
Correlation-Based Content Adaptation
for Mobile Web Browsing

Iqbal Mohomed, Adin Scannell, Nilton Bila, Jin Zhang, and Eyal de Lara

Department of Computer Science
University of Toronto

{iq,amscanne,nilton,delara}@cs.toronto.edu,
jinyaozhang@utoronto.ca

Abstract. The resource impoverished environment on mobile devices results
in a poor experience for users browsing the World Wide Web. Proxy-based
middleware that transform content on the fly to better suit the resource conditions
on a user’s device provide a promising solution to this problem. A key challenge
in such systems is deciding how to adapt content, especially when the same
content has multiple uses that have varying adaptation requirements. In this paper,
we show that it is possible to provide fine grain adaptation of multi-purpose
content by detecting correlations in the adaptation requirements of past users
across multiple objects on a web site, and using this history to make adaptation
predictions for users encountered subsequently. To evaluate our technique, we
built prototype page layout and image fidelity adaptation systems, and used these
to gather traces from users browsing multi-purpose web content in a laboratory
setting. Our experimental results show that using correlations to make adaptation
predictions can significantly reduce bandwidth consumption, browsing time,
energy usage and user effort required to adapt content.

Keywords: Content Adaptation, Mobile Devices, Customization, Web Browsing,
Experimentation.

1 Introduction

The severe resource constraints on mobile devices make browsing the World Wide
Web an unpleasant experience for users. At present, the majority of content on the
Web is targeted towards use on desktop computers with ample displays and high-speed
connections to the Internet. These assumptions do not hold in a mobile environment,
where devices have small screens, low-bandwidth, limited battery capacity, processing
capabilities, I/O facilities and storage. The problem of mobile web access is further
complicated due to the considerable heterogeneity among different classes of devices
(laptops, PDAs, cell phones, pagers, etc.). Also, as users move about naturally during
the course of their activities, the mobile computers they carry with them experience
significant variability in wireless connectivity – at one moment the user may be in range
of an accessible well-connected, lightly loaded 802.11g access point, whereas at other
times, she may only have access to a WWAN service (such as GPRS, CDMA 1X, etc.)
that charges her based on the number of kilobytes that are transferred over the link.

R. Cerqueira and R.H. Campbell (Eds.): Middleware 2007, LNCS 4834, pp. 101–120, 2007.
c© IFIP International Federation for Information Processing 2007

102 I. Mohomed et al.

A promising solution to these problems is adaptation middleware, interposed in the
network path between the client and web server, which automatically tailors content for
individual mobile devices [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. For example, images on web pages
can be served to the user at a reduced fidelity in order to conserve bandwidth and energy,
and improve download times. Also, the layout and size of content objects (such as
images) can be changed to better fit on a small display. However, a key challenge in such
systems is how to identify appropriate adaptations. This is a difficult problem because
optimal adaptation depends on the usage semantics of content (the user’s purpose vis-à-
vis the content) as well as the user’s context (characteristics of the user’s device as well
as their surroundings).

In previous work [11, 12, 13], we introduced Usage-Aware Interactive Content
Adaptation (URICA), an automatic adaptation technique that customizes content for
mobile devices based on the content’s usage semantics and the user’s context. URICA
learns how to adapt content from implicit feedback provided by users carrying out their
tasks. This is achieved by having the system make an initial adaptation decision, and
allowing users who are unsatisfied with the system’s adaptation decision to take control
of the adaptation process and make changes (e.g., increase the fidelity of a transcoded
image or change the layout of a page). The successful adaptation is recorded and used
in making future adaptation decisions for the same and other users. URICA works
well when users utilize content in a similar manner. For example, Figure 1(a) shows
histograms of image display sizes that satisfied users for two distinct images in a system
that scales the dimensions of images to fit on a small screen. Here, making predictions
using the history of individual objects works well; we see that presenting Image 1 at
size 2 and Image 2 at size 9 will satisfy the majority of users. However, URICA is less
effective for multi-purpose content, where objects on a web page are used for different
tasks with varying adaptation requirements. Figure 1(b) illustrates the case when users
can perform one of two tasks on a page. For the first task, they require a small version
of Image 1 and a large version of Image 2, while these requirements are reversed in the
second task. Here, if we only consider the history of the object that is being adapted,
there is no single adaptation that will satisfy all users.

Fortunately, typical web tasks involve more than one object. This paper shows that
for web tasks that involve multiple objects, it is possible to leverage the feedback
provided by the user on a few initial objects to narrow the history used to make
subsequent predictions to include only those users who have similar adaptation
requirements. This is achieved by finding correlations in adaptation requirements
between different objects on a web site using the history of previously encountered
users. Once these correlations are uncovered, the interactive feedback provided by the
user to adapt some objects can be used to adapt other related objects on the page or site.
For example, for the content depicted in Figure 1(b), we can see from the adaptation
history of the two images that the sizes of Image 1 and 2 are inversely correlated. Once
this determination is made, if a user increases the size of Image 1, the system can
automatically decrease the size of Image 2.

Correlation-based prediction works well for multi-purpose content because, while
users can utilize the same content in different ways, it is quite likely that there are
at least some users who use the content in each of the different ways.

Correlation-Based Content Adaptation for Mobile Web Browsing 103

Image 1

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10
Desired Image Size

of

 U
se

rs

Task

Image 2

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10
Desired Image Size

of

 U
se

rs

Task

(a) Single-Purpose Content

Image 1

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10
Desired Image Size

of

 U
se

rs

Task 1 Task 2

Image 2

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10
Desired Image Size

of

 U
se

rs

Task 1 Task 2

(b) Multi-Purpose Content

Fig. 1. Histograms of image display sizes that satisfied past users. The vertical axis shows the
number of users who desired each of the adaptations on the horizontal axis. When content is
single-purpose (a), one adaptation decision works well for most users. For multi-purpose content
(b), there may be correlations in the adaptation requirements of users across objects.

Correlation-based predictions can also be useful in the case of single-purpose content
when users have different context. If the context in question affects adaptation
requirements, the adaptation history of individual objects will be noisy just as in the case
of multi-purpose content. That is, a single adaptation will not satisfy users with different
context. In such situations, adaptation based on correlations will also be beneficial.

