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Abstract

The ability to move data quickly between the nodes of
a distributed system is important for the performance
of cluster computing frameworks, such as Hadoop and
Spark. We show that in a cluster with modern network-
ing technology data serialization is the main bottleneck
and source of overhead in the transfer of rich data in sys-
tems based on high-level programming languages such
as Java. We propose a new data transfer mechanism that
avoids serialization altogether by using a shared cluster-
wide address space to store data. The design and a proto-
type implementation of this approach are described. We
show that our mechanism is significantly faster than se-
rialized data transfer, and propose a number of possible
applications for it.

1 Introduction

Modern distributed computational systems are becoming
more and more CPU-bound [[12]. In contrast with the
common belief that I/O (network and disk) operations are
usually the main bottleneck, new network technologies,
such as InfiniBand, allow bandwidths of up to 100 Gbit/s,
and the advent of RDMA (remote direct memory access)
has drastically shrunk the latency gap between remote
and local memory accesses.

In this paper, we show that for distributed applica-
tions running modern clusters the main bottleneck for
data transfer is data serialization, which is a CPU-bound
operation. This is especially the case for complex data
structures used by high-level programming languages.

Data serialization is the process of translating objects
into an intermediate format such that the object can be
reconstructed from it on another machine. Many of the
reasons for serialization, such as the ability to transfer
data between machines with different word size or en-
dianness, are becoming irrelevant. We can assume that
a modern cluster consists of nodes with the same hard-
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ware architecture. The only real reason for serialization
is that pointer-based data structures become invalid when
copied directly to another address space.

This paper introduces a novel fast data transfer mech-
anism that avoids data serialization altogether by using
a shared cluster-wide address space to store objects that
can be transferred between nodes. This approach pre-
serves the validity of object pointers even as they get
copied to another node. The objects are allocated in a
special “compact” manner. They occupy contiguous re-
gions of address space (similar to the serialized repre-
sentation), which makes them amenable for fast network
transfer, especially with RDMA.

The idea of a shared cluster-wide address space has
been around for many years. An extreme version even
uses the same address space for disk storage [13]. Dis-
tributed shared memory (DSM) systems reduce program-
ming complexity by providing a consistent single-image
view of the system. Effectively, these approaches trade
performance for transparency. In contrast, we forego
transparency in favour of performance. We require pro-
grammers to manage objects explicitly, and only leverage
shared memory to increase performance by allowing di-
rect copy of pointer-based data structures between nodes.

Many of the modern cluster computing systems (such
as Hadoop [1]] and Spark [2]) are based on Java Virtual
Machine (JVM) languages such as Java and Scala. That
is why our implementation targets the JVM, although the
idea of our direct object transfer mechanism is not spe-
cific to any programming language or platform. The im-
plementation involves modifying the JVM, the memory
management subsystem in particular.

We have implemented this novel object transfer mech-
anism for the JVM and evaluated its performance. It can
speedup object transfer up to 5x compared to optimized
serialization using Kryo [4] and up to 10x compared to
standard Java serialization, on a 5.5 Gbit/s network.

The rest of the paper is organized as follows. In
Section [2| we discuss the motivation behind the paper



and present an analysis of Java serialization performance
compared to potential performance of direct transfer.
Section [3] describes design and implementation of the
proposed mechanism. Section [ contains performance
evaluation of our implementation. In Section [5] we pro-
pose a few potential applications of this mechanism. Sec-
tion [6] compares this paper to related work. Section [7]
concludes the paper and describes future work directions.

2 Motivation

Modern cluster computing systems such as Spark and
their workloads tend to be CPU-bound [12]. For in-
stance, improving network I/O performance can only
affect overall performance by less than 2% for typical
workloads. Based on these observations, we conclude
that optimizing CPU-bound operations such as data seri-
alization is a reasonable way to improve performance of
cluster computing systems.

Before moving on to experimental data, let us briefly
discuss some general aspects of data serialization perfor-
mance. Serialization is almost always sequential, so it
does not scale with increasing number of CPUs. Serial-
ization of complex data structures such as binary trees is
also not cache-friendly. Serialization of even the simplest
objects requires an extra in-memory copy of the whole
object on both the source and the destination nodes: to
network buffers on the source, and from network buffers
on the destination. In contrast, when data is transferred
directly (without serialization) and via RDMA, there are
no extra copies, and CPU is not involved.

