
Unified Monitoring and Analytics in the Cloud

Ricardo Koller, Canturk Isci
IBM T.J. Watson Research

Sahil Suneja, Eyal de Lara
University of Toronto

Abstract

Modern cloud applications are distributed across a wide

range of instances of multiple types, including virtual

machines, containers, and bare metal servers. Traditional

approaches to monitoring and analytics fail in these com-

plex, distributed and diverse environments. They are too

intrusive and heavy-handed for short-lived, lightweight

cloud instances, and cannot keep up with rapid the pace

of change in the cloud with continuous dynamic schedul-

ing, provisioning and auto-scaling. We introduce a uni-

fied monitoring and analytics architecture designed for

the cloud. Our approach leverages virtualization and

containerization to decouple monitoring from instance

execution and health. Moreover, it provides a uniform

view of systems regardless of instance type, and oper-

ates without intervening with the end-user context. We

describe an implementation of our approach in an actual

deployment, and discuss our experiences and observed

results.

1 Introduction

The cloud is dynamic and difficult to understand when

looking at all its pieces independently. A typical cloud

application is made of componentswhich are rapidly cre-

ated, relocated, and destroyed to adapt to different load,

for multiple tasks, and simultaneously for multiple ten-

ants. Moreover, with modern, cloud-native applications,

the information needed to solve problems are now dis-

tributed across an increasingly large and diverse set of

sources, including bare-metal servers, virtual machines

(VMs), and containers. This complexity makes it harder

for cloud providers and tenants to have an understanding

and complete view of their systems. Tenants can rent sys-

tems or software in any of these units and should expect

all of them to be monitored with the same level of de-

tail, low overhead, and seamless effort. Traditional mon-

itoring and analytics solutions operate within their silos

and rely on long-running, stable system characteristics.

In contrast, with the diverse, and highly-dynamic nature

of cloud resources and the applications running on top,

there is need for a new, unified monitoring approach that

is designed for the cloud, which can collect information

from every relevant piece of the cloud infrastructure and

can keep up with the diversity, density and dynamism of

cloud. Such an approach is critical for delivering man-

agement and analytics solutions like compliance scan-

ning, health-check, license management, and root cause

analysis for both cloud tenants and the providers.

Existing monitoring and analytics solutions follow one

of three approaches: 1. In-system agents for data collec-

tion and interpretation; 2. Hooks that enable access into

systems or application run-time context; and 3. Limited

black-box monitoring that limits observations to what is

available outside of system context. The first two ap-

proaches are highly intrusive and require guest coopera-

tion. Hooks that enable system access are points of vul-

nerability and agents begin to become too heavyweight

to be practically applicable for lightweight virtualization

and containerization. Moreover, in-system solutions can

easily be compromised and cannot be trusted. The latter

black-box approaches are less intrusive, and less prone to

compromise, but provide limited visibility. An ideal so-

lution combines the best of both worlds, providing deep,

seamless visibility into systems, without any side effects,

overheads or intrusion. Our approach to cloud monitor-

ing aims to hit this sweet spot, providing deep, seamless

and secure visibility into both VMs and containers—with

the same fidelity, and without intrusion or overheads on

guest environments.

We present a new approach that leverages virtualiza-

tion and containerization to decouple monitoring and an-

alytics from guest execution context. This decoupling

enables us to run our monitors without impacting the end

user environment, or requiring any form of cooperation.

By effectively interpreting VM and container state from

outside the guest context, we can provide deep and seam-

less visibility into these systems. In our solutions, we

leverage VM introspection (VMI) principles for monitor-

1

ing VMs. VMI is the process of extracting logical system

information from raw memory and disk data structures.

For containers, we use underlying namespace and cgroup

APIs to map and monitor state of different containers.

Our results show the feasibility and practical applica-

tion of this approach on an actual cloud deployment. We

show that under realistic assumptions, the described out-

of-band monitoring of VMs and containers is not only

viable, but has significant advantages over traditional ap-

proaches.

This paper makes three contributions. First, we de-

sign and implement an architecture of a unified pipeline

for operational analytics in the cloud. In our architecture

we put particular emphasis on the data collection layer,

and show that the most viable option for seamless and

lightweight monitoring in the cloud is based on out-of-

band VMs and container monitoring. Second, we de-

scribe our VMI and namespace mapping techniques for

VM and containers respectively, and show that they can

be applied in practice in actual cloud deployments run-

ning KVM/OpenStack and Docker containers. Finally,

we present preliminary performance numbers, and re-

sults for a prototype application for network monitoring.

