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Abstract

Cloud data centers operate at very low utilization rates re-
sulting in significant energy waste. Oasis is a new approach
for energy-oriented cluster management that enables dense
server consolidation. Oasis achieves high consolidation ra-
tios by combining traditional full VM migration with par-
tial VM migration. Partial VM migration is used to densely
consolidate the working sets of idle VMs by migrating on-
demand only the pages that are accessed by the idle VMs
to a consolidation host. Full VM migration is used to dy-
namically adapt the placement of VMs so that hosts are free
from active VMs. Oasis sizes the cluster and saves energy by
placing hosts without active VMs into sleep mode. It uses a
low-power memory server design to allow the sleeping hosts
to continue to service memory requests. In a simulated VDI
server farm, our prototype saves energy by up to 28% on
weekdays and 43% on weekends with minimal impact on
the user productivity.

1. Introduction

Electricity consumption by data centers is steadily increas-
ing. In 2013, US data centers alone consumed 91 billion
kilowatt-hour, or the equivalent of the annual output of 34
coal-fired power plants. Remarkably, this demand is antici-
pated to increase by over 50% by 2020 .

While virtualization technology was intended to increase
resource utilization, the reality is that cloud data centers op-
erate at very low utilization rates. For example, a recent
study of Amazon’s EC2 [16] reports average server utiliza-
tion over a whole week of only 7.3%.

CPU power management technologies like Dynamic
Voltage and Frequency Scaling (DVFES) have drastically

Uhttp://www.nrdc.org/energy/files/data-center-efficiency-assessment-
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reduced CPU energy consumption. However, other server
components such as DRAM, motherboard and peripherals,
have come to dominate overall energy usage during low uti-
lization periods. As a result, idle servers consume 60% of
their peak power [3].

Suspending idle VMs to disk and powering down under-
utilized hosts is not preferred because it causes disruptions to
applications. Cloud services such as Hadoop, Elasticsearch
and Zookeeper require that members of a cluster send peri-
odic heartbeat messages to maintain membership in the clus-
ter. User applications such as VoIP and remote desktop ac-
cess clients, and background processes such as data repli-
cation services, require their VMs to remain always on and
network present despite their idle state.

VM migration is a more attractive solution since it causes
minimal disruptions to applications. Migrating VMs from
under-utilized physical hosts and then turning idle hosts off
has been proposed to achieve energy-proportionality at the
cluster level [25]. A simple approach used by previous works
is live VM migration [5, 15, 22, 28]. Unfortunately, full VM
migration requires the target host to have enough resource
slack to accommodate the oncoming VMs, resulting in low
consolidation ratios. Moreover, migrating an entire VM with
gigabytes of memory state creates network congestion and
incurs in long migration latencies.

Partial VM migration [4] has been used to save en-
ergy in desktop deployments by consolidating desktop VMs
densely. Partial VM migration consolidates only the work-
ing set of idle VMs and lets VMs fetch their memory pages
on-demand. The desktop transitions from low-power sleep
mode to full-power mode, in order to service the page re-
quests from its migrated partial VM, and returns to low-
power. This approach does not work for hosts with co-
located VMs for two reasons. First, as some VMs in the host
become idle, others remain active and prevent the host from
sleeping. Second, even when all the VMs in the host become
idle and their working sets are consolidated, the frequency of
aggregate on-demand page requests from the multiple VMs
greatly limits the server sleeping opportunities.

This paper introduces Oasis, a new approach to energy-
oriented cluster management that makes dense server con-
solidation possible. Oasis achieves high consolidation ratios
by combining traditional full VM migration with partial VM



migration. Partial VM migration is used for dense consolida-
tion of idle VMs. Full VM migration is used to free servers
from hosting active VMs that prevent sleep. Oasis augments
the partial VM migration technique with a low-power mem-
ory server that enables its host to continue to service memory
page requests while the host is in sleep mode.

We evaluated our prototype on a simulated cluster of vir-
tual desktop servers (VDI) using usage traces collected from
real desktop users. Our results show that Oasis reduces en-
ergy usage by up to 28% on weekdays and 43% on weekends
with minimal impact on user experience.

This paper makes the following contributions: (i) it in-
troduces a new energy-oriented VM consolidation approach
that uses a hybrid approach that combines full and partial
VM migration to achieve high consolidation density; (ii) it
shows that this approach can save significant energy for a va-
riety of workloads; and, (iii) it introduces a low-power mem-
ory server that can efficiently serve memory requests.

The remainder of this paper is organized as follows. §2
provides an overview of live and partial VM migration. §3
introduces hybrid server consolidation. §4 describes the
implementation of our prototype and presents results from
micro benchmark experiments. §5 presents results from
our trace-driven simulation of cluster deployments of Oasis.
Finally, §6 and §7 discuss related work and conclude the

paper.

2. Background

VM migration has been employed for consolidation of idle
VMs. Previous works [5, 15, 22, 24, 25, 28] have used either
live migration of full VMs [6] or partial migration of VMs.

Live VM migration refers to migration of VMs with min-
imal downtime. Live migration is implemented with one of
two approaches: pre-copy live migration and post-copy live
migration. Pre-copy live migration iteratively copies pages
from source to destination while the VM runs at the source.
The first iteration copies all pages to the destination. In sub-
sequent iterations only pages dirtied by the VM’s execution
during the previous iteration are copied. Once the set of dirty
pages is small or the limit of iterations exceeded, the VM is
suspended and all pages and execution context transferred
to the destination. The VM’s execution starts at the desti-
nation and its resources are released from the source. Post-
copy live migration [11] starts by suspending the VM at the
source and transferring its execution context to the desti-
nation host, where the VM resumes execution. Memory is
actively pushed from the source while the VM executes on
the destination. When the VM accesses pages that have not
yet arrived at the destination, pages are faulted in from the
source.