We experimented with two well-known machine learning techniques that enable
correlations between objects to be uncovered automatically: Decision Stumps, which
directly encodes relationships between the adaptation requirements of objects, and the
Gaussian Mixture Model, which finds correlations implicitly by clustering users with
similar adaptation requirements. Our experience showed that these techniques only
perform well when users have an incentive to fix incorrect adaptation decisions made by
the system. For instance, in a system that adapts the dimensions of images, users have
a clear incentive to correct images that are larger or smaller than what they require.
However, such incentives may not always exist. For instance, in a system that adapts
image fidelity, if the initial set of images on a site is served to the user at a fidelity that
is greater than that required, there is little incentive for the user to interact with these
images to lower their fidelity given that the bandwidth to transfer the images would have
already been spent. For these situations, we developed an algorithm called all-in that

104 I. Mohomed et al.

MP3 Player

A
MP3 Player

B
MP3 Player

C

Laptop

X
Laptop

Y
Laptop

Z

Gohttp://www.electronicsstore.com/ MP3 Player

A
MP3 Player

B
MP3 Player

C

Laptop

X
Laptop

Y
Laptop

Z

Gohttp://www.electronicsstore.com/

MP3 Player

A
MP3 Player

B
MP3 Player

C

Laptop

X
Laptop

Y
Laptop

Z

Gohttp://www.electronicsstore.com/

Group 1

Group 2

Fig. 2. A schematic of a web page with images of MP3 players and laptop computers. Users
in group 1 are shopping for MP3 players, whereas those in group 2 are shopping for laptop
computers. If the user improves the quality of one image of an MP3 player, it is likely that they
will want the other MP3 player images at high quality as well (the same holds for laptop images).

clusters together the histories of past users with similar adaptation requirements, and
as a user provides feedback, it rapidly narrows down a cluster of users with similar
adaptation preferences.

We built two prototype adaptation systems for the purpose of evaluation. One scaled
the dimensions of images on web pages and the other adapted their fidelity. We collected
traces from users browsing multi-purpose content using our prototypes in a laboratory
setting, and used these to evaluate the performance of alternative algorithms for making
adaptation predictions. We found that making adaptation predictions using correlations
results in significant performance improvements. For image scaling, we observed that
using correlations to make predictions required 66% fewer user interactions. In the
case of image fidelity adaptation, we observed that correlation-based predictions reduce
bandwidth consumption by 63%, user interactions by 48%, energy consumption by 17%
and time to completion by 20%.

The rest of this paper is organized as follows. Section 2 describes algorithms for
multi-purpose content adaptation. Section 3 provides a description of our experiments.
Section 4 presents the result of our evaluation. Finally, Section 5 discusses related work,
and Section 6 concludes the paper and suggests avenues for future work.

2 Adapting Multi-purpose Content

When the same content can be used for multiple purposes, users may have varying
adaptation requirements for the same object based on the particular task they are trying
to perform on a web page or site. For example, Figure 2 shows the schematic of a web
page that contains six images and represents the front page of an online retailer that
sells MP3 players and laptop computers. The first three images on the page show MP3
players and the next three show laptop computers. A user who pays for downloads by

Correlation-Based Content Adaptation for Mobile Web Browsing 105

the kilobyte will most likely not want to see all images at high quality - users shopping
for MP3 players will want to see the top three images at a higher quality than the others
(and vice versa). In this case, the varying adaptation requirements of different users
leads to a noisy history for every object - no single adaptation will satisfy all users.

Fortunately, typical web tasks involve more than one object, and when there is
correlation in the adaptation requirements of these objects, the feedback provided by
users on a few objects can be used to adapt others. Continuing our previous example,
the system can determine that users who want any one of the MP3 player images at
high quality will likely want the other two at a high quality as well (the same holds for
laptop images). The adaptation system would initially serve all images at low quality,
and as soon as the user requests an improvement for one of the images (say, an image
of an MP3 player), the system can improve the quality of not just that image, but also
the quality of other images whose quality levels are highly correlated (the other images
of MP3 Players).

It is important to note that objects do not have to be tagged with any meta-data by the
content creator for this approach to work. Nor are users required to explicitly specify
the task they are performing. The only information required is the history of how users
have adapted objects on the page in the past, which is gathered automatically by the
system at run-time.

In this section, we start by describing the two types of implicit feedback that can
be provided by users in interactive adaptation systems: two-sided feedback and one-
sided feedback. The type of feedback available plays a crucial role in the design and
performance of algorithms that predict adaptation requirements. We then describe three
algorithms for taking advantage of correlations in user preferences.

2.1 Type of Feedback

The type of adaptation being performed influences the nature of feedback provided by
users. In some cases, the constrained resource cannot be recovered when an adaptation
decision results in overconsumption. In such situations, users have no incentive to
provide additional feedback to the adaptation system. That is, users only provide
feedback until the adapted object is “good enough”. We call this one-sided feedback.
For example, in image fidelity adaptation, if the system serves an image at a fidelity
that is lower than what is desired by the user, we can expect the user to interact with
the system to obtain a higher fidelity representation. However, if the system provides
a representation that is of a higher fidelity than that which is required, the user has
no incentive to provide feedback. This is because the cost of downloading the higher
quality representation has already been incurred. Thus, if the system provides an image
at some initial fidelity level (say, level 5, where there are 10 fidelity levels in total) and
the user does not improve the object, we cannot say for certain that the user required
fidelity 5. We only know that the user may have desired a fidelity between 1 and 5.

In other cases, where overused resources can be reclaimed, users are motivated to
keep interactively adapting an object until it has been appropriately customized. We
call this two-sided feedback. For example, in image screen size adaptation, if the system
overuses the screen real-estate resource, it can be reclaimed. Users have an incentive to
shrink and enlarge images until they are suitable for their purpose.

106 I. Mohomed et al.

2.2 Prediction Algorithms

We initially investigated two standard techniques from machine learning that enable
correlation-based predictions: Decision Stumps, which directly encodes relationships
between the adaptation requirements of objects, and the Gaussian Mixture Model,
which finds correlations implicitly by clustering users with similar adaptation require-
ments. We observed these techniques to perform well when users provide two-sided
feedback. However, when only one-sided feedback is available, these algorithms can
perform badly if the system over-predicts on the initial set of objects on the page. For
example, in a system that adapts image fidelity, if the initial set of images on a site
is served to the user at a high fidelity, there is little incentive for the user to interact
with these images to lower their fidelity, and the system cannot accurately gauge the
user’s adaptation requirements. This problem can be overcome by under-predicting on
the initial set of objects as a way of probing for the user’s true adaptation requirements.
However, this can require the user to frequently interact with objects. To address this
problem, we developed an algorithm called all-in that under-predicts without causing
an excessive number of interactions.

