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Motivation

e Data processing is now CPU-bound
» Software layers can’t leverage fast datacenter networks

— network responsible for as low as 2% of overall performance

[Ousterhout, K. et al., “Making sense of performance in data analytics frameworks”, NSDI'15]
e Data [de]serialization is one of the bottlenecks
— up to 26% of total CPU time

[Trivedi, A. et al., “On the [ir]relevance of network performance for data processing”, HotCloud’16]

— prevents from fully leveraging RDMA
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Transfer time breakdown: complex data

TreeMap; size: 64 MB raw, 24 MB serialized; 10 Gbit/s
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Transfer time breakdown: simple data

double[]; size: 80 MB; 10 Gbit/s
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Eliminating data [de]serialization

e Reason: pointer-based data structures become invalid
when copied directly to another address space

— other reasons (e.g. different endianness) are irrelevant:
assume that all nodes have the same architecture

* General idea: shared cluster-wide virtual address space
* Compact allocation of objects to be copied together

— continuous regions copied in a single operation — RDMA-friendly
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Compact object format and Direct transfer
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Cluster-wide shared address space

 Virtual address space is huge -> can be shared
— 128 TB (2%7), potentially 23 bytes

e Limited version of DSM (distributed shared memory)

 DSM original goal: trade off performance
for transparency / ease of programming

* We use DSM to improve performance
(but increase programming complexity)
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Assumptions

 Immutable shared objects
— modifications of the original are not propagated
— not very restrictive: e.g. immutable RDDs in Spark

* No need to be completely transparent to programmer
— explicit management of global objects
— possible to hide most of the details inside the framework
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Architecture GObject obj = new GObject(...);

i obj.data = new MyFancyClass(...);
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Global heap architecture

* Huge virtual address space region; the same on all nodes

* Partitioning: nodes allocate objects in own exclusive regions
— minimal amount of coordination required

* Mapping to physical memory on demand
* Objects identified by keys mapped to <node, vaddr>

e 3-stage object creation: (1) reserve space; (2) populate with
data; (3) commit (make available to other nodes)

* Explicit release of objects
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JVM-based implementation

* Prototype based on JamVM

— HotSpot (“standard” JVM) — in progress
* Most of functionality implemented in native methods
 Still need some JVM modifications

— memory allocator / garbage collector

— object header format
— bytecode interpreter / JIT compiler

* Details: in the paper
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Evaluation

* Microbenchmark (performance of the mechanism alone)
* Transfer objects between 2 identical nodes

* Direct copy vs. serialized
— both standard Java serialization and Kryo

* HotSpot for serialized measurements,
JamVM for direct copy

* TCP transport, 10 Gbit/s; expect better results with RDMA

e QOverhead of JVM modifications: within 1%
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Evaluation: complex data (TreeMap)
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Evaluation: simple data (double[])
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Evaluation: small simple objects
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Proposed applications

* Data processing frameworks: Spark, Hadoop, etc.
— optimize shuffle stages (data exchange between all nodes)
— possible scheduling improvements; data migration is now cheaper

* Distributed in-memory storage
— store complex data efficiently
— reduce latency of set/get operations

e Fast IPC and RPC

— zero-copy within one machine (using shared memory)
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Current and future work directions

* Applications and macrobenchmarks

* RDMA

 Reliability / fault tolerance

e Storage considerations (spills to disk)

* Multiple address spaces for extremely large datasets

* Global heap space management,
other implementation details...
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Conclusion

e Data [de]serialization is a bottleneck;
doesn’t let us fully leverage fast network

* Designed a data transfer mechanism to avoid serialization
— main idea: shared cluster-wide virtual address space

* Use DSM to improve performance,
trading off increased programming complexity

e Evaluation shows significant (up to 10x) speedup of data transfer
* Will explore applications that can benefit from this mechanism
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