Both methods migrate the VMs in full, which requires the
destination to have enough resource capacity and thus limits
consolidation density. Full VM migration is also slow and

restricts the cluster controller’s ability to consolidate VMs
over short idle intervals.

Partial VM migration consolidates only the VMs’ idle
working sets. It takes advantage of the observation that idle
VMs access only a small fraction of their full memory allo-
cation. For example, Figure 1 shows the aggregate memory
accesses of three VM that were allowed to become idle after
an initial warm-up period. Two of the VMs are respectively
configured as a Web server and a database server to run the
popular RUBIS 2 benchmark, which emulates an online auc-
tion site. The third VM runs a remote desktop environment
with Linux, a mix of multiple LibreOffice applications, and
a Web browser with multiple open tabs. Each VM was con-
figured with 4 GiB of memory and a 12 GiB disk image.
Over the course of an idle period of 1 hour, the Web and
database VMs accessed 37.6 MiB and 30.6 MiB out of the
4 GiB memory allocation, respectively. By comparison, the
desktop VM accessed 188.2 MiB. This corresponds to less
than 5% of their nominal memory allocation.

Partial VM migration operates as follows. When VMs are
active they run on their home hosts where their full memory
footprint resides in DRAM. When the VMs becomes idle,
their idle mode working sets (pages that are accessed dur-
ing the idle time) are migrated on-demand to consolidation
hosts where the VMs then run. Migration to the consolida-
tion host starts by suspending the VM at its home and trans-
ferring to the consolidation host only the execution context
and VM meta-data needed to create and initiate execution
of a partial VM. This VM lacks most of its memory and
its execution causes it to access missing pages. Similar to
post-copy migrations, these pages are faulted in from the
home host. However, unlike the post-copy migration, partial
VM migration does not actively push all VM pages to the
destination. When the home server is idle, it is suspended
into sleep mode. When the partial VM faults on a page, the
home server is awakened to service the page request and kept
awake only for the duration of received requests.

Partial VM migration was originally applied to saving en-
ergy in office environments by consolidating idle desktops.
In this scenario, when the VM becomes active again (be-
cause the user started to interact with it), it is migrated back
to its home host (i.e., the user’s desktop). Migration away
from the consolidation host is fast because only the pages
modified during VM execution on the consolidation server
are transferred. This approach ensures that active VMs can
deliver full performance while idle VMs run their applica-
tions with minimal resources.

While this approach yields substantial sleep opportuni-
ties for a host that is home to a single VM, sleep opportu-
nities disappear when multiple VMs are co-located on the
same home. Figure 2 contrasts the sleep opportunities avail-
able to a host serving page requests for a single database
VM and one serving requests for ten VMs, five consisting

2 http://rubis.ow2.org/
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Figure 1. Memory access pattern for an idle desktop, a Web
server and a database VM.

of databases and five consisting of Web servers. The aver-
age page request inter-arrival time goes from 3.9 minutes in
the case of a single VM to 5.8 seconds in the case of 10
co-located VMs. This is nearly the same time it takes for a
commercial server to transition between low- and full-power
modes 3, effectively preventing the server from taking ad-
vantage of any sleep opportunities. This result shows that us-
ing servers that transition between low-power and full-power
modes to service page requests will have limited opportuni-
ties to sleep and we will show in §§ 3.3 how low-power mem-
ory servers can support host sleep in these environments.

3. Hybrid Server Consolidation

Qasis is a new approach for energy-oriented cluster manage-
ment and achieves high consolidation ratios. Our approach
combines traditional full VM migration with partial VM mi-
gration. Each host is augmented with a low-power mem-
ory page server that can efficiently serve VM memory state
while the host sleeps. Oasis is predicated on the following
assumptions:

1. Consolidation ratio (the number of VMs per host) is
limited by the memory demands of VMs as opposed
to other resources, e.g., CPU. Modern hypervisors have
better over-subscription support for CPU than memory.
Over-committing CPU by a factor of 3 is regarded as
a safe practice [17]. On the other hand, sophisticated
memory sharing techniques, such as ballooning and de-
duplication, enable memory over-commitment by only a
factor of 1.5 [2].

2. The virtual disks of VMs are network hosted.

3. An active VM requires all its memory state to be present
on the host’s memory in order to achieve good perfor-
mance.

3 Our prototype server takes 3.1s to suspend to RAM and 2.3s to resume.
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Figure 2. Server sleeping opportunities with 1VM vs. 10
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Figure 3. An Oasis cluster with compute and consolidation
hosts

4. An idle VM requires only a small fraction of its memory
state to be present on the host’s memory (see §2).

5. Servers include support for low-power sleep mode (e.g.,
ACPI S3).

The rest of this section describes the approach we use
for VM consolidation, including placement decisions made
when VMs change between active and idle state, and when
consolidation hosts exhaust their memory capacity, and dis-
cuss the design of a low-power memory server that is neces-
sary to support energy-oriented server consolidation.

3.1 Consolidation Approach

We consider a VM to be in one of two states: active or idle.
A VM is active any time it needs to access a large fraction of
the assigned system resources (e.g. memory, CPU) in order
to process the ongoing workloads (e.g. an Elasticsearch clus-
ter member processing large volumes of incoming queries).
Conversely, A VM is idle if it accesses a small fraction of as-
signed system resources (e.g. elasticsearch cluster member
sending and receiving periodic ping messages to maintain
membership in the cluster). To determine a VM’s idleness,
we can monitor its resource usage. For example, one metric
for memory usage is VM page dirtying rate which can be
monitored from the hypervisor [9].