Decision Stumps: In order to investigate the effectiveness of directly correlating the
adaptation requirements of different images, a method using decisions stumps [14] for
predicting adaptation requirements was implemented. A decision stump is a decision
tree with only a single branch. In reference to the motivating example, it encodes a
decision of the form: Was the required fidelity for image X < 5? If yes, then a fidelity
of 5 is sufficient for image Y ; otherwise 5 is not sufficient for Y . Several decision
stumps (alternatively, they may be thought of as rules) are weighted and combined into
a final model, which is used to make predictions. Each decision stump in this model
represents some relationship between the object whose adaptation requirement is being
predicted and some other object. The weighting of the decision stumps is calculated
during training in order to minimize error; it may be thought of as specifying the relative
predictive ability of each relationship. Due to the multiple decision stumps that compose
a single model, more than one relationship can be captured and the multi-purpose nature
of any given object preserved.

For each object (call this the target object) and every subset of the non-target objects,
a distinct prediction model is generated. This model is generated by feeding the history
of all user adaptation requirements for the given set of non-target objects along with the
corresponding adaptation requirements for the target object into a training procedure.
This training procedure uses boosting [15] which generates a set of decision stumps and
weights that predict adaptation requirements with a low error rate. A model for each
subset must be generated because, as we are encoding correlations directly, a prediction
for an image X may be based on different images, depending on the set of objects for
which the user has provided some feedback.

Predictions are made by selecting the appropriate model for the target image, and
providing as input the already-specified set of required fidelities. For example, suppose
we are generating predictions for the electronics retailer used in the motivating example
of this section. Suppose the user has seen and possibly interacted with two images, X
and A, and we must now predict a fidelity for the image Y . First, we retrieve our model

Correlation-Based Content Adaptation for Mobile Web Browsing 107

that was trained with adaptation requirements for X and A and predicts Y . Based on
the current user’s requirements for X and A, we predict an appropriate requirement for
Y . Since this model is a combination of decision stumps that involve rules regarding
the required fidelities of X and A, we can simply evaluate them all and determine a
final score. This final score corresponds to the predicted required fidelity. This process
is repeated with all remaining images other than Y , as predicted images are loaded and
the user provides feedback.

In the evaluation section, the use of this model with both one-sided and two-sided
feedback is explored. This method may encode many complex relationships between
objects, and requires no specification of parameters in advance (such as number of
clusters). Unfortunately, the cost of training and generating the large number of models
for this method may be high, although there could exist optimizations to alleviate this
problem. Another disadvantage of this method is that it may also have a tendency to
over-fit training data, especially for users with non-typical adaptation requirements.
This may manifest itself as a single out-of-character requirement given by a user
throwing off several predictions due to over-emphasis on a particular image.

For our implementation of this method, we used the MultiBoost [15] algorithm
implemented by the Weka [14] toolkit. The MultiBoost algorithm combines Ad-
aBoost [16] with wagging, and it was shown to be more effective in reducing error
than either of its constituent techniques [15].

Gaussian Mixture Model: In a Gaussian mixture model, all sets of adaptation
requirements are assumed to be sampled from a set of Guassian distributions spread
throughout the space of all possible adaptation requirements. Given a set of training
data, the parameters of the distributions are set by running an expectation-maximization
(EM) algorithm in order to maximize the likelihood that the given data was sampled
from the mixture of distributions. As input for this training procedure, all available
history of user adaptation requirements is provided. The number of distributions must
be selected a priori, however.

For prediction, based on a user’s currently specified set of adaptation requirements
and the training distributions, a candidate distribution for the user is selected by
computing the likelihood of her belonging to each distribution, then selecting the
most probable. The mean of this candidate distribution is used to provide any missing
adaptation requirements. If this mean is insufficient for the user for some particular
object, the most probable distribution with a higher adaptation requirement is selected
for that object instead. Eventually, these adaptation requirements which are not well-
represented may lead to the selection of a better candidate distribution.

Similar to the scenario given for decision stumps, suppose that we are serving
images for users browsing the online electronics retailer. The user has seen and possibly
interacted with the images X and A and we must now predict image Y . Based on their
required fidelities for X and A, the probability of the user belonging to each Gaussian
distribution d, p(d), is computed. This is a calculation over only the images which the
user has seen (X and A), in this case given by

p(d) = αd

∏

i={X,A}

1
σd(i)

√
2π

exp(− (xi − μd(i))
2

2σd(i)2
)

108 I. Mohomed et al.

for each distribution d with means μd(i), standard deviations σd(i) and prior αd (all set
by the EM training procedure). The distribution with the highest p(d) is selected, call
this dbest, and the means of dbest are used to provide a prediction for the adaptation
requirements of other images. In this case, since we need to predict Y , we would use
μdbest

(Y), the mean of the distribution dbest for the image Y .
Logically, these distributions can be thought of as the center of clusters. During the

training procedure, they will tend to each cover different groups of users’ adaptation
requirements. This model is representable in a compact way, and has the advantage that
each distribution, or cluster, has an explicit variance for each object. This is useful for
intentional overprediction and underprediction, based on user preference. For example,
the user may favour underprediction in order to conserve bandwidth. Also, since the
identification of a candidate cluster is based on all objects, a single odd requirement
from a user is likely to have less of an impact on other predictions than in the case of
decision stumps.

The all-in Algorithm: We designed the all-in algorithm1 for use when only one-sided
feedback is available, and investigate it in the context of image fidelity adaptation. The
algorithm starts off by using the standard K-means clustering algorithm to partition
users into multiple groups. The idea is that users within a group share similar adaptation
requirements - not just for a single object but rather across all objects on a web page or
web site. Once we have a set of clusters, the system transitions into prediction mode.
The system then uses an online classification algorithm to make predictions.

The goal of the all-in algorithm is to rapidly classify the user into a single cluster. For
each user, the adaptation decisions made by the system early on are aggressive in that
they may be wasteful. However, once the system is able to correctly classify the user,
it starts making moderate predictions, such as serving the mean of the image fidelities
that was requested by other users within a cluster.

At the outset, the algorithm assumes that the user can belong to any cluster. Also,
it computes an upper and lower threshold for each object in every cluster. These
thresholds correspond to the range of values where an object’s desired fidelity may
lie, for users belonging to this cluster. We take the highest and lowest fidelity that
was previously observed as the upper and lower threshold, respectively2. When serving
an image initially, the algorithm makes an aggressive prediction: it serves the image
at the lowest upper threshold across all clusters. If the user is not satisfied with this
adaptation, she will request an improvement and the system will remove the cluster
whose upper thresholds are violated. The process is repeated until the user no longer
requests improvements to an object, and moves on to a different page or object. In
this case, the system checks if there exist any clusters whose lower thresholds are
violated, and removes them. Once the system has classified the user into a single cluster,
the algorithm behaves less aggressively, and serves objects at the mean of the image
fidelities that were requested by other users within the cluster.