Java serialization performance measurements were
performed using OpenJDK 8 as the Java class library and
HotSpot (in server mode) as the JVM. We used Kryo [4]
- apopular (e.g. used by Apache Spark) custom fast seri-
alization library. Experiments were run on two identical
machines (the sender and the receiver) with the following
hardware configuration: 8-core Intel Xeon L5420 CPU
@2.5Hz with 16 GB of RAM, running Linux 3.16.7 ker-
nel, connected with 1 Gbit/s and 10 Gbit/s (the actual
bandwidth was 5.5 Gbit/s) Ethernet.

We used both simple (array of integers) and complex
(a TreeMap with integer keys and arrays of strings as
values) data. Figures [T] and [2] represent the time break-
down of serialized transfer compared to the time taken
to transfer raw object data. Results are averaged over 50
measurements; the standard deviation is within 10%.

Serialization and deserialization take a significant por-
tion of transfer time - up to 60% for simple data and up to
90% for complex. Raw data takes more time to send over
the network since the serialized representation of objects
is smaller. However, total transfer time is significantly
smaller for raw data. Based on these results, we expect
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Figure 2: Transfer time breakdown for complex data

that our proposed mechanism will be able to significantly
speedup object transfer.

3 System Design and Implementation

We assume that the object transfer mechanism does not
have to be completely transparent to the programmer.
Objects shared among the nodes should be managed ex-
plicitly by either the application or the framework.

Shared objects are assumed to be immutable in the fol-
lowing sense. After an object is created on one node and
copied to another node, modifications of the original ob-
ject are not propagated. This requirement is not very
restrictive in practice since common cluster computing
frameworks operate with immutable objects.

The system should be implemented without any
changes to the programming language. An example of
such change is adding a new keyword to identify shared
objects (as in PGAS languages [6]). Changing the pro-
gramming language requires modifications of the com-
piler and the class file format at great engineering cost.

3.1 Programming model

Our data transfer mechanism introduces the notion of the
global heap - a virtual address space region that is used
to store shared objects. The global head is mapped to the
same predefined range of virtual addresses in all the JVM
processes that take part in the computation. The global
heap architecture is illustrated in Figure 3]

We will use the term “global heap object” to denote the
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whole complex object or collection that can be shared be-
tween nodes. The contents of global heap objects (Java
objects linked by pointers) are allocated in a compact
way such that the whole global heap object occupies a
contiguous memory range (illustrated in Figure [).

Each global heap object is located at a unique address,
so when it is copied between nodes, no conflicts are pos-
sible. When a global heap object is created, an address
range is reserved in the global heap. This range is re-
leased when all the copies of the object are destroyed.
Object destruction can be performed either explicitly or
implicitly (in a deferred fashion) using Java finalizers.
We plan to explore the possibility of automatic garbage
collection in the global heap in our future work.

In order to use our mechanism, the application has to
perform some operations in a special way. In particular,
it needs to let the JVM know which objects must be allo-
cated on the global heap. Object creation is divided into
three stages (described in Figure3): (1) reserving space
in the global heap; (2) populating the object with data;
(3) making it available to other nodes (commit). The ob-
ject becomes immutable after the commit operation.

Programming interface on the Java level is provided
via special native methods implemented inside the JVM
itself. They can access the JVM internal state such as
memory allocator metadata. This allows us to avoid sig-
nificant modifications of the bytecode interpreter.

Global classes (objects of which can be stored in the
global heap) need to be registered before usage. Note
that all the classes, instances of which are to be shared,
must be registered, including classes of entries of vari-

// Source side:

// Reserve space in the global heap
GObject obj = new GObject(...);

// Populate the object with data

obj.data = ...;

// Make the object avatlable to other nodes
obj.commit ("key");

obj.release();// no longer in use

// Destination side:
// Obtain a copy of the object
GObject obj = GHeap.get("key");

obj.release();// no longer in use

Figure 5: Global heap object creation and transfer

ous collections, which are usually declared private. We
rely on reflection to automate registration of such aux-
iliary classes. Developers can also use Java annotations
to declare their own classes as global instead of making
registration calls in runtime.