A cluster consists of compute hosts and consolidation
hosts (Figure 3). A new VM is created in a compute host
which becomes the VM’s current home. At any time, each



host may run a mix of active and idle VMs. Compute hosts
and consolidation hosts can be in one of several power
modes:

® powered — the host is fully powered and running VMs;

® Jow-power/sleep — the host is using minimal power to
maintain the context and cannot run VMs;

e jn-transit — the host is transitioning between low-power
and powered modes.

Next, we discuss the consolidation and power manage-
ment policies of the cluster manager. The cluster manager
determines when to migrate a VM, where to migrate the VM,
how to migrate the VM, and when to place hosts in either
powered or low-power modes. The cluster manager makes
migration plans at periodic intervals. The size of an interval
is a configurable parameter.

When to migrate: The cluster manager consolidates
VMs only when it determines that doing so can save en-
ergy. Consolidation decisions are made periodically. At the
beginning of each interval, the manager searches for an al-
ternative VM placement plan that minimizes the number of
powered hosts. If a better plan than the current one is found,
the manager initiates VM migrations to realize the new plan.

How to migrate: The cluster manager aims to minimize
the application performance degradation caused by VM mi-
grations. Because partial VMs request memory pages from
remote hosts, their applications can suffer from visibly de-
graded performance that is unacceptable for an active user
(Figure 6). As such, partial VM migration is used only on
idle VMs. Active VMs are migrated in full to consolidation
hosts. We use pre-copy live migration [6] because it offers
minimal performance degradation to active workloads dur-
ing migration.

Where to migrate: Because VMs states and their re-
source demands vary over time, the search of an optimal VM
placement is an NP-hard problem. In this paper, we take a
simple greedy approach. First, we sort the compute hosts by
their total VM memory demand (or by their migration costs)
in ascending order and form a queue of hosts to vacate. We
find a plan that vacates the maximum number of compute
hosts from the queue.

The destination for each migrating VM is selected at
random from the consolidation hosts list. Whether a host can
become a destination of a VM depends on whether that host
has enough memory capacity. More sophisticated placement
algorithms that optimize specific goals, such as reducing
memory fragmentation, is not the focus of this paper. Note
that migration decisions could also be based on resources
other than memory, e.g. network and storage.

When to sleep: For a compute host, if all its VMs are
migrated out, it enters low-power sleep mode. Hosts with
active VMs running on them should never sleep. A consoli-
dation host is in sleep mode by default and is awakened only
to accommodate incoming VMs.

3.2 Changes to Consolidated VM State

The state of a VM in a consolidation host can change over
time. An active VM that was consolidated in full, can be-
come idle. Conversely, an idle VM that was only partially
consolidated can become active. When VM state changes
occur, we use one of the following policies:

1. Default — consolidated VMs remain on the consolida-
tion host until the VMs exhaust the host’s capacity. The
host capacity can be exhausted when partial VMs be-
come active and require the full memory commitment or
when they request additional resources as their idle work-
ing sets grow. When the consolidation host’s capacity is
exhausted, the cluster manager wakes up the requesting
VM’s home host and returns all of its VMs. This strat-
egy is based on the observation that, once a host is awake
there is little benefit in leaving its partial VMs on the con-
solidation hosts. In fact, doing so is wasteful because the
partial VMs utilize the memory of their home (equal to
the VM’s full footprint) as well as the memory on the
consolidation host (equal to the idle VM’s working set).
Migrating back all full VMs that were originally homed
on the awake host creates additional space on the consol-
idation hosts.

When a partial VM becomes active and the consolidation
host has the sufficient resources, the full memory foot-
print of the VM is transferred from its previous home into
its current host which becomes the VM’s new home.

2. FulltoPartial — is a refinement of the Default policy
above. When a full VM becomes idle in a consolidation
host, it is fully migrated to its home host. The home host
is awakened temporarily to accommodate the incoming
full VM. The VM is then partially migrated back to the
same consolidation host and its home returns to sleep
mode. Essentially, the consolidation host exchanges a
full idle VM for a partial VM. This step is used to free
memory on the consolidation host for future incoming
VMs and, as we will show in §5, it leads to significant
energy savings in our evaluation.

3. NewHome —is arefinement on FulltoPartial. When a par-
tial VM becomes active and exhausts the consolidation
host’s capacity, it migrates to any other compute or con-
solidation host that is currently powered and is capable
of accommodating it. If no free host is available, we use
the same strategy as Default, i.e., wake up the VM’s home
host and migrate back all its VMs. The results of § 5 show
that, contrary to our intuition, this optimization turned out
to have little additional benefit over FulltoPartial.

3.3 Low-Power Memory Page Server

In §2 we showed that consolidating multiple partial VMs
from the same home host causes enough page requests to
prevent the host from sleeping. To ensure that the home host
is able to sleep, we design a server architecture that embeds a



low-power memory server on the host hardware. This design
enables compute hosts to remain asleep while continuing to
service page requests from their partial VMs.

We considered two design alternatives for the memory
server. In the first, each host implements its own low-power
memory server and uses an internal bus for control. In the
second, hosts share a network accessible memory server.
When each host is about to sleep, it must transfer the full
memory of its consolidated partial VMs to the memory
server (full VM migrations). As shown previously [4], doing
full VM migrations saturates the network and does not scale.
As such, we implement per-host memory servers, which im-
prove agility in realizing VM placement plans.

A low-power memory server serves memory pages while
the host is in sleep mode. Such a server must meet the
following requirements: i) it only consumes a fraction of the
host’s power, ii) it has access to the memory pages of the
host’s VM, iii) it has access to the network. The processor
and memory demands of the memory server itself are modest
since it does not run VMs and only needs to keep up with the
page request rate.

There are several options to implement the memory
server. One option is to extend the service processor that is
built into many servers, e.g., HP iLO [13], Dell DRAC [12].
The service processor is powered independently and is net-
work reachable. However, current architectures must be ex-
tended to support direct access to the host’s memory.