1 The phrase “all-in” is taken from poker where a player bets his entire stake on a hand. When
there are only two players, this move forces the opponent to evaluate her hand and make a
decision on whether to accept the bet (“call”) or give up the hand (“fold”).

2 Other alternatives are possible, such as taking the endpoints of the 5-95 percentile range. This
would help eliminate outliers in a production system.

Correlation-Based Content Adaptation for Mobile Web Browsing 109

It is possible for the system to reach a point where there is no cluster that the user can
belong to. This can occur for two reasons: first, there may be no cluster that captures
the current user’s preferences or second, we may have removed the user from a cluster
that she would otherwise have fit into because her adaptation preference on some prior
object was radically different. With regards to making adaptation predictions for this
particular user, we can do nothing about the first possibility. However, we can address
the second by making all clusters valid again for the user. For the particular object under
consideration, we give up, and serve it without any adaptation. In a production system,
we can take the first possibility into account as well. Any time the system runs into
a large number of users who cannot be classified, it can transition into training mode
again, and regenerate the clusters.

2.3 Practical Considerations

Parameters, such as the number of clusters to use in the all-in algorithm, can be
automatically determined in a production system. Once the system has encountered
some number of users (say T, specified by the operator of the adaptation proxy),
it can run profiling experiments that compare the performance that would have
been experienced by the previously encountered users in different conditions. The
experiments may compute a variety of performance metrics for different parameter
settings, and the system can set parameters to be the values that result in the best
performance. A single metric or a composition thereof can be used for this purpose,
based on the goals of the proxy operator or the preferences of users. Indeed, if users
specify different goals to the adaptation system, it can provide them with varying
predictions tailored to their requirements based on the same history.

3 Experimental Methodology

To evaluate our prediction algorithms, we considered two types of adaptation: page
layout and image fidelity. For each type of adaptation, we created a prototype that allows
users to interactively adapt content. We used the prototypes to perform experiments
in which participants adapted content in a laboratory setting. The traces of the user’s
adaptation decisions were then used to evaluate the prediction algorithms.

In this section, we first describe our trace gathering experiments. We then discuss the
methodology used to evaluate the prediction algorithms on the collected traces.

3.1 Gathering User Traces

We conducted our experiments in a laboratory at the University of Toronto. For
the experiments we recruited three groups of participants from the general student
population. The first group adapted the layout of web pages, while the second and third
groups adapted the fidelity of images on web pages. Table 1 summarizes the setup of
the experiments. During the experiments, the prediction component of the adaptation
system was disabled so that participants would have to interact with images in order to
achieve an appropriate adaptation. That is, the system did not take advantage of past

110 I. Mohomed et al.

interactions of the current or previous users. This forces participants to reveal their
true adaptation preferences as well as avoiding any effects arising from the ordering of
participants in our study.

Page Layout Adaptation Experiment: The goal of our first experiment was to
investigate a scenario in which users naturally provide two-sided feedback. We created a
prototype page layout adaptation system that allowed users to increase and decrease the
screen dimensions of images on a web page. While all of the participants in this study
were given the same task to perform, we varied the device used to browse the web
across individuals. Thus, the primary source of variation in the adaptation requirements
of users is the difference in device context.

The experiment consisted of four web pages, each containing three images of postage
stamps. For each page, participants were asked to modify the dimensions of the images
in a manner such that it would be easy to identify differences between two images
and find details on a third image. We obtained traces from 30 participants who were
randomly divided into three sub-groups which used different simulated displays: a
PocketPC SmartPhone, a PocketPC PDA and a Toyota GBook vehicular terminal. The
setups for these traces are referred to in Table 1 as SmartPhone, PDA and GBook,
respectively.

Image Fidelity Adaptation Experiments: The goal of our second and third exper-
iment was to consider a case where users are only motivated to provide one-sided
feedback. To this end, we created an image fidelity adaptation system in which the
images on a web page are initially served at low fidelity (for faster download), and
users can click on individual images to improve their fidelity. In these studies, different
participants were given varying tasks. However, all of the participants performed their
assigned tasks on the same device. As such, variations in the adaptation requirements
of users stem from differences in their assigned task.

For these experiment, we designed two image-rich sites. The first, a movie posters
site, had images of popular movie posters. The second, a map site, had a map of the
University of Toronto’s campus represented in a grid of 6 x 6 images. For each site, we
designed three tasks, and each participant performed only one of those tasks. For the
movie posters site, each task consisted of detailed questions pertaining to a different
subset of the posters. For example, participants were asked to identify the director, title
and release date of some of the movies. For the map site, participants were asked to
provide directions from one given building to another within the university’s campus.
To accomplish these tasks, participants had to increase the fidelity of relevant images
until sufficient details were visible. Participants were able to adjust image fidelities on
a scale between 1 and 10. The tasks were designed so that participants would find some
images in a web page relevant while others not as much.

For these experiments, participants used a laptop equipped with our adaptation
system and an available network bandwidth of 56kbps, which is a reasonable approxi-
mation of a GPRS WWAN connection. We recruited 231 participants who were divided
in six sub-groups of 37 to 40 individuals. Our setup is described in Table 1.

Correlation-Based Content Adaptation for Mobile Web Browsing 111

Table 1. Summary of experiments

of Pages Images per Page Total Images Setup # of Users
Page Layout
Postage Stamps 4 3 12 SmartPhone Display 10

PDA Display 10
GBook Display 10

Image Fidelity
Movie Posters 9 1 9 Task-1 37

Task-2 37
Task-3 37

Map 1 36 36 Path-1 40
Path-2 40
Path-3 40

3.2 Trace-Based Evaluation

In order to determine the effectiveness of each algorithm considered, we evaluated them
using the traces collected from the participants in our experiments. For the page layout
experiment, we collected for each participant, their required image dimensions for every
image. From the fidelity experiment, we obtained for each participant their minimum
required fidelity for every image.

To test each algorithm, we used leave-one-out cross-validation. That is, each
algorithm was trained with the traces of all users except one. The algorithm was then
used to predict the dimensions or fidelities of the images served to the user, depending
on the experiment.