3.2 Distributed global heap coordination
and accessing remote objects

The global heap is designed in a way that minimizes the
amount of distributed coordination and synchronization.
Our design is inspired by multithreaded memory alloca-
tors such as Hoard [8]]. The global heap is partitioned
among the nodes: at every point in time, each node has
a set of exclusive address space ranges that are used to
allocate global heap objects created on this node. As a
result, most of the time, allocation is performed entirely
locally by each node. Furthermore, each node’s exclu-
sive heap is partitioned in the same fashion between the
threads running on the node.

Global heap ranges for exclusive allocation are re-
quested from the centralized coordinator service dynam-
ically on demand and released when they are no longer in
use. Distributed coordination is limited to reserving and
releasing these (large) heap ranges. Dynamic partition-
ing scheme allows our mechanism to be used in dynamic
cluster topologies and elastic cloud deployments.

Shared object are located using the object address and
the node network address. This location information
can be obtained either using a separate communication
mechanism or the location service (key-object mapping)
provided by the system. In the latter case, our system can
be viewed as a distributed key-value store. Currently, our
implementation only supports TCP transport; each node
runs a TCP server servicing requests for object data. We
plan to implement RDMA support in the near future.



3.3 JVM modifications

We have implemented our fast object transfer mechanism
for JamVM [3]] - a lightweight open source Java virtual
machine. It is significantly simpler than HotSpot [S] (the
reference implementation of the JVM), that is why we
chose it for the initial prototype. We are currently work-
ing on the HotSpot-based implementation.

Each Java object’s binary representation has a pointer
to its class object containing the class metadata. These
class pointers are the only type of “external” (point-
ing outside of the global heap) pointers that cannot be
avoided. We store unique class IDs in object headers in-
stead of pointers. The JVM maintains the class pointer
table; class IDs act as indices into this table. IDs are
assigned to classes on registration, so the order of regis-
tration must be the same on all the nodes.

For each global heap object created on the current
node, the JVM maintains its own dedicated (small) mem-
ory heap for the address range reserved for this object.
The memory allocator determines which range to allo-
cate from using the context information (object currently
being populated) stored in the Java thread. When the
JVM allocates memory for objects, it dispatches the al-
location to the corresponding heap range.

Since there is no need to free individual small objects
or perform garbage collection within these ranges, mem-
ory is allocated using simple “bump pointer” method.
The ranges are discarded as a whole when objects are re-
leased. This simplicity leads to our memory allocation
mechanism being generally faster than ordinary JVM
memory allocation and garbage collection.

Since we have changed the semantics of some of low-
level JVM operations (namely dereferencing the class
pointer), we had to modify a small part of the byte-
code interpreter. Besides that, we had to modify the
garbage collector (GC) in order to disable it for the global
heap. JamVM uses a conservative GC - when discover-
ing “live” objects, it treats all object fields that look like
pointers into the Java heap as object references. Pointers
into the global heap are simply ignored.

4 Evaluation

To evaluate the performance of our object transfer mech-
anism we designed the following benchmark. We com-
pare time taken to transfer objects between two nodes
with serialization (using both Kryo and standard Java se-
rialization) and directly using our mechanism. The ex-
periments were conducted on the hardware described in
Section [2] with a 5.5 Gbit/s network. For direct copy
measurements we used a modified version of JamVM
2.0 and GNU Classpath 0.99 as Java class library (due to
compatibility issues with OpenJDK). We used the same
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Figure 7: Serialization vs. direct copy for complex data

types of data as in experiments in Section[2]

The results are presented in Figures [6] [7] and [§] All
measurements are averaged over 50 runs; error bars
represent the standard deviation. As we can see from
the graphs, direct object transfer achieves significant
speedups: up to 5x compared to Kryo and up to 10x
compared to standard serialization for complex data, and
up to 2.5x for simple data. We expect even more sig-
nificant speedup with higher network bandwidth (e.g. 40
Gbit/s) and using RDMA as the transport.