An alternative is to use a programmable network inter-
face(NIC) with RDMA capabilities. Unfortunately, existing
RDMA cards require the hosts to be fully powered to read
their memory. This is partly because RDMA targets high
performance applications where high bandwidth and low la-
tency, as opposed to energy efficiency, are the priority.

Any of the above approaches could keep the host’s mem-
ory in low-power self-refresh mode, only switching individ-
ual DIMMs into high power mode momentarily when serv-
ing requests for pages stored on them.

A commercial implementation of a low-power memory
server requires modifications on the host motherboard. In-
stead, we build our prototype using existing hardware by
augmenting a standard host with a low-power computing
platform and a dual mounted SAS drive. We discuss the pro-
totype in detail in § 4. Our results show that even with such a
sub-optimal implementation, our approach can yield signifi-
cant energy savings( §5).

4. Prototype

Our prototype consists of a cluster manager, virtual machine
hosts, and network storage for the VM images and config-
urations. Each host contains an agent, a hypervisor and a
memory server. Figure 4 provides an overview. We imple-
mented partial VM migration and reintegration on the Xen
hypervisor.

Compute Host

4-Core Intel Xeon CPU
128GiB RAM

Host
Agent VM

| Xen Hypervisor |

1GigE SAS
NIC Controller

| HP SAS Disk
300GiB__J

Low-power Memory Server
2-Core Intel Atom CPU

[Dual-port SAS
Backplane

e

2GiB RAM

Memory Server |
Process

Ubuntu OS

1GigE SAS
NIC Controller

Figure 4. Oasis Prototype Overview

4.1 The Cluster Manager

The cluster manager is responsible for VM creation, migra-
tion and shutdown, and switching the hosts between power
modes. It provides an RPC interface that clients use to cre-
ate and manage VMs. Clients create VMs by issuing a re-
quest which includes the path of a VM configuration file in
the network storage. Each VM configuration file contains a
unique four digit vmid used to identify the VM, the path to
the VM'’s disk image, memory allocation, number of virtual
CPUs, and device configuration such as network and virtual
frame buffer. The manager parses the VM configurations,
identifies a host with sufficient resources to accommodate
the VM, and issues a VM creation call to the agent of the se-
lected host which, in turn, starts the VM. The agent becomes
the owner of the VM.

The cluster manager receives periodic statistics about
the host and VM performances from the host agents. Each
agent reports the host’s memory, CPU, and I/O utiliza-
tion. It also reports per VM statistics, including memory
allocation and resource utilization. The manager uses the
policy discussed in §3 to determine whether to migrate
virtual machines. When the manager detects an opportu-
nity for consolidation, it sends a list of tuples to the agent
consisting of < wvmid, migration_type, destination >,
where migration_type is either partial or full migration
and destination is the host identified to receive the VM.
Once the agent completes the migration tasks, the manager
notifies the agent to suspend the host into sleep mode if
it has no running VMs. When the manager determines to
place a VM on a host that is currently in sleep mode(either
because a partial VM has become active and requires extra
resources, or because a new VM is created by a client), the
manager wakes up the corresponding host with a network



Wake-on-LAN before issuing the migration or creation call
to the agent.

4.2 The Host Agent

The host agent is a user level process that runs on the admin-
istrative domain of the host (dom0). It performs host level
power management operations using the host’s ACPI [14]
interface, performs host-to-host VM migration, and collects
host and VM performance statistics using Xen’s xenstat in-
terface.

Partial VM migration. When an agent receives a call to
partial migrate a VM to another host, it suspends the VM,
uploads the VM’s memory to its memory server and pushes
the VM’s descriptor (including its page tables, configuration
and execution context) to the destination host. The receiving
agent creates a partial VM with only the frames needed for
the received page tables, initializes vCPUs and schedules
the VM. When setting up the page tables of a partial VM,
the hypervisor marks its page entries as absent which causes
page faults whenever the VM attempts to access the pages.

For each partial VM, the host agent creates a memtap user
level process that is responsible for handling VM page faults
and retrieving pages from the corresponding memory server.
The memtap is configured with the host and the port number
of the memory server containing the pages belonging to the
VM. Page fault handling in Xen was extended to allocate
frames on-demand and, via an event channel, notify the
corresponding memtap process of the pseudo-physical page
number of the faulting page and the machine address of the
frame on which to store the page. The hypervisor allocates
frames at the granularity of a chunk consisting of 2 MiB
in order to reduce fragmentation of the host’s heap. Once a
page is fetched, memtap updates the local frame and notifies
the hypervisor to re-schedule the suspended vCPU. While a
partial VM runs on the destination host, the VM’s ownership
remains with the agent of the source host, which controls the
memory server responsible for the VM’s memory image.

Full VM migration. When the agent receives a full mi-
gration request from the manager, it initiates live VM migra-
tion [6] to the destination. Once live VM migration is com-
pleted the agent frees all resources previously allocated to
the VM, including any memory state uploaded to the mem-
ory server. The destination becomes the owner of the VM.

VM reintegration. When migrating a partial VM, the
consolidation host’s agent suspends the VM’s execution and
pushes the partial VM’s memory to the destination. If the
destination is the owner of the VM, where its full memory
is resident in DRAM, only the dirty state is pushed. The
consolidation host uses shadow page tables to track dirty
pages of each partial VM. When migrating a partial VM to
its owner, the destination reintegrates the dirty state with the
full VM memory and returns the VM into execution rapidly.
The source then releases the resources that were allocated to
the partial VM.

