Computation, 9(1):461–469, 2013. PMID: 23316124.

[21] Google Cloud Platform. Graphics Processing Units
(GPU) | Google Cloud Platform.
https://cloud.google.com/gpu/.

[22] M. Gottschlag, M. Hillenbrand, J. Kehne, J. Stoess,
and F. Bellosa. LoGV: Low-overhead GPGPU
virtualization. In High Performance Computing and
Communications 2013 IEEE International Conference
on Embedded and Ubiquitous Computing
(HPCC_EUC), 2013 IEEE 10th International
Conference on, pages 1721–1726, Nov 2013.

[23] V. Gupta, A. Gavrilovska, K. Schwan, H. Kharche,
N. Tolia, V. Talwar, and P. Ranganathan. GViM:
GPU-accelerated virtual machines. In Proceedings of
the 3rd ACM Workshop on System-level Virtualization
for High Performance Computing, HPCVirt ’09, pages
17–24, New York, NY, USA, 2009. ACM.

[24] Y.-J. Huang, H.-H. Wu, Y.-C. Chung, and W.-C. Hsu.
Building a KVM-based hypervisor for a heterogeneous
system architecture compliant system. In Proceedings
of the12th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, pages
3–15. ACM, 2016.

[25] Hugh Perkins. DeepCL: deep convolutional networks
in OpenCL. http://deepcl.hughperkins.com/.

[26] Intel. Intel virtualization technology for directed I/O,
revision 2.4. 2016.

[27] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev,
J. Long, R. Girshick, S. Guadarrama, and T. Darrell.
Caffe: Convolutional architecture for fast feature
embedding. In Proceedings of the 22nd ACM
international conference on Multimedia, pages
675–678. ACM, 2014.

[28] A. Kadav and M. M. Swift. Live migration of
direct-access devices. SIGOPS Oper. Syst. Rev.,
43(3):95–104, July 2009.

[29] A. Krizhevsky, I. Sutskever, and G. E. Hinton.
Imagenet classification with deep convolutional neural
networks. In F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems 25, pages 1097–1105.
Curran Associates, Inc., 2012.

[30] KVM. Hotadd PCI Devices. http:
//www.linux-kvm.org/page/Hotadd_pci_devices.

[31] H. A. Lagar-Cavilla, N. Tolia, M. Satyanarayanan,
and E. de Lara. VMM-independent Graphics
Acceleration. In Proceedings of the 3rd International
Conference on Virtual Execution Environments, VEE
’07, pages 33–43, New York, NY, USA, 2007. ACM.

[32] Linux open-source community. Nouveau Open-Source
GPU Device Driver. http://nouveau.freedesktop.org/.

[33] Matt Kapko. How (and Why) Facebook Excels at
Data Center Efficiency.
http://www.cio.com/article/2854720/data-center/
how-and-why-facebook-excels-at-data-center-efficiency.
html.

[34] Microsoft Azure. N-Series GPU enabled Virtual
Machines. https://azure.microsoft.com/en-us/pricing/

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using_cluster_computing.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using_cluster_computing.html
https://www.amd.com/Documents/FirePro-S-Series-Datasheet.pdf
https://www.amd.com/Documents/FirePro-S-Series-Datasheet.pdf
https://wiki.debian.org/VGAPassthrough
https://cloud.google.com/gpu/
http://deepcl.hughperkins.com/
http://www.linux-kvm.org/page/Hotadd_pci_devices
http://www.linux-kvm.org/page/Hotadd_pci_devices
http://nouveau.freedesktop.org/
http://www.cio.com/article/2854720/data-center/how-and-why-facebook-excels-at-data-center-efficiency.html
http://www.cio.com/article/2854720/data-center/how-and-why-facebook-excels-at-data-center-efficiency.html
http://www.cio.com/article/2854720/data-center/how-and-why-facebook-excels-at-data-center-efficiency.html
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/series/#n-series

details/virtual-machines/series/#n-series.
[35] Netflix Inc. Distributed Neural Networks with GPUs

in the AWS Cloud. http://techblog.netflix.com/2014/
02/distributed-neural-networks-with-gpus.html.

[36] NVIDIA Corporation. Virtual GPU Technology -
NVIDIA GRID.
http://www.nvidia.ca/object/grid-technology.html.

[37] Z. Pan, Y. Dong, Y. Chen, L. Zhang, and Z. Zhang.
Compsc: Live migration with pass-through devices.
ACM SIGPLAN Notices, 47(7):109–120, 2012.

[38] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow,
M. S. Lam, and M. Rosenblum. Optimizing the
migration of virtual computers. SIGOPS Oper. Syst.
Rev., 36(SI):377–390, Dec. 2002.

[39] L. Shi, H. Chen, J. Sun, and K. Li. vCUDA:
GPU-accelerated high-performance computing in
virtual machines. IEEE Transactions on Computers,
61(6):804–816, June 2012.

[40] K. Simonyan and A. Zisserman. Very deep
convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556, 2014.

[41] Stanford University. FAHBench.
https://fahbench.github.io.

[42] H. Su, M. Wen, N. Wu, J. Ren, and C. Zhang.
Efficient parallel video processing techniques on GPU:
From framework to implementation. The Scientific
World Journal, 2014, 2014. Hindawi Publishing
Corporation, 19 pages.

