Accelerating Complex Data Transfer
for Cluster Computing

Alexey Khrabrov, Eyal de Lara
University of Toronto

HotCloud 2016

|:; UNIVERSITY OF
B8
b%d TORONTO

nnnnn

Motivation

e Data processing is now CPU-bound
» Software layers can’t leverage fast datacenter networks

— network responsible for as low as 2% of overall performance

[Ousterhout, K. et al., “Making sense of performance in data analytics frameworks”, NSDI'15]
e Data [de]serialization is one of the bottlenecks
— up to 26% of total CPU time

[Trivedi, A. et al., “On the [ir]relevance of network performance for data processing”, HotCloud’16]

— prevents from fully leveraging RDMA

UNIVERSITY OF

¥ TORONTO

header
field1l
field2
pointerl
pointer2

object2

Serialized data transfer

Source Node

Serialization

object3

>

auxiliary info
fieldl
field2
object2 data

object3 data

Transfer

—

|
|
j
|
j
j
|
|
j
|
!
P

Destination Node

auxiliary info

field1
field2
object2 data

Deserialization

object3 data

>

object?2

header

fieldl

field2
pointerl
pointer2

object3

Transfer time breakdown: complex data

TreeMap; size: 64 MB raw, 24 MB serialized; 10 Gbit/s

0.6-
L0.5- - B Data transfer
S 0.4- B Serialization
(@] . . .
Q0.3 B Deserialization
® 0.2-
i— 0.1-

L, === R

Serialized Raw
80% overhead

UNIVERSITY OF

% TORONTO (for 100 Gbit/s — 97%)

Transfer time breakdown: simple data

double[]; size: 80 MB; 10 Gbit/s

0.40 - ‘
» 0.35-

20.30- -
8 0.25-

$o0.20- -
o 0.15-

€ 0.10 -

N N

0.00 - ‘

Serialized Raw

B Data transfer
Bl Serialization
B Deserialization

65% overhead

UNIVERSITY OF

TORONTO

Eliminating data [de]serialization

e Reason: pointer-based data structures become invalid
when copied directly to another address space

— other reasons (e.g. different endianness) are irrelevant:
assume that all nodes have the same architecture

* General idea: shared cluster-wide virtual address space
* Compact allocation of objects to be copied together

— continuous regions copied in a single operation — RDMA-friendly

UNIVERSITY OF

" TORONTO

Compact object format and Direct transfer

Source Node Destination Node
[\ header header
— fieldl - field1
S| BN field2 TN field2
Q Q)
8 & pointerl —— e pointerl ——
Q pointer2 Transfer pointer2
o € : > €
L object2 object?2
S
3 < <
object3 object3
Y

UNIVERSITY OF

% TORONTO

Cluster-wide shared address space

 Virtual address space is huge -> can be shared
— 128 TB (2%7), potentially 23 bytes

e Limited version of DSM (distributed shared memory)

 DSM original goal: trade off performance
for transparency / ease of programming

* We use DSM to improve performance
(but increase programming complexity)

@ | UNIVERSITY OF

¥ TORONTO

Assumptions

 Immutable shared objects
— modifications of the original are not propagated
— not very restrictive: e.g. immutable RDDs in Spark

* No need to be completely transparent to programmer
— explicit management of global objects
— possible to hide most of the details inside the framework

UNIVERSITY OF

" TORONTO

Architecture GObject obj = new GObject(...);

i obj.data = new MyFancyClass(...);

; Global heap I
< » /...
Node 1 ' exclusive region '
’ , "] | obj.commit("key");
| obj | :
' orig d !
. i TR
| |
| A | | obj.release();
| (rare) | !
) . .
, | direct .
| Directory |-~ T oo soseoooooooooooooo- *-1 Coordinator |~
I | copy I .
| | :
(NG E ! | GObject obj = GHeap.get("key");
Node 2 : ! ! : |
- obj . MyFancyClass data = obj.data;
I I |
heap | copy IR/
| e—— exclusive region I
UNIVERSITY OFI phys mem I i Obj M Pelease () ;

¥ TORONTO 9

Global heap architecture

* Huge virtual address space region; the same on all nodes

* Partitioning: nodes allocate objects in own exclusive regions
— minimal amount of coordination required

* Mapping to physical memory on demand
* Objects identified by keys mapped to <node, vaddr>

e 3-stage object creation: (1) reserve space; (2) populate with
data; (3) commit (make available to other nodes)

* Explicit release of objects

%] UNIVERSITY OF

JVM-based implementation

* Prototype based on JamVM

— HotSpot (“standard” JVM) — in progress
* Most of functionality implemented in native methods
 Still need some JVM modifications

— memory allocator / garbage collector

— object header format
— bytecode interpreter / JIT compiler

* Details: in the paper

o
@] UNIVERSITY OF

¥ TORONTO

Evaluation

* Microbenchmark (performance of the mechanism alone)
* Transfer objects between 2 identical nodes

* Direct copy vs. serialized
— both standard Java serialization and Kryo

* HotSpot for serialized measurements,
JamVM for direct copy

* TCP transport, 10 Gbit/s; expect better results with RDMA

e QOverhead of JVM modifications: within 1%

UNIVERSITY OF

Y TORONTO

Evaluation: complex data (TreeMap)

w1
= — Kryo serialized
S 0.8 — Direct copy
7
© 06 i
e 0O , 10x
© 0.4 :
% 5.5x
= 0.2
0.0 - ‘ | ‘ | ‘ |
0 10 20 30 40 50 60
B NVERSITY oF Raw data size, MB
¥ TORONTO

13

Evaluation: simple data (double[])

— Serialized
% 0.4- ___ K iali d
= ryo serialize
S — Direct copy l
()
»w 0.3-
S 3.5x
= 3X
'f 0.2-
()]
k7
c
© 0.1
|_
0.0 - ‘ ‘ ‘ ‘ ‘ ‘ ‘ .
0 10 20 30 40 50 60 70 80
%?,Egﬁ NIVERSITY OF Raw data size, MB
¥ TORONTO

14

Evaluation: small simple objects

0.6-
5 — Serialized
[. .
3 0.5- — Kryo serialized
@ — Direct copy
= 0.4
P e I N
o 0.3
£
602 e i S | } |
"(7)) I | 1 1 T L T
s T T T T 1 1
- 0.1
|_
00 n | | | 1 [
0 100 200 300 400 500

Raw data size, bytes

UNIVERSITY OF

% TORONTO

Proposed applications

* Data processing frameworks: Spark, Hadoop, etc.
— optimize shuffle stages (data exchange between all nodes)
— possible scheduling improvements; data migration is now cheaper

* Distributed in-memory storage
— store complex data efficiently
— reduce latency of set/get operations

e Fast IPC and RPC

— zero-copy within one machine (using shared memory)

UNIVERSITY OF

" TORONTO

Current and future work directions

* Applications and macrobenchmarks

* RDMA

 Reliability / fault tolerance

e Storage considerations (spills to disk)

* Multiple address spaces for extremely large datasets

* Global heap space management,
other implementation details...

%] UNIVERSITY OF

Conclusion

e Data [de]serialization is a bottleneck;
doesn’t let us fully leverage fast network

* Designed a data transfer mechanism to avoid serialization
— main idea: shared cluster-wide virtual address space

* Use DSM to improve performance,
trading off increased programming complexity

e Evaluation shows significant (up to 10x) speedup of data transfer
* Will explore applications that can benefit from this mechanism

IIIIIIIIIIII

¥ TORONTO

Questions?

19

