
Accelerating Complex Data Transfer
for Cluster Computing

Alexey Khrabrov, Eyal de Lara
University of Toronto

HotCloud 2016

Motivation

• Data processing is now CPU-bound

• Software layers can’t leverage fast datacenter networks

– network responsible for as low as 2% of overall performance
[Ousterhout, K. et al., “Making sense of performance in data analytics frameworks”, NSDI’15]

• Data [de]serialization is one of the bottlenecks

– up to 26% of total CPU time
[Trivedi, A. et al., “On the [ir]relevance of network performance for data processing”, HotCloud’16]

– prevents from fully leveraging RDMA

1

Serialized data transfer
…

…

object2
…

…

object3
…

…

header

field1

field2

pointer1

pointer2

o
b

je
ct

1

Serialization

…

object2 data
…

object3 data
…

…

auxiliary info

o
b

je
ct

1

d
at

a field1

field2

…

…

object2
…

…

object3
…

…

header

field1

field2

pointer1

pointer2

o
b

je
ct

1

Deserialization

…

object2 data
…

object3 data
…

…

auxiliary info

o
b

je
ct

1

d
at

a field1

field2
Transfer

Source Node Destination Node

2

Transfer time breakdown: complex data

TreeMap; size: 64 MB raw, 24 MB serialized; 10 Gbit/s

3

80% overhead
(for 100 Gbit/s – 97%)

Transfer time breakdown: simple data

double[]; size: 80 MB; 10 Gbit/s

4

65% overhead

Eliminating data [de]serialization

• Reason: pointer-based data structures become invalid
when copied directly to another address space

– other reasons (e.g. different endianness) are irrelevant:
assume that all nodes have the same architecture

• General idea: shared cluster-wide virtual address space

• Compact allocation of objects to be copied together

– continuous regions copied in a single operation – RDMA-friendly

5

Compact object format and Direct transfer

…

object2
…

object3
…

…

header

field1

field2

pointer1

pointer2

o
b

je
ct

1

G
lo

b
al

 H
ea

p
 O

b
je

ct

…

object2
…

object3
…

…

header

field1

field2

pointer1

pointer2

o
b

je
ct

1

Transfer

Source Node Destination Node

6

Cluster-wide shared address space

• Virtual address space is huge -> can be shared
– 128 TB (247), potentially 263 bytes

• Limited version of DSM (distributed shared memory)

• DSM original goal: trade off performance
for transparency / ease of programming

• We use DSM to improve performance
(but increase programming complexity)

7

Assumptions

• Immutable shared objects

– modifications of the original are not propagated

– not very restrictive: e.g. immutable RDDs in Spark

• No need to be completely transparent to programmer

– explicit management of global objects

– possible to hide most of the details inside the framework

8

Global heap

Node 1

Local
heap

obj
orig
obj
orig

exclusive region

Node 2

Local
heap

…
obj

copy

exclusive region

Coordinator

GObject obj = new GObject(...);

obj.data = new MyFancyClass(...);
//...

obj.commit("key");

//...

obj.release();

GObject obj = GHeap.get("key");

MyFancyClass data = obj.data;

//...

obj.release();

direct
copy

obj
orig

9

Directory

(rare)
phys mem

phys mem

Architecture

Global heap architecture

• Huge virtual address space region; the same on all nodes

• Partitioning: nodes allocate objects in own exclusive regions
– minimal amount of coordination required

• Mapping to physical memory on demand

• Objects identified by keys mapped to <node, vaddr>

• 3-stage object creation: (1) reserve space; (2) populate with
data; (3) commit (make available to other nodes)

• Explicit release of objects

10

JVM-based implementation

• Prototype based on JamVM
– HotSpot (“standard” JVM) – in progress

• Most of functionality implemented in native methods

• Still need some JVM modifications
– memory allocator / garbage collector

– object header format

– bytecode interpreter / JIT compiler

• Details: in the paper

11

Evaluation

• Microbenchmark (performance of the mechanism alone)

• Transfer objects between 2 identical nodes

• Direct copy vs. serialized
– both standard Java serialization and Kryo

• HotSpot for serialized measurements,
JamVM for direct copy

• TCP transport, 10 Gbit/s; expect better results with RDMA

• Overhead of JVM modifications: within 1%

12

Evaluation: complex data (TreeMap)

13

10x

5.5x

Evaluation: simple data (double[])

14

3x
3.5x

Evaluation: small simple objects

15

Proposed applications

• Data processing frameworks: Spark, Hadoop, etc.

– optimize shuffle stages (data exchange between all nodes)

– possible scheduling improvements; data migration is now cheaper

• Distributed in-memory storage

– store complex data efficiently

– reduce latency of set/get operations

• Fast IPC and RPC

– zero-copy within one machine (using shared memory)

 16

Current and future work directions

• Applications and macrobenchmarks

• RDMA

• Reliability / fault tolerance

• Storage considerations (spills to disk)

• Multiple address spaces for extremely large datasets

• Global heap space management,
other implementation details…

17

Conclusion

• Data [de]serialization is a bottleneck;
doesn’t let us fully leverage fast network

• Designed a data transfer mechanism to avoid serialization

– main idea: shared cluster-wide virtual address space

• Use DSM to improve performance,
trading off increased programming complexity

• Evaluation shows significant (up to 10x) speedup of data transfer

• Will explore applications that can benefit from this mechanism

18

Questions?

19