[43] Y. Suzuki, S. Kato, H. Yamada, and K. Kono.
GPUvm: Why not virtualizing GPUs at the
hypervisor? In USENIX Annual Technical Conference,
pages 109–120, 2014.

[44] H. Takizawa, K. Koyama, K. Sato, K. Komatsu, and
H. Kobayashi. CheCL: Transparent checkpointing and
process migration of OpenCL applications. In Parallel
& Distributed Processing Symposium (IPDPS), 2011
IEEE International, pages 864–876. IEEE, 2011.

[45] K. Tian, Y. Dong, and D. Cowperthwaite. A Full
GPU Virtualization Solution with Mediated
Pass-Through. In 2014 USENIX Annual Technical
Conference (USENIX ATC 14), pages 121–132,
Philadelphia, PA, 2014. USENIX Association.

[46] VideoLAN. x264, the best H.264/AVC encoder.
http://www.videolan.org/developers/x264.html.

[47] J. P. Walters, A. J. Younge, D. I. Kang, K. T. Yao,
M. Kang, S. P. Crago, and G. C. Fox. GPU
Passthrough Performance: A Comparison of KVM,
Xen, VMWare ESXi, and LXC for CUDA and
OpenCL Applications. In 2014 IEEE 7th International
Conference on Cloud Computing, pages 636–643, June
2014.

[48] J. Wang, K.-L. Wright, and K. Gopalan. XenLoop: a
transparent high performance inter-VM network
loopback. In Proceedings of the 17th international
symposium on High performance distributed
computing, pages 109–118. ACM, 2008.

[49] Xen Wiki. Xen 4.2: XL and PCI pass-through.
https://wiki.xen.org/wiki/Xen_4.2:
_xl_and_pci_pass-through.

[50] Xen Wiki. Xen VGA Passthrough.
https://wiki.xen.org/wiki/Xen_PCI_Passthrough.

[51] S. Xiao, P. Balaji, J. Dinan, Q. Zhu, R. Thakur,
S. Coghlan, H. Lin, G. Wen, J. Hong, and W. c. Feng.
Transparent Accelerator Migration in a Virtualized
GPU Environment. In Cluster, Cloud and Grid
Computing (CCGrid), 2012 12th IEEE/ACM
International Symposium on, pages 124–131, May
2012.

[52] S. Xiao, P. Balaji, Q. Zhu, R. Thakur, S. Coghlan,
H. Lin, G. Wen, J. Hong, and W. c. Feng. VOCL: An
optimized environment for transparent virtualization
of graphics processing units. In Innovative Parallel
Computing (InPar), 2012, pages 1–12, May 2012.

[53] X. Xu and B. Davda. SRVM: Hypervisor support for
live migration with passthrough SR-IOV network
devices. In Proceedings of the12th ACM
SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments, VEE ’16, pages
65–77, New York, NY, USA, 2016. ACM.

[54] C.-T. Yang, J.-C. Liu, H.-Y. Wang, and C.-H. Hsu.
Implementation of GPU virtualization using PCI
pass-through mechanism. J. Supercomput.,
68(1):183–213, Apr. 2014.

[55] Y.-P. You, H.-J. Wu, Y.-N. Tsai, and Y.-T. Chao.
VirtCL: A framework for OpenCL device abstraction
and management. In Proceedings of the 20th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP 2015, pages 161–172,
New York, NY, USA, 2015. ACM.

[56] YouTube Creator Blog. Look ahead: creator features
coming to YouTube. https://01.org/igvt-g.

[57] E. Zhai, G. D. Cummings, and Y. Dong. Live
migration with pass-through device for Linux VM. In
Ottawa Linux Symposium, pages 261–268, 2008.

https://azure.microsoft.com/en-us/pricing/details/virtual-machines/series/#n-series
http://techblog.netflix.com/2014/02/distributed-neural-networks-with-gpus.html
http://techblog.netflix.com/2014/02/distributed-neural-networks-with-gpus.html
http://www.nvidia.ca/object/grid-technology.html
https://fahbench.github.io
http://www.videolan.org/developers/x264.html
https://wiki.xen.org/wiki/Xen_4.2:_xl_and_pci_pass-through
https://wiki.xen.org/wiki/Xen_4.2:_xl_and_pci_pass-through
https://wiki.xen.org/wiki/Xen_PCI_Passthrough
https://01.org/igvt-g

	Introduction
	Background
	GPU passthrough
	OpenCL programming

	Design
	Stop-and-copy migration
	Enabling stop-and-copy migration
	Live migration
	Enabling live migration
	Limitations

	Implementation
	Interposition library
	Tracking and extracting OpenCL state
	OpenCL object introspection API
	API remoting
	Reinjecting state

	Proxy domain
	Migration daemons
	Coordinating pre-migration
	Coordinating post-migration

	OpenCL library unloading
	Evaluation
	Platform
	OpenCL programs
	Data-parallel microbenchmarks
	User-facing OpenCL application
	Batch processing OpenCL applications

	Overhead from state-tracking
	Stoppage times
	Pre-migration stoppage time
	Post-migration stoppage time
	Total stoppage time
	State transfer

	Live migration performance

	Related work
	Future work
	Improving live migration performance
	Extending Crane to CUDA
	Migration between heterogeneous GPU models

	Conclusions
	References