2 Background on monitoring and applica-
tions

Consider the following situation. There is a distributed

web service, running on a LAMP (Linux-Apache-Mysql-

PHP) setup. Let us assume that we install this setup

correctly and place Mysql and the PHP frontend in two

VMs, and the Apache server in a container. At some

point, the web service suddenly stops servicing requests,

and all that the users get is a 500 Error. The reason for

this failure could be that the Apache server is using the

wrong port for connecting to Mysql, lack of disk space

for any of the services, or because of some missing li-

brary in the PHP front end. The information necessary

to find the root cause of any of these problems is dis-

tributed across a large set of configuration files, log files,

and within the state of the two VMs and the container. To

quickly understand what changed, we need an approach

that can monitor across all these systems irrespective of

the platform, and help us correlate without overwhelm-

ing our run-time environment.

Our approach to troubleshoot scenarios like these is to

compare the global state at the moment the problem oc-

curs, to a good state when the system was just installed,

or functioning normally. Figure 1 shows the proposed

architecture of a pipeline capable of implementing such

kind of applications. A set of collectors based on intro-

spection of VMs and containers emit system data to a

scalable data bus. An indexer consumes data from the

data bus and serves as the basis for building a search ser-

vice. An analytics application (”Drift detection” in the

figure) would use this search service to compute the dif-

Vulnerability
scan

Topology Drift detection

Search service

Data bus

Index

Log
crawler

ContainerVM data

collectors data collec.

A
p
p
s

D
a
ta

 s
e
rv

ic
e

C
o
ll
e
c
to

rs

Figure 1: Architecture of the unified operational analyt-

ics pipeline. This paper focuses on the shadowed boxes.

The topology application is used later in the evaluation

as a proof-of-concept application.

ferences in state and configuration, between the good and

the bad setup, and will then sort the diffs, and filter out

the ones that should not affect system behavior. Sorting

and filtering diffs is research in progress at the moment.

Our main focus in this paper is on the data collec-

tion layer of the analytics pipeline. The target data we

are interested in collecting includes: processes, network

connections, process map details, modules loaded, per-

formance metrics (memory, CPU and IO), configura-

tion files, packages installed, and file system information

(like the last access time of a file).

3 Unified Monitoring

In order to minimize the cost of ownership, cloud

providers try to increase the density of virtual machines

per host. With this in mind, there have been many efforts

of trying to make VMs more lightweight: library OSes

[10, 6], lightweight Linux distributions [2], and more re-

cently a renewed interest in OS level virtualization with

containers or jails [3]. As VMs and containers become

more lightweight and transient or ephemeral, minimiz-

ing the over-heads and setup times for monitoring them

become more critical.

In addition, existing agent-based monitoring ap-

proaches have three important drawbacks. First, they

require the monitored system to be live and healthy to be

able to collect and send data. Second, the guest OS can

be compromisedwith a kernel rootkit, so the agent would

be getting incorrect information, possibly because of the

rootkit trying to hide itself. And, third, agents need to

be installed or at least baked into the VM images, which

adds unnecessary complexity that is pushed onto the ten-

ants of the cloud, where they have to install and maintain

these agents and their dependencies in their instances and

base images.

We propose a new unified monitoring approach for the

cloud that provides a uniform view of systems regardless

2

of instance type by leveraging virtualization and con-

tainerization abstractions to decouple monitoring from

guest execution context. For VMs, we use VMI tech-

niques and for containers we use underlying OS APIs to

inspect system state encapsulated by the container. For

brevity, we refer to both techniques as VM and container

introspection respectively. Both techniques share some

common principles. They both operate without requiring

guest cooperation, without installing any components in

end-user context, and both can function without relying

on guest health. We discuss the details of these in sec-

tions 3.1 and 3.2.

3.1 VM Introspection

Our VM monitoring solution is based on exposing and

interpreting raw guest memory and disk state from the

underlying hypervisor platform [4]. We use well-known

data structure layouts to extract the logical view of the

VM state. For example, to determine the hostname for

a Linux guest, we identify the OS data structure that

holds this information and then determine its memory

location. In the case of hostname, this is stored as a

string (.name) inside the struct init_uts_ns data

structure. In order to read this string we need the ad-

dress of the structure- struct init_uts_ns- in kernel

memory, the offset from the start of the structure to the

.name field, and access to the memory of the guest.