4.3 The Memory Server

We prototype the memory server by pairing a low-power
ASUS ATSIONT-I computing platform with an x86 rack
server. The memory server is connected to the host via a
shared hot-swappable Serial Attached (SAS) hard drive. Be-
fore entering low-power mode, the host attaches the drive,
writes out all of its VMs’ memory pages, detaches the drive
and notifies the low-power processor. The low-power pro-
cessor, attaches the drive and activates its server daemon
which services network page requests by their guest pseudo
frame numbers. When the host wakes up and its VMs are re-
turned, it notifies the memory server’s daemon to stop serv-
ing pages and detach the shared drive. The SAS interface
provides fast write speeds necessary for the host to push
VM memory and to enter sleep mode with minimal delay.
It also ensures that memory transfer traffic from the host to
the memory server does not reach the datacenter network.
In our experiments, the interface was capable of sustaining
throughput of 128 MiB/s of sequential writes.

The memory server is equipped with a 1.8 GHz dual-core
Intel Atom D525 processor, 2 GiB RAM, a Gigabit NIC, and
a 320 GiB internal disk. A CS Electronics ADP-4000 hot-
swappable SAS backplane adapter was used to support dual
connections from the host and memory server to a shared
HP Entry 516814B21 SAS drive with 300 GiB capacity.
The host and the memory server use HighPoint RocketRAID
SAS controllers (models 2720SGL and 2640SGL) to con-
nect to the SAS adapter. To ensure data consistency, only
one device mounted the shared disk at a time.

Memory upload optimizations. When uploading VM
memory images to the shared disk, our prototype employs
two strategies to reduce the upload latency. First, it uses
per-page compression to reduce the page sizes. Each page
is compressed using the Lempel-Ziv-Oberhumer [21] real-
time compression library before it is written to the mem-
ory image and only the memtap process of the partial VM
decompresses it when servicing a page fault. The memory
server accesses and transmits the compressed pages. Sec-
ond, it performs differential upload, a refinement that uses
dirty page tracking to identify and send only the pages that
have been dirtied by their VMs since the previous upload to
the memory server.

Security. Because the memory server exposes the con-
tents of VMs memory to the network, it is important to en-
sure that only authorized memtap processes are able to ac-
cess each VM’s memory. Without any security mechanism
in place, local area hosts can access VM memory by re-
questing pages from the memory server, or by eavesdropping
on packets transmitted between the server and memtap pro-
cess. To prevent these attacks the page server and memtap
client should implement authentication and and encryption
using Transport Layer Security (TLS) [8]. The establishment
of connections between a client and server using TLS fol-
lows a handshake process that establishes the authenticity of



the server and client, and the parameters for encryption of
the data to be transferred. Authentication can be established
through the use of certificates issued by the enterprise’s IT
administrator.

4.4 Micro Benchmarks

In this section we use a micro benchmark to characterize the
performance of our prototype. We compare the performance
of full and partial migration in terms of migration latency
and network bandwidth. We also measure the latency for
reintegrating a partial migrated VM back to its home server
and the performance degradation that a user experiences if
their partial-migrated VM is left to run on the consolidation
host once it becomes active.

4.4.1 Experimental Setup

We use two enterprise-class servers, and a low-power plat-
form to act as a memory server. The first server is built from
custom components to ensure that it is capable of using S3
low-power mode. Few off-the-shelf servers are known to
support low-power modes. The server is built with compo-
nents including a Supermicro X9DAi1 motherboard, two 2.4
GHz quad-core Intel Xeon(R) E5-2609 CPUs, 128 GiB of
DRAM, 1 GigE NIC, and a 1 TB SATA hard drive.

The memory server consists of the ASUS ATSIONT-
I platform and the independently powered SAS drive that
is shared with the host using the architecture described in
§84.3.

The second server is an off-the-shelf HP ProLiant DL560
Gen8 with a 2.20GHz 8-core Intel(R) Xeon(R) CPU ES-
4620 and 512 GiB of DRAM, 1 GigE NIC, and a 300 GiB
drive. Because this server lacks support for S3, it is desig-
nated as the consolidation host and always remains powered.
Only the custom host is suspended into low-power when its
VMs are consolidated. We envision production deployments
of Oasis to consist largely of servers that support low-power
sleep mode. The hosts and the memory server are connected
over a Gigabit Ethernet network.

Device State | Time (s) Power (W)

Idle | N/A 102.2

20 VMs | N/A 137.9

Custom host Suspend | 3.1 138.2

Resume | 2.3 149.2
Sleep (S3) | N/A 12.9
Memory server Idle | N/A 27.8
SAS drive Idle | N/A 14.4

Table 1. Energy profiles and S3 transition times.

Table 1 shows the energy profile of our custom host and
memory server components. We measure the power of the
host system when it is fully idle, hosting 20 active VMs, in
sleep mode, and transitions between full and sleep. When the
host is in sleep mode, the combined power use of the host
and memory server components (55.1 W) does not exceed
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Figure 5. Consolidation latencies for one VM.

the power of an idle host (102.2 W), which indicates an
opportunity to save power through consolidation. Arguably,
a production memory server implementation would have a
much lower power footprint by forgoing the SAS drive and
using a more power-efficient processor.

The experiments consisted of a deployment of remote
desktop VMs on the custom server, which migrate between
the two servers. Each desktop VM was configured with 4
GiB of RAM, 12 GiB disk image hosted on an NFS share,
and ran the GNOME desktop environment. After initial de-
ployment on the custom host, the VM’s were primed using
a script that loads the applications of Workload 1 described
in Table 2. The workload mimics a heavily multitasking user
who concurrently runs multiple applications. Once all appli-
cations in Workload 1 were loaded, the VM became idle for
five minutes, after which it was partial migrated to the con-
solidation server. Partial migration includes uploading the
VM pages to the memory host and the VM descriptors to
the consolidation host. When VMs ran on the consolidation
host, page faults were serviced by on-demand page transfers
from the memory server. The partial VMs ran on the consoli-
dation host for twenty minutes, after which they were reinte-
grated to the custom server. During VM reintegrations, only
dirty pages that were modified by the partial VM were trans-
ferred back to the custom host to update the old VM memory
image. When VMs started running again on the custom host,
they performed the tasks listed in Workload 2. This step was
used to emulate the event in which users become active and
interact with their VMs. Once Workload 2 operations were
completed, the VMs remained idle for another five minutes
and were partial migrated to the consolidation host for the
second time. Note that while the VMs were idle, they contin-
ued to run background tasks with low activity (e.g., e-mail
client fetches messages periodically, IM client sends keep
alive messages). Repeated consolidations were used to eval-
uate the improvements gained by differential memory up-
load optimization discussed in §§ 4.3.