For this testing, we created a user simulator. At the start, the prediction algorithm
provides an adapted version of each image on a page. The simulated user, based
on the collected traces, goes through each of the images on the page in turn and
provides an “interaction” for the first image it finds that is not properly adapted. When
the simulated user provides an interaction, the prediction algorithm recalculates an
appropriate adaptation for all of the images on the page and presents it to the simulated
user once again. This process is repeated until all of the images are adapted according
to the user’s preferences.

For the page layout adaptation experiment, the primary metric used to evaluate
the different algorithms is the number of user interactions. However, for the fidelity
experiments, a number of metrics are used for evaluation: the number of user interac-
tions required, fulfillment time, wasted bandwidth and energy consumed. Number of
interactions is the number of times a user had to interact with the images in order to
achieve her desired adaptation. Fulfillment time is the aggregate of interaction time
(the time users spend interacting with images until their fidelity requirements are
met) and download time. Wasted bandwidth is calculated as the amount of bandwidth
used beyond what would be required by the user if all images were served at their
exact required fidelity immediately. Energy consumed is the energy measure, in Joules,
consumed by the device for viewing and downloading content.

In order to compute fulfillment time and energy consumption with our simulator, we
measured the average interaction time from one of our user studies (2388 milliseconds).

112 I. Mohomed et al.

We then ran several experiments on an HP iPAQ h6325 PDA in order to measure
download speeds and energy characteristics of real hardware. With a GPRS connection,
we observed effective download speeds of approximately 33kbps. When the device was
idle, it consumed 0.67 Joules/second (with GPRS radio and backlight on) and when the
device was downloading, it consumed 1.59 Joules/second.

For any particular algorithm, there is a clear trade-off between wasted bandwidth and
the number of interactions: under-predicting the fidelity required for an image will lead
to more user interactions and over-predicting the fidelity will lead to wasted bandwidth.
However, good algorithms can perform well at both simultaneously. Indeed, a perfect
prediction algorithm that knows the exact adaptation required by users (we call this
oracle) would not waste any bandwidth, nor would it require any interactions by the
user.

4 Experimental Results

In this section, we provide the results of our evaluation. We start by considering the
case of two-sided feedback, which occurs naturally during the course of our page layout
experiment. Next, we consider the performance of different algorithms when only one-
sided feedback is available, as is the case in our fidelity adaptation experiments.

All of the results presented in this section are mean results, averaged across
individual users over the entire web site for any given experiment. The algorithm that
we use as our baseline for performance is the single object history (SOH) prediction
algorithm from our previous work [12,13]. This algorithm makes adaptation predictions
for each object by considering its adaptation history in isolation. For image fidelity
adaptation, the SOH algorithm initially serves an image at the mean value of the fidelity
that was desired by previously encountered users. If this is not satisfactory, the SOH
algorithm provides a subsequent prediction by ignoring the desired fidelities below that
which was just served, and recomputing the mean. For page layout adaptation, the initial
prediction of the SOH algorithm is computed in the same way (taking the mean of the
desired image sizes of previously encountered users). However, when a user decides to
increase or decrease an image, the algorithm removes from the history all of the desired
image sizes of previous users that are less than or greater than the size that was just
provided, respectively. SOH makes the next prediction by computing the mean value
from the remaining history.

4.1 Two-Sided Feedback

We tested both the decision stump algorithm and the Gaussian mixture model algorithm
on the postage stamp experiment, where users were required to adapt images by re-
sizing them. For this experiment, feedback was provided for predictions that were too
high or too low. Because the images were already downloaded, there was no notion of
bandwidth wasted for this experiment. Using the SOH algorithm, the mean number of
interactions required of a user during the experiment was 15. By leveraging correlations
between adaptation requirements however, the decision stumps algorithm achieved a
mean of 5.1 interactions, while the Gaussian mixture model achieved 5.9 (with six
distributions), both demonstrate a vast improvement over using only SOH.

Correlation-Based Content Adaptation for Mobile Web Browsing 113

Table 2. The performance of several variations of decision stumps on the movie poster dataset.
We observe that significantly more bandwidth is wasted with one-sided feedback (line 2) than in
the hypothetical case of perfect feedback (line 1). We also observe that under-prediction greatly
reduces wasted bandwidth but comes at the cost of more interactions required of the user (line 3).

Variation # of Interactions Bandwidth Wasted (KB)
Perfect Feedback 2.50 200.74
One-Sided Feedback 0.32 830.19
Under-prediction on First Image 6.71 113.67
with One-Sided Feedback

These results demonstrate that using correlation based prediction methods for cases
where two-sided feedback is available is an excellent idea, and that standard machine
learning techniques work well. After all, this a very straight-forward prediction problem.

4.2 One-Sided Feedback

One-sided feedback introduces a twist to the prediction problem. We compare the
performance of our different algorithms and explore the effect of under-prediction on
the movie posters experiment. We show that the all-in algorithm leverages this effect
and provides strong performance across all studies where only one-sided feedback is
available. Finally, we evaluate the algorithms on the movie posters experiment using
two metrics of practical interest: fulfillment time and energy usage.

Without any adaptation, 2.70MB are transferred to download the 9 images in the
movie posters experiment. However, if an oracle were to exist such that we were able to
provide users with their desired fidelity, only 1.29MB would have been downloaded on
average. That is, without adaptation, an average of 1.41 MB of bandwidth is consumed
needlessly. Making predictions using single object history results in an average wastage
of only 378KB of bandwidth; this occurs at an average cost of 5.4 interactions. When
we consider how interactions are distributed across images, we observe that the users
must interact with approximately two-thirds of the images on the web site.

In the case of image fidelity adaptation, only one-sided feedback is available.
However, in order to establish the validity of the methods in general, we first consider
the performance they achieve if users provided perfect feedback. For perfect feedback,
we assume the algorithm knows by how much each image was over-predicted, without
incurring any additional interactions (under-predictions still result in interactions). We
then show results for the case where users provide one-sided feedback.

The first line of Table 2 shows the result of making predictions using decision
stumps when perfect feedback is provided. We see that, beyond the single object
history case, the amount of wasted bandwidth is reduced by 47%. In addition, the
number of interactions is decreased from 5.4 to only 2.5. However, for image fidelity
adaptation as the problem is made manifest (only one-sided feedback is available),
the wastage increases significantly. The second line of Table 2 shows the result
of making predictions under these conditions. Although the number of interactions
required is minimal, the wasted bandwidth is significantly higher (830KB) than using
the predictions generated by the single object history method (378KB).