Our technique is based on source-code analysis prin-

ciples [5], and is a type of rule hand-crafting. As our

experiences show, this can be very effective and practi-

cally applicable with some basic assumptions on cloud

instances. The idea is that if we had access to the kernel

source code, we could setup a rule for reading the host-

name of a Linux guest as: *UTS_BASE + UTS_OFFSET.

This rule would be valid for any Linux kernel, but each

one of them would have a specific value for UTS_BASE
and UTS_OFFSET based on the source code and the com-

pilation configurations.

The problem now is that this rule might change. What

if a newer version of the Linux kernel stored hostname

on a hash-table of system configurations instead? For

example, hostname location actually changed in ker-

nel 2.6.19 [9] with the introduction of hostname

namespaces. However, this change still has the form:

*BASE + OFFSET, for hostname at least. This is the

offset rule used in our system:

["UTSNAME_OFFSET", [

["struct new_utsname", "sysname"],

["struct uts_namespace", "name.sysname"]]

]

Although more drastic changes can occur and our sys-

tem would be broken if they did, it turns out that changes

to core data structures like these in modern and well es-

tablished OSes like Linux are very rare. We have rules

2.6.19
Nov/2006

2.6.24
Jan/2008

2.6.33
Feb/2010

2.6.34
May/2010

3.3
Mar/2012

utsname mnt_root inet_daddr

inet_dport

rss_stat kernel_cpustat

Figure 2: Timeline of relevant Linux kernel source code

changes.

for Linux kernels spanning from 2.6.11 to 3.19. These
are versions spanning from the year 2005 to 2015. Figure

2 shows the changes affecting our rules for the key sys-

tem features we track (i.e., processes, connections, mod-

ules, files, packages, configurations, loaded libraries and

system metrics). We extract data from 96 data structures

to collect all this information. Out of these 96 structures,

only 6 have changed across these kernel versions span-

ning a decade.

The only issue now is that we need the debugging sym-

bols and the symbol table. They are available as long as

it is a Linux distribution and the packages are available

(we limit the discussion to Linux OSes). These symbols

might be unavailable if, for example, the cloud images

were using a custom kernel. However, due to standard-

ization, most cloud offerings have a limited number of

VMs operating systems, so the number of hand written

rules for VMI should be limited.

Another problem with VMI is inconsistencies with

monitoring due to the lack of synchronization between

the outside of the VM and the inside. For example, creat-

ing a process involvesmany updates to memory, if we get

the state in the middle of any of those, we get an incon-

sistent state. These inconsistencies are due to not pausing

the VM, and also due to the fact that the operations are

not atomic [12]. This can happen for example for pro-

cess reaping: which consists of first marking the process

as dead (an atomic operation), followed by sequentially

deleting all the members of the process structure. Some

techniques to alleviate this are using transactional mem-

ory [8]. The only source of inconsistencies is process

reaping [12] which can be a long process given that it

requires parent reaping the child when reading the exit

status. Inconsistencies can lead to missing data at worst,

but not to wrong information.

3.2 Container introspection

OS level virtualization (chroot, Linux Containers,

FreeBSD Jails, OpenVZ [11, 3]) is a type of virtualiza-

tion that has gained some traction in recent years. When

using this type of virtualization, some processes can be

grouped into containers, and each container be given a

unique view of the system. For example, there can be

a host running a process with PID 1 with access to NIC

eth0 with IP 1.1.1.1. Simultaneously, there can be

a different process with PID 100 running in a container

with a different view of the system: it sees itself with PID

1 and using eth0 with IP 2.2.2.2. One consequence

3

of the fact that container processes are just host processes

with a different view of the system is that they are visible

from the host.

Unlike VMs, where the only options to get into the

context of a VM is to log in into it (i.e., using an ssh)

or do introspection of memory and disk state, containers

are more convenient for introspection. Given that all pro-

cesses are visible from the outside, the only missing in-

formation is the mapping between resources as seen from

inside the container and the outside, for example, map-

ping the process with PID 100 to PID 1 in the example

above. In order to monitor the processes in this virtu-

alized system, all we need is a list of all the processes

associated with it, and the mapping between processes’

PIDs as seen from inside the container and from the host.