Workload | Applications
Workload 1
Acid3 Web standard compliance test [10]).
Workload 2

Thunderbird mail, Pidgin IM, LibreOffice with three documents, Evince with an open PDF, and Firefox with five
open sites (CNN.com, Slashdot.com, Maps.Google.com, the SunSpider JavaScript benchmark [26], as well as

Adds: Shopping.HP.com, CDW.com, BBC.co.uk/news, and TheGlobeAndMail.com to Firefox; three office
documents to LibreOffice; a PDF document to Evince.

Table 2. Desktop workloads.

4.4.2 Consolidation Latencies

Figure 5 shows consolidation latencies for a single VM using
both full and two iterations of partial VM migration for
the workloads describes above. Results are averages over 3
runs. The full VM migration experiment accounts for the
time it takes to live migrate the VM’s complete memory
image to the consolidation host. The partial migration results
include the time to upload the VM memory to the memory
server as well as the time to upload the VM descriptor to
the consolidation host. The plot also shows the reintegration
times for the two partial migration iterations.

As was expected, partial migration is faster than full mi-
gration. While it takes an average of 41 s to fully migrate
our VM, it only takes 15.7 s and 7.2 s to partial migrate after
executing the first and second workloads, respectively. The
second partial migration benefits from the differential mem-
ory transfer optimizations, which for this use case manages
to reduce the time to upload memory to the memory server
from 10.2 s to 2.2 s. An alternative implementation of the
memory server with access to the host’s memory could the-
oretically reduce the partial migration latency even further to
the time it takes to upload the VM descriptor to the consol-
idation host, which is about 5.2 s on our platform. Finally,
reintegration latency (the time it takes to migrate a partial
VM back to its host of origin) is also low (3.7s on average
for our two scenarios).

4.4.3 Network Traffic

Partial migration generates much less network traffic com-
pared to full migration. Whereas fully migrating our VM
required sending its 4 GiB memory images over the net-
work, partial migration transmits only 16.0+0.5 MiB to cre-
ate the VM on the consolidation host, and 56.94+7.9 MiB
to fetch memory on-demand to support its execution on the
consolidation host. VM reintegration required transferring
175.3+£49.3 MiB of dirty memory. The amount of dirty state
that needs to be reintegrated exceeds the total state migrated
to the consolidation host because Oasis implements an op-
timization that obviates the transmission of memory pages
that will be completely overwritten, e.g., new memory allo-
cations, recycled file buffers [4].

4.4.4 Idle to Active Transition

Since memory is fetched on demand, applications run in
partial VMs suffer from performance degradation. Figure 6
compares the latencies for starting a number of applications
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Figure 6. Application start-up latency.

that are commonly used in virtual desktop (VDI) deploy-
ments. The figure shows that there is little latency for appli-
cations running on full VMs. In contrast, desktop applica-
tions take up to 111 times longer to start in partial VMs. For
example, starting the LibreOffice document takes 168 sec-
onds. In contrast, pre-fetching all the VM’s remaining state
takes only 41 seconds on our testing environment. Given
these results, when a partial VM becomes active, our pol-
icy is to convert it into a full VM by either bringing the re-
maining VM pages to the consolidation host (Default policy
for consolidation host with spare capacity), reintegrating the
VM into its home host (Default policy for saturated consol-
idation host), or migrating the VM in its entirety into a new
available host (NewHome policy).

4.5 Discussion

Our memory server prototype is built with a full-fledged PC
that can run the SAS adaptor and a shared SAS disk. This
setup is not optimal in terms of cost, performance and energy
consumption. Nevertheless, our evaluation shows that we
can achieve significant energy-savings with this sub-optimal
setup( §5).

We expect that a commercial implementation would reuse
the host memory, which eliminates memory transfer cost and
allows the host transition to sleep faster. Also, the full fledge
PC can be replaced with an embedded implementation that
uses a more energy-efficient processor.

5. Evaluation

In this section, we use trace-driven simulation to evaluate the
potential for Oasis to save energy in a cluster deployment.



While Oasis supports the consolidation of arbitrary server
workloads, we evaluate its performance in the context of a
virtual desktop infrastructure (VDI) server farm. We answer
the following research questions:

1. How much idleness is there in a VDI deployment?
2. Does Oasis save energy in VDI clusters?

3. How effective are the FulltoPartial and NewHome migra-
tion policies?

4. How large are the network transfers of hybrid server
consolidation?

5. What is the user perceived latency of consolidation?
6. How sensitive is Oasis performance to cluster size?

7. How much extra energy could be save with a more opti-
mal memory server implementation?

5.1 Simulation Environment

We simulate an Oasis cluster consisting of a standard server
rack with 42 identical 1U servers connected through a top-
of-rack 10GigE switch. Each host has a low-power memory
server as described in §§ 4.3. All hosts share the same energy
profile shown in Table 1. Every host is designated to act
as either a home host or as a consolidation host. When a
home host is in S3 mode, its low-power memory server is
turned on and consumes power. Low-power memory servers
attached to consolidation hosts are not used and are therefore
not powered at any time.