Figure [§| represents the results for small objects. For
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data sizes of a few hundred bytes (in case of simple ob-
jects), our mechanism performs worse than Kryo, but
still better than standard serialization. Our implemen-
tation can be further optimized to minimize the fixed (in-
dependent of data size) overhead.

In order to estimate the overhead of JVM modifica-
tions, we used a test program that populates a data struc-
ture (TreeMap with objects as keys and values), serializes
and deserializes it in memory. We chose this test because
it involves a lot of memory allocations (during deserial-
ization) and accesses to class metadata (to determine if
each object is serializable); these are the two operations
that we modified in the JVM. We measured total execu-
tion time for unmodified JamVM and for our modified
version. The results of this experiment showed that the
overhead is negligible - within 1% for all the runs.

5 Applications

As we already mentioned, one example of a system that
could benefit from our fast data transfer mechanism is
the Apache Spark [15] [2] cluster computing framework.
One of the main bottlenecks in typical Spark workloads
are shuffle operations that require data transfer between
all the nodes. Optimizing data transfer with our proposed
mechanism can significantly speed up shuffle operations.

Another example is distributed in-memory key-value
stores. Our mechanism would significantly reduce the
latency of get and set operations in the case when val-
ues are complex objects (instead of small primitives such
as numbers and strings).

Our approach is not limited to data transfer between
different machines. It can also be used to improve per-
formance of local IPC (inter-process communication) be-
tween processes running on the same machine. Here we
can go further than only getting rid of serialization: ob-
jects to be transferred can be stored in shared memory,
which will provide a very fast zero-copy IPC mechanism
for complex data transfer.

6 Related Work

There are many existing implementations of distributed
Java virtual machines that target large-scale computa-
tional clusters. Some of them are also based on the idea
of a shared address space [7]. However, the existing sys-
tem is based on a full-featured DSM and requires hard-
ware support in order to have good performance. Our
approach is more suited for a specific problem of fast mi-
gration of complex data structures, and does not require
a sophisticated underlying DSM system.

PGAS (partitioned global address space) languages [6]
are based on the programming model with a global ad-

dress space divided into regions shared between pro-
cesses and regions local to one process. Separation into
local heaps for each node and one global heap is very
similar to PGAS. However, there are significant differ-
ences: (1) our mechanism doesn’t involve programming
language modifications; (2) PGAS model has more strict
consistency properties, leading to worse performance.

As RDMA becomes a more popular and mature tech-
nology, researchers are adopting existing distributed sys-
tems to benefit from RDMA and are designing new
ones. Notable examples include in-memory key-value
stores [9] [10] and efforts to support RDMA in clus-
ter computing frameworks [11]. Design of these sys-
tems is mostly focused on a different (from traditional
TCP sockets) network communication paradigm. Our
approach is not specific to RDMA, although would ben-
efit the most from RDMA-capable hardware.

Project Tungsten [14] is an effort by Apache Spark de-
velopers to improve memory management performance
in Spark. The main idea is re-implementing standard
Java collections using “unsafe” interfaces provided by
the JVM. These new collections are allocated in native
memory and are not managed by the JVM. They benefit
from decreased memory footprint and improved cache
locality. Our approach is similar in a way that it also
involves lower-level JVM-related optimizations. How-
ever, our mechanism allows using existing Java collec-
tions. The two approaches can be combined to achieve
even better performance improvements.

7 Conclusion

In this paper we describe a novel approach for fast trans-
fer of complex pointer-rich data structures between the
nodes of a distributed system. The approach is based on
avoiding serialization of data (which is the main bottle-
neck given modern high-speed networks) by providing a
global cluster-wide virtual address space to store shared
objects. This mechanism can significantly speedup trans-
ferring large datasets, although it adds programming
complexity (due to explicit management of shared ob-
jects) in order to achieve performance benefits.

This fast data transfer mechanism can be applied to
improve performance of various distributed applications
such as cluster computing frameworks and distributed
in-memory key-value stores. Another possible applica-
tion is a fast IPC mechanism for transferring complex
objects between different processes running on the same
machine. We are planning to explore these and other ap-
plications in our future work.

One of the important aspects that we leave out of scope
of this paper is fault tolerance, which we currently as-
sume to be the responsibility of the application. Fault tol-
erance is among the main directions of our future work.
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