This mapping has to be stored somewhere in the ker-

nel as it is needed for accounting of container resources.

As an example, in Linux this mapping can be easily ob-

served with the /proc file system but the method we

propose for monitoring containers and jails is to use at-

tachment operations. setns() in Linux (or jexec() in

freebsd) allow a process to attach to an existing process

namespace. The monitor process then just attaches to a

process namespace for each container, collects data from

it, and attaches to the original namespaces.

Although this is not exactly introspection, as the data

collector process is “moving” to the container context,

it still provides the qualities we were looking for with

pure introspection. Specifically, it avoids the three issues

we identified with agent based monitoring in section 3.

First, they can run even if the guest is unresponsive (i.e.,

ssh is not working or the network connectivity is broken).

Second, they do not require installation, nor require the

guests to have any special library for the data collector

code. Both of these problems are solved in containers

because by design, attachment operations keep the file

descriptors opened before the attachment valid and point-

ing to the files or sockets in the host context (i.e., names-

paces). The consequence of this is that if the data col-

lector loads the necessary libraries, and opens a socket to

emit the collected data, it will still have these after the at-

tachment, even if the container file system is corrupted or

empty, and the network interfaces are down. And third,

they can run even if the guest is compromised, as they

will get the view of the system from outside of the con-

tainer. The exception to this is if a container process jail-

breaks and gets access to the host context.

Another interesting consequence of using containers

is that with VMs, memory and disk are dis-aggregated,

we need to take the data from both and later aggregate

them. With containers, and specially with the technique

proposed, the monitor has a holistic view of the system.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

Bare Metal

VM Container

L
a
te

n
c
y
 i
n
 m

s

Attach
Processes

Connections
Modules

OS information
Detach

Data buffering

Figure 3: Data collection latency for a bare metal server,

a VM and container data collectors.

4 Evaluation

We now evaluate the performance of our cloud monitor-

ing solution, and later show a proof-of-concept applica-

tion built on top of the analytics frameworkwe described.

Our experimental setup consists of a host with 8GB of

memory and 8 Intel Xeon @ 2.60GHz cores, running

Linux 3.13, QEMU-KVM 1.5, and Docker version 1.0.1

The monitored containers and VMs for the performance

evaluation run Ubuntu 14.04. Out of band monitoring

of VMs is implemented by getting the memory state

of the VM using /proc/<qemu-process-pid>/mem,

and getting the memory layout from kernel symbols

(system.map), and a kernel image with debugging en-

abled from the related vmlinux file. We used kafka [7]

as the data bus, so all collectors buffer and send data

through kafka.

The first set of results, shown in Figure 3, show the la-

tency for a single data collection operation from a fresh

Ubuntu installation deployed as VM, container, and bare

metal. Each collect operation lists the processes, con-

nections, kernel modules, and basic system information.

The first observation is that data collection from contain-

ers takes 30 ms more than bare metal, and all the over-

head comes from attaching to and detaching from the

container. Out of band VM monitoring comes second

and spends most of its time getting process information.

This is because a single pass of the process structures

gets the information about opened connections per pro-

cess, compared to containers and bare metal where there

have to be individual calls (actually, these are reads to

/proc/). Additionally, there is no equivalent of an at-

tach and detach for monitoring VMs, as the memory is

accessed directly.

The next experiment does simple scalability measure-

ments for container monitoring. We run redis-bench and

setup the cluster as one master replicating to 99 slaves.

Then we measure the data collection time for all the con-

tainers for varying number of data collector worker pro-

cesses (these workers get a subset of all the containers to

monitor). Figure 4 shows the results of this experiment

when collecting the same features as the previous exper-

4

 1

 10

 100

 1000

 0 2 4 6 8 10 12

L
a
te

n
c
y
 i
n
 s

e
c
o
n
d
s

Number of processes

with files
no files

Figure 4: Single data collection time for 100 containers

at varying number of data collector worker processes.

WebSphere HAProxy

Node-red

Figure 5: Topology application showing a network graph

for containers.

iment (the ”no files” line), and those features plus config

files content and information about the files in the tree.