We configured 30 hosts to act as home hosts, and var-
ied the number of consolidation hosts between 2 and 12.
Each home host was assigned to host 30 VMs. We assigned
each VM 4 GiB RAM and 1 vCPU. The VM’s virtual disk
is hosted by a separate well-provisioned network-attached
storage system.

The simulations assume that a full VM requires all of its
RAM, i.e., the host guarantees its 4 GiB RAM is present. For
a partial VM, its memory consumption is randomly sampled
from the distribution collected from [4] which shows that the
mean working set of idle desktop VMs with 4 GiB RAM was
only 165.63 £ 91.38 MiB, less than 4% of VM’s allocated
memory. Base on the data reported in [7], we assume that
fully migrating a 4 GiB VM over 10 GigE takes 10s. For
partial migrations, we use the conservative parameters from
4.4.2. Partially migrating an idle VM (including memory
upload) takes 7.2s and resuming a partial VM takes 3.7s.
Suspending a server to RAM takes 3.1s and resuming takes
2.3s(Table 1).

To drive the simulation, we use a trace consisting of the
user desktop activity collected on the desktops and laptops
of 22 researchers over a period of four months [4]. We used
a Mac OS X tracker to record every 5 seconds whether
the user was active or idle. User activity was detected by
polling for keyboard or mouse activity. The trace encompass
2086 user days, of which 1542 days are weekdays and 544
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Figure 7. Number of active VMs and fully powered host
over a simulation day for a cluster of 30 home and 4 consol-
idation hosts. We use the FulltoPartial policy in this simula-
tion run.

weekends. In each simulation run, we randomly sample 900
user weekdays from traces, align them into one day and treat
them as if there are 900 different users. We repeat the same
process for weekends. Each user-day is then divided into 5-
minute intervals. For each interval, if there is any keyboard
or mouse activity, we mark that interval as active, or idle
otherwise.

5.2 VM Activity and Cluster Sizes

In this section, we show that our hybrid consolidation ap-
proach is able to adapt the size of the cluster to closely match
the mix of active and idle VMs found in our traces through-
out the course of the day. Figure 7 shows the variation in the
number of active VMs over a sampled weekday and week-
end. For the weekdays, there are diurnal activity patterns:
The level of activity reaches its peak at around 2pm and
keeps falling until it arrives at the bottom at 6.30am. Inter-
estingly, there are never more than 411 (46%) active VMs
simultaneously. Unsurprisingly, we see lower activity rates
over the weekends.

Figure 7 also shows how well FulltoPartial policy adapts
the size of the cluster with the number of active VMs. Other
policies (not shown) show similar ability to adapt the size of
the cluster. The figure plots the total number of fully pow-
ered hosts (both home and consolidation) over a simulation
day. The number of fully powered hosts goes down when
the VMs are consolidated and the hosts transition into sleep
mode, and goes up when the level of VM activity resumes.
At one point, all 900 VMs get consolidated into just three
consolidation hosts when the number of active VMs reaches
its lowest level.

5.3 Energy Savings

Figure 8 shows the energy savings for different Oasis poli-
cies on a cluster consisting of 30 home hosts as we vary the
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Figure 8. Energy savings for a simulation day for a cluster
of 30 home hosts.

number of consolidation hosts. Results are the averages of
five different runs. The plot also shows small standard devi-
ations, represented with error bars on each data point.. The
savings are normalized over the energy consumed by the
home hosts if left powered for the duration of the simula-
tion.

Energy savings increase initially as we add more consol-
idation hosts until we have sufficient capacity to host all idle
(and a few active) VMs and then level off. Across all poli-
cies, the best energy savings gain with the minimal number
of consolidation hosts is achieved with four consolidation
hosts. We use this configuration for the rest of the evaluation
unless stated otherwise.

The results show that the approach that makes exclusive
use of partial VM migration (OnlyPartial) achieves very lim-
ited energy savings (about 6%). This is not surprising be-
cause on average all of the VMs assigned to a home host
are simultaneously idle only 13% of the time. The basic
approach that simply combines full migration with partial
migration (Defaulf) when consolidating host performs only
marginally better. This approach ends up running too many
full VMs on the consolidation hosts and, as a result, achieves
limited consolidation ratios. In contrast, the FulltoPartial ap-
proach, which migrates consolidated full VMs that become
idle back to their home hosts and re-consolidates them back
as partial VMs, increases power savings to 28% on week-
days and 43% on weekends. FulltoPartial takes advantage of
the fact that consolidated full VMs often become idle after a
short period of time, and that re-consolidating them as par-
tial VMs can free more memory on the consolidation hosts,
which can be re-used to accommodate additional VMs. The
increase in the consolidation ratio can be seen in Figure 9.
For example, the median number of VMSs running on a con-
solidation host (the 50% on the CDF plot) increases from 60
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Figure 10. Weekday data transfer breakdown

with the pure Default approach to 93 with the FulltoPartial
policy.

Somewhat surprisingly, the more complex NewHome pol-
icy does not achieve additional saving beyond the FulltoPar-
tial policy. This is also evident in Figure 9 in the overlap
of plot lines for the two policies. Therefore, we forego the
NewHome policy and use the FulltoPartial policy in the rest
of our evaluation.

5.4 Network Traffic

Figure 10 shows a breakdown of the network transfer vol-
umes of various policies. The figure shows that the Full-
toPartial policy leads to an increase in both partial and full
migration traffic. The extra traffic results from the migrations
of the consolidated full VMs that become idle back to their
home(s) and then re-consolidating them as partial VMs, as
well as the migrations of any additional full and partial VMs
that can now be accommodated in the newly freed space.
In effect, the FulltoPartial policy trades energy for network
traffic. We argue that this is an acceptable trade-off for the
deployments where the home and consolidation hosts are co-
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Figure 11. Idle—Active transition delay distribution for
different combinations of home and consolidation host num-
bers.

located on the same rack and the bandwidth among hosts is
abundant.