114 I. Mohomed et al.

Figure 3(a) shows the performance achieved when making predictions using a
mixture of Gaussians when perfect feedback is available. The x-axis in the graph
indicates the number of distributions that are created based on the observed training
data. The y-axis on the left indicates the mean number of interactions required by
each user and the y-axis on the right provides the mean wasted bandwidth per
user. We observe that after about four distributions, the algorithm achieves consistent
performance. With six distributions, users waste 212KB with 1.4 interactions. Like the
decision stumps method, this represents a significant improvement over the predictions
generated with only single object history which wastes 378KB with 5.4 interactions.
When only one-sided feedback is given, the number of interactions remains consistently
low, however, the wasted bandwidth climbs above 700KB. Figure 3(b) shows the
performance of the Gaussian Mixture Model in this case.

We conclude that when only one-sided feedback is available, the two standard
techniques that we considered suffer from poor performance.

Effect of Under-prediction: In situations where users only provide one-sided feed-
back, the performance of prediction algorithms that use correlations can be improved
by purposely under-predicting on the initial set of images on a web page. We now show
the performance of the decision stumps and Gaussian mixture model algorithms for the
movie posters dataset when we under-predict on the first image.

The third line of Table 2 shows the result of making predictions using decision
stumps, but with a purposeful under-prediction on the first image served. We see that
the amount of wasted bandwidth is reduced by nearly 70% compared to the case where
only single object history is used. However, this comes at the cost of more interactions,
6.7 versus 5.4 in the case of single object history.

Figure 4(a) shows the performance of the Gaussian mixture model with one-sided
feedback for the case of six clusters. Due to the nature of the model, it is natural to
under-predict on images by some standard deviation of the required fidelities of the
object. The x-axis indicates the amount of under-prediction (in terms of the number
of standard deviations). Similar to Figure 3, the y-axis on the left and right indicate
the average number of interactions required per user and the average amount of

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6 7 8
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

N
um

be
r

of
 In

te
ra

ct
io

ns

W
as

te
d

B
an

dw
id

th
 (

K
ilo

by
te

s)

Number of Distributions

Interactions
Wasted Bandwidth

(a) Perfect Feedback

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6 7 8 9 10
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

N
um

be
r

of
 In

te
ra

ct
io

ns

W
as

te
d

B
an

dw
id

th
 (

K
ilo

by
te

s)

Number of Distributions

Interactions
Wasted Bandwidth

(b) One-Sided Feedback

Fig. 3. The performance of the Gaussian Mixture Model on the movie posters dataset with perfect
and one-sided feedback. We observe that significantly more bandwidth is wasted with one-sided
feedback (b) than in the hypothetical case of perfect feedback(a).

Correlation-Based Content Adaptation for Mobile Web Browsing 115

 0

 2

 4

 6

 8

 10

-5 -4 -3 -2 -1 0 1
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

N
um

be
r

of
 In

te
ra

ct
io

ns

W
as

te
d

B
an

dw
id

th
 (

K
ilo

by
te

s)

Standard Deviations

Interactions
Wasted Bandwidth

(a) Gaussian Mixture Model (Six Distribu-
tions) with Under-Prediction

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6 7 8 9 10
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

N
um

be
r

of
 In

te
ra

ct
io

ns

W
as

te
d

B
an

dw
id

th
 (

K
ilo

by
te

s)

Number of Distributions

Interactions
Wasted Bandwidth

(b) One-Sided Feedback with Fixed Amount of
Under-prediction (3.3 std dev)

Fig. 4. The effect of under-prediction on the Gaussian mixture model on the movie posters dataset.
We observe that wasted bandwidth decreases as we under-predict with more standard deviations
(a). For e.g., -4 on the x-axis refers to under-predicting the mean by four standard deviations.
Alternatively, for a fixed amount of under-prediction, we observe that GMM has far less wasted
bandwidth (b) compared to GMM with no under-prediction.

wasted bandwidth per user, respectively. If the algorithm under-predicts by 3.3 standard
deviations, compared to using single object history for predictions, users waste 45%
less bandwidth and require 1.4 fewer interactions. Figure 4(b) shows the performance
of the Gaussian Mixture Model when under-predicting by 3.3 standard deviations for
various numbers of distributions.

From these results, we conclude that under-prediction results in a significant
reduction in the amount of wasted bandwidth. However, doing so may result in more
interactions required of the user.

Performance of the all-in Algorithm: Figure 5(a) shows the performance achieved
when making predictions using the all-in algorithm for the movie posters data set.

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6 7 8 9 10
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

N
um

be
r

of
 In

te
ra

ct
io

ns

W
as

te
d

B
an

dw
id

th
 (

K
ilo

by
te

s)

Number of Distributions

Interactions
Wasted Bandwidth

(a) Movie Posters

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6 7 8 9 10
 0

 5

 10

 15

 20

 25

N
um

be
r

of
 In

te
ra

ct
io

ns

W
as

te
d

B
an

dw
id

th
 (

K
ilo

by
te

s)

Number of Clusters

Interactions
Wasted Bandwidth

(b) Map

Fig. 5. The performance of the all-in algorithm on the studies where only one-sided feedback
is provided. We observe that all-in performs consistently well on all datasets for both wasted
bandwidth and number of interactions.

116 I. Mohomed et al.

The x-axis indicates the number of clusters into which users may be classified. These
clusters are created using the observed training data. Similar to the previous figure, the
y-axes on the left and right indicate the mean number of interactions required by each
user and the mean amount of wasted bandwidth per user, respectively. With respect to
the number of interactions required, the algorithm performs optimally when there are
three clusters. In this case, users waste only 138KB (a reduction of 63% compared to
using single object history) at the cost of just 2.6 interactions (2.8 interactions less than
single object history).

The all-in algorithm also performs well on the map experiment 5(b). When we
compare the performance of the three methods, we find that the all-in algorithm has the
best performance. One of the key features of the all-in algorithm is that until the user is
isolated into a single cluster, the initial prediction made for each object is lower than the
average fidelity required by users. When doing correlation-based adaptation with one-
sided feedback, purposeful under-prediction for the first few objects provides significant
benefit. This is because when the algorithm under-predicts, it forces the user to interact.
This leads to an accurate history for a small set of objects, which can be leveraged to
provide better quality predictions for the remainder of the objects on a web site.

Energy and Fulfillment Time: To characterize the exact benefits that the different
methods may provide in practice, we evaluated all of them and several baseline and naive
approaches with respect to fulfillment time and energy consumption. Figure 6 shows
the fulfillment time and energy consumption for a number of adaptation policies: no
adaptation (NA), single object histories (SOH), decision stumps (DS), decision stumps
with under-prediction (DSU), Gaussian mixture model (GM), Gaussian mixture model
with under-prediction (GMU), all-in (AI) and oracle (OR). Oracle, discussed earlier, is
able to exactly predict the user’s required fidelity, wasting no bandwidth nor requiring
any interaction. It gives an upper bound on the performance of prediction algorithms.