How to parse config files and how to identify if a file is a

config file is out of the scope of this paper. The expected

observation is that more processes help, up to the num-

ber of cores. The second observation is that collecting

files takes hundreds of seconds. The consequence of this

is that the frequency of the monitoring should be specific

to each feature, and there is possibly room for several

optimization’s about collecting file information. Our ap-

proach is to naively walk in the tree from user space with

several syscalls per file and directory.

Finally, we show results for a proof-of-concept appli-

cation built using our analytics pipeline. The application

is called topology and uses Lucene [1] as the index and

search service (see Section 2). The monitored cloud was

an internal experimental deployment made of 300 con-

tainers running on 10 hosts. Figure 5 shows the output of

the topology application: a graph where nodes are sys-

tems, and edges represent established connections at the

moment the data collection was made. This is useful as

a validation tool, tracking the evolution and interactions

of applications, and also for network and placement op-

timizations, understanding sprawl and the usage patterns

of different offered services.

5 Conclusions

In this paper, we present a new, unified monitoring and

analytics framework for the cloud. The key observation

that drives our work is that the traditional solutions in

this space are not a good fit for the dynamism, diver-

sity and density exhibited by applications and instances

deployed on the cloud. Existing approaches become

increasingly heavyweight and sluggish relative to the

highly dynamic and ephemeral nature of cloud instances

with their emerging lightweight virtualization and con-

tainerization trends. To mitigate these issues, we present

a new, out-of-band monitoring approach for VMs and

containers, and show how this approach can be leveraged

to provide a unified framework across different instance

form factors. We implement this framework and deploy

it on an actual cloud environment, where we show that

our technique is practically feasible, following some re-

alistic assumptions on deployment patterns. We demon-

strate the quantitative overheads and trends of our unified

approach, and some key potential points of improvement.

We further present an end-to-end application built on top

of our framework that discovers applications and their

topology patterns in a live cloud environment. Over-

all, our results show the potential and applicability of

our unified, out-of-bandmonitoring and analytics frame-

work, which can be a critical asset for both the tenants

and the operators of cloud services, providing deep oper-

ational visibility into their environments.

References

[1] BIAŁECKI, A., MUIR, R., AND INGERSOLL, G. Apache lucene
4. In SIGIR 2012 workshop on open source information retrieval
(2012), pp. 17–24.

[2] COREOS. http://coreos.com, 2015.

[3] DOCKER. http://www.docker.com, 2015.

[4] GARFINKEL, T., ROSENBLUM, M., ET AL. A virtual machine
introspection based architecture for intrusion detection. In NDSS
(2003), vol. 3, pp. 191–206.

[5] JAIN, B., BAIG, M. B., ZHANG, D., PORTER, D. E., AND

SION, R. Sok: Introspections on trust and the semantic gap.

[6] KIVITY, A., LAOR, D., COSTA, G., ENBERG, P., HAREL, N.,
MARTI, D., AND ZOLOTAROV, V. Osvoptimizing the operat-
ing system for virtual machines. In Proceedings of the 2014
USENIX conference on USENIX Annual Technical Conference
(2014), pp. 61–72.

[7] KREPS, J., CORP, L., NARKHEDE, N., RAO, J., AND CORP,
L. Kafka: a distributed messaging system for log processing.
netdb11.

[8] LIU, Y., XIA, Y., GUAN, H., ZANG, B., AND CHEN, H. Con-
current and consistent virtual machine introspection with hard-
ware transactional memory. In High Performance Computer Ar-
chitecture (HPCA), 2014 IEEE 20th International Symposium on
(2014), IEEE, pp. 416–427.

[9] LWN.NET. http://lwn.net/articles/179345/, 2006.

[10] MADHAVAPEDDY, A., MORTIER, R., ROTSOS, C., SCOTT, D.,
SINGH, B., GAZAGNAIRE, T., SMITH, S., HAND, S., AND

CROWCROFT, J. Unikernels: Library operating systems for the
cloud. In ACM SIGPLANNotices (2013), vol. 48, ACM, pp. 461–
472.

[11] PARALLELS. Openvz, 2015.

[12] SUNEJA, S., ISCI, C., DE LARA, E., AND BALA, V. Exploring
vm introspection: Techniques and trade-offs. In Proceedings of
the 11th ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments (New York, NY, USA, 2015),
VEE ’15, ACM, pp. 133–146.

5