5.5 User Perceived Latency

When the users resume their activity, their VMs are expected
to possess all their assigned resources and deliver fast re-
sponses. Any delay of the VMs acquiring resources impacts
the user experience. We collected the latency distribution of
all idle—active delays in our simulation(Figure 11). If the
transition happens in a full VM, the latency is zero since the
VM has already acquired all its assigned resources. This type
of transitions takes the majority of the cases. Interestingly, as
we increase the number of consolidation hosts from 2 to 12,
the probability of zero latency drops from 75% to 38% be-
cause it is more likely for a transitioning VM to reside in
a consolidated host which incurs the VM re-integration la-
tency. More interestingly, when transitions happen in a par-
tial VM, the impact of VM re-integrations is small. Users
can expect to experience the delay of less than four seconds.
Even in the worst case when there is a VM resume storm,
the reintegration latency only reaches up to 19s (99.99 per-
centile). We believe that the low probability and the small
magnitude of VM re-integration latencies have limited im-
pact on user productivity.

Memory Server Energy Saving
Power(Watt) | Weekday | Weekend
Current Prototype 42.2 28% 43%
16 34% 59%
8 37% 65%
4 39% 66%
2 41% 67%
1 41% 68%

Table 3. Alternative memory server implementations
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Figure 12. Sensitivity analysis with different cluster sizes.

5.6 Results Sensitivity and Generality

Table 3 explores the benefits of alternative implementations
of the memory server with power budgets between 1 and 16
watts. It is clear that a more efficient implementation can
significantly improve Oasis’ effectiveness and reaches up to
41% and 68% for weekdays and weekends, respectively.

We also evaluate the sensitivity of our results to the num-
ber of VMs assigned to a home host as well as the number of
home and consolidation hosts used. We keep the total of 900
VMs unchanged, and then vary the server capacity to host
45, 50, 60 and 90 VMs. Figure 12 shows that the power sav-
ing are similar, independent of the number of VMs assigned
to a home host.

Finally, while this evaluation is based on traces that em-
ulate a VDI server farm deployment, we argue that other
server workloads are likely to exhibit similar performance.
We base this argument on the observation made in §2 that
idle desktop VMs are usually more demanding in their mem-
ory access than idle Web server or database VMs. We pos-
tulate that this is due to the nature of desktop VMs, which
run a wide range of applications and background services,
whereas Web and database server VMs tend to be single-
purposed.

6. Related Work

Previous work has relied on full VM migration to reduce
energy consumption by consolidating VMs and switching
hosts to low-power mode [5, 9, 15, 22, 28]. Unfortunately,
full VM migration requires the target host to have enough
resource slack to accommodate the incoming VMs, resulting
in low consolidation ratios. In contrast, Oasis implements a
hybrid approach that uses partial and full VM migration to
achieve very high consolidation ratios and save energy.
Jettison [4] introduces the use of partial VM migration
to save energy in office environments by consolidating idle
desktops. In contrast, this paper uses a combination of par-
tial and full migration to save energy in the data center. The



latter is a more challenging environment as the co-location
of multiple VMs in a single host results in frequent memory
requests that would prevent the original Jettison implemen-
tation (which relies on waking up the host to serve memory
requests) from saving any energy. Instead, Oasis offloads
the tasks of serving memory requests to a low-power page
server.

Oasis differs from hierarchical power management sys-
tems, such as Turducken [23] and Somniloquy [1], where
the application functionality migrates to and executes on the
low-power component. Oasis only requires an energy effi-
cient memory server without the need of application modifi-
cations or protocol aware proxies.

PowerNap [18] describes the mechanisms to eliminate
idle power waste by letting servers quickly transition be-
tween high and low-power modes in response to workloads.
Isci et al. [15] describe a virtual server platform that supports
low-latency low-power modes. This work is complementary
to ours, as faster power mode transitions could be leveraged
to reduce the server reintegration latency.

Oasis is similar to KnightShift [27], a server-level het-
erogeneous server architecture. But unlike KnightShift, The
low-power memory server in Oasis is not a general purpose
computing device. It can be made simple because it serves
one function: serving memory pages over the network.

Finally, Oasis makes use of remote memory as an energy-
efficient swap for VM state. Systems, such as DLM [19] and
Nswap [20], also use the cluster memory to replace disk
swapping, but their focus is on supporting large working
sets and improving the page swapping latency, as opposed
to reducing the overall cluster energy utilization.

7. Conclusion

In this paper, we propose Oasis, a new approach for energy-
oriented cluster management. Oasis achieves high consol-
idation ratios by combining traditional full VM migration
with partial VM migration, a technique that migrates only
the limited working set of an idle VM, which is typically
an order of magnitude smaller than the VM’s memory allo-
cation. Partial VM migration operates by creating a partial
replica of the VM on the consolidation host and transfer-
ring memory pages on-demand as the VM attempts to access
them. Traditional partial VM migration wakes up the sleep-
ing host to serve memory requests, which yields little en-
ergy savings when applied in servers that host multiple VMs
and experience frequent page requests. Oasis overcomes this
challenge by augmenting the host with a low-power memory
server that can efficiently serve VM memory state without
interrupting the host’s sleep mode.

We implemented Oasis by extending the Xen hypervisor.
We built a prototype of a low-power memory server using
existing hardware by augmenting a standard host with a low
power computing platform and a shared SAS drive. Whereas
this prototype is suboptimal in terms of cost, performance

and energy consumption, it nevertheless demonstrates the
benefits of the approach. We evaluated our implementation
using a combination of micro benchmarks, and a simulated
virtual desktop (VDI) server farm. The results show that
Oasis reduces energy usage by up to 28% on weekdays
and 43% on weekends with minimal impact on the user
experience.
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