For both fulfillment time and energy, we see that under-prediction results in
significant improvement for both decision stumps and Gaussian mixture model. all-
in performs the best for both fulfillment time and energy consumption, and performs
close to oracle. In all cases, the correlation based approaches that use under-prediction
offer both better fulfillment time and energy usage. Of all of them however, all-in also
requires the fewest interactions.

4.3 Summary of Results

We first considered the performance of our prediction algorithms on an adaptation
problem where two-sided feedback is available. We found that, in this case, all
correlation-based techniques perform better than if we were to make predictions using
only SOH. We then considered the algorithms’ performance in the case where only
one-sided feedback is available and found that for both the decision stumps and
Gaussian mixture model algorithms, over-predictions on the initial set of objects lead
to poor predictions for later objects. We modified these algorithms to perform under-
prediction, which while reducing wasted bandwidth significantly, burdened the user
by requiring more interactions. The all-in algorithm performed consistently well, even
when only one-sided feedback was available, due to its aggressive under-prediction.

Correlation-Based Content Adaptation for Mobile Web Browsing 117

 0

 50

 100

 150

 200

 250

 300

 350

 400

NA SOH DS DSU GM GMU AI OR

F
ul

fil
lm

en
t T

im
e

(s
ec

on
ds

)

Algorithm

(a) Fulfillment Time

 0

 200

 400

 600

 800

 1000

 1200

NA SOH DS DSU GM GMU AI OR

E
ne

rg
y

U
sa

ge
 (

Jo
ul

es
)

Algorithm

(b) Energy

Fig. 6. The average fulfillment time and energy consumption per user for several adaptation
techniques on the movie posters dataset

Finally, we considered the fulfillment time and energy consumed during the movie
posters experiment by each of the algorithms. We found that the all-in algorithm
outperformed all others, and provides effective fine-grain adaptation even in the case
of multi-purpose content.

5 Related Work

There is significant research on content adaptation for mobile devices [1, 2, 3, 17, 18,
4, 5, 19, 20, 6, 8, 9, 10], and even a few commercial adaptation systems have been
deployed [21, 1].

Content providers have traditionally adapted content manually, by offering device
specific versions of their content. This approach places significant overhead on content
providers as they need to maintain multiple versions of their content.

There has also been research on systems which automatically adapt content on-the-
fly. Most automatic systems generate adaptation policies either based on rules [6, 7, 1,
22, 20] or constraints [7, 4, 23, 19]. In both approaches, adaptation policies are defined
using high-level programming languages or mathematical formulas [23,22]. Rule-based
systems rely on high-level rules to guide the adaptation process. When adapting an
object, the system determines the subset of rules that apply and adapts accordingly
(e.g., convert images larger than 50 KB to progressive JPEG images). Constraint-
based adaptation extends rule-based adaptation to encode tradeoffs between possible
adaptation strategies. A constraint captures, in a mathematical formula, the relationship
between resource consumption and user satisfaction for a specific adaptation. An
automatic solver adapts content by finding a solution that meets all constraints,
minimizes resource consumption, and maximizes user satisfaction. Unfortunately,
content providers cannot be expected to provide constraints or rules for every data
object, as this imposes significant onus. As a result, small sets of rules apply to broad
sets of content (e.g., all JPEG images are adapted the same way independent of their
purpose or value to the user). Moreover, determining the relationship between user
satisfaction and content metrics, such as resolution or frame rate, is hard and often

118 I. Mohomed et al.

depends on the semantics of the content being adapted and the user’s task, which is
rarely taken into consideration in these approaches.

In contrast, in our approach, end-users provide feedback for only a small subset of
the content of web pages (by clicking on the objects), and the system is able to correctly
adapt the larger set of content by considering the correlation in adaptation requirements
of users. Also, because the end-user has control over the degree of adaptation, the
system is guaranteed to provide adaptations that are satisfactory to the user.

End-user adaptation is also explored in [24, 25], however, those systems provide
solutions specific to the layout of web pages on small screens, and as such do not
explore correlations in user adaptation requirements.

Our work is related to previous efforts on recommendation-based systems. Most
recommendation systems [26, 27, 28, 29] use collaborative filtering, in which people
collaborate to help one another perform filtering by recording their reactions to
documents they read. Balabanovic et al. [30] add the ability to evaluate and provide
feedback in order to learn and improve on the recommendations. A collection of
histories [31] can be created and then mined to recommend to the user a set of candidate
functions and to detect users’ erroneous behavior. Semantics can be used to build a
model of the user [32] such as that used by online retailers like Amazon.com, which
can then be used to recommend other items in the same class of products.

In our previous work, we introduced the URICA technique, which adapts single-
purpose content based on the history of previously encountered users [12], and
considers the context of those adaptations [13]. In this paper, we have shown how to
provide fine-grain adaptation in the more challenging case of multi-purpose content.
This is achieved by finding correlations in user adaptation requirements between
different objects on a web site, and leveraging a user’s feedback across multiple objects.

6 Conclusions and Future Work

In this paper, we showed that correlations in user adaptation requirements across
different objects can be used to provide fine-grain adaptation for multi-purpose
content. We considered two techniques from machine learning that enable correlation-
based predictions: decision stumps, which directly encodes relationships between the
adaptation requirements of objects, and the Gaussian mixture model, which finds
correlations implicitly by clustering users with similar adaptation requirements. These
techniques do not perform well when users have no incentive to correct over-predictions
made by the system. We provide an algorithm called all-in, which groups together users
with similar adaptation requirements and then makes predictions in a way that rapidly
classifies users into a single cluster. We showed that for one-sided feedback, the all-
in algorithm performs significantly better than other techniques when considering key
metrics such as bandwidth usage, number of user interactions, fulfillment time, and
energy consumption.

In the future, we intend to do a large scale, real-world deployment of an image
fidelity adaptation system. The goal of this endeavor is to learn about the behavior
of users performing interactive adaptation on web content outside a lab environment,
and over an extended period of time. A version of this system for devices that can run

Correlation-Based Content Adaptation for Mobile Web Browsing 119

the Firefox browser has already been made publicly available [33], and versions for the
Minimo and Pocket Internet Explorer web browsers are currently being tested.

Acknowledgment

This research was supported Bell University Labs (BUL) under grant 480997, and by
the Canadian Foundation for Innovation (CFI) and the Ontario Innovation Trust (OIT)
under grant number 7739. Any opinions, findings, conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the
views of CFI, OIT, BUL or the University of Toronto.

References

1. Britton, K., Case, R., Citron, A., Floyd, R., Li, Y., Seekamp, C., Topol, B., Tracey, K.:
Transcoding: Extending e-business to new environments. IBM Systems Journal 40(1), 153–
178 (2001)

2. de Lara, E., Wallach, D.S., Zwaenepoel, W.: Puppeteer: Component-based adaptation for
mobile computing. In: Proceedings of the 3rd USENIX Symposium on Internet Technologies
and Systems, San Francisco, California (2001)

3. Fox, A., Gribble, S.D., Brewer, E.A., Amir, E.: Adapting to Network and Client Variability
via On-Demand Dynamic Distillation. SIGPLAN Notices 31(9), 160–170 (1996)

4. Lum, W.Y., Lau, F.C.M.: A context-aware decision engine for content adaptation. IEEE
Pervasive Computing 1(3), 41–49 (2002)

5. Noble, B.D., Satyanarayanan, M., Narayanan, D., Tilton, J.E., Flinn, J., Walker, K.R.: Agile
application-aware adaptation for mobility. Operating Systems Review (ACM) 51(5), 276–
287 (1997)

6. Smith, J.R., Mohan, R., Li, C.S.: Content-based transcoding of images in the Internet. In:
Proceedings of the IEEE International Conference on Image Processing, Chicago, Illinois,
IEEE Computer Society Press, Los Alamitos (1998)

7. Smith, J.R., Mohan, R., Li, C.S.: Transcoding internet content for heterogeneous client
devices. In: Proceedings of the IEEE International Symposium on Circuits and Systems,
Monterey, California, IEEE Computer Society Press, Los Alamitos (1998)

8. Sun, Z., Mahmud, J., Mukherjee, S., Ramakrishnan, I.V.: Model-directed web transactions
under constrained modalities. In: WWW 2006. Proceedings of the 15th international
conference on World Wide Web, ACM Press, New York, NY, USA (2006)

9. Borodin, Y., Mahmud, J., Ramakrishnan, I.: Context browsing with mobiles - when less is
more. In: MobiSys 2007. Proceedings of the 5th international conference on Mobile systems,
applications and services, pp. 3–15. ACM Press, New York, NY, USA (2007)

10. Zhuang, Z., Chang, T.Y., Sivakumar, R., Velayutham, A.: A3: application-aware acceleration
for wireless data networks. In: MobiCom 2006. Proceedings of the 12th annual international
conference on Mobile computing and networking, pp. 194–205. ACM Press, New York, NY,
USA (2006)

11. Mohomed, I., Chin, A., Cai, J.C., de Lara, E.: Community-driven adaptation: Automatic
content adaptation in pervasive environments. In: WMCSA 2004. Proceedings of the
Workshop on Mobile Computing Systems and Applications, Lake District National Park,
UK, pp. 124–133. IEEE Computer Society, Los Alamitos (2004)

12. Mohomed, I., Cai, J.C., de Lara, E.: Urica: Usage-aware interactive content adaptation for
mobile devices. In: Proceedings of EuroSys 2006, Leuven, Belgium (2006)

120 I. Mohomed et al.

13. Mohomed, I., Cai, J.C., Chavoshi, S., de Lara, E.: Context-aware interactive content
adaptation. In: MobiSys 2006. Proceedings of the 4th international conference on Mobile
systems, applications and services, pp. 42–55. ACM Press, New York, NY, USA (2006)

14. Witten, I., Frank, E.: Data mining: Practical machine learning tools and techniques (2005)
15. Webb, G.: Multiboosting: A technique for combining boosting and wagging. Machine

Learning , 159–196 (2000)
16. Freund, Y., Schapire, R.: Experiments with a new boosting algorithm. In: Proc. of

International Conference on Machine Learning, pp. 148–156 (1996)
17. Fox, A., Gribble, S.D., Chawathe, Y., Brewer, E.A.: Adapting to network and client

variation using infrastructural proxies: Lessons and perspectives. IEEE Personal Commu-
nications 5(4), 10–19 (1998)

18. Katz, R.H.: Adaptation and mobility in wireless information systems. IEEE Personal
Communications 1(1), 6–17 (1994)

19. Narayanan, D., Flinn, J., Satyanarayanan, M.: Using history to improve mobile application
adaptation. In: Proceedings of the 3rd IEEE Workshop on Mobile Computing Systems and
Applications, Monterey, California, IEEE Computer Society Press, Los Alamitos (2000)

20. Schilit, B.N., Trevor, J., Hilbert, D.M., Koh, T.K.: Web interaction using very small internet
devices. IEEE Computer 35(10), 37–45 (2002)

21. iAnywhere Solutions: Avantgo, http://www.avantgo.com
22. Han, R., Bhagwat, P., LaMaire, R., Mummert, T., Perret, V., Rubas, J.: Dynamic adaptation in

an image transcoding proxy for mobile web browsing. IEEE Personal Communications 5(6),
8–17 (1998)

23. Dotsenko, Y., de Lara, E., Wallach, D.S., Zwaenepoel, W.: Extensible Adaptation via
Constraint Solving. In: Proceedings of the 4th IEEE Workshop on Mobile Computing
Systems and Applications, Callicoon, New York, IEEE Computer Society Press, Los
Alamitos (2002)

24. Bila, N., Ronda, T., Mohomed, I., Truong, K.N., de Lara, E.: Pagetailor: Reusable end-
user customization for the mobile web. In: MobiSys 2007. Proceedings of the International
Conference on Mobile Systems, Applications and Services, San Juan, PR, USA (June 2007)

25. Baudisch, P., Xie, X., Wang, C., Ma, W.Y.: Collapse-to-Zoom: Viewing Web pages on small
screen devices by interactively removing irrelevant content. In: UIST 2004. Proceedings
of the 17th Symposium on User Interface Software and Technology, Santa Fe, NM, USA
(October 2004)

26. Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave an
information tapestry. Communications of the ACM 35(12), 61–70 (1992)

27. Terveen, L., Hill, W., Amento, B., McDonald, D., Creter, J.: Phoaks: a system for sharing
recommendations. Commun. ACM 40(3), 59–62 (1997)

28. Balabanovic, M., Shoham, Y.: Fab: content-based, collaborative recommendation. Commu-
nications of the ACM 40(3), 66–72 (1997)

29. CiteSeer, http://citeseer.ist.psu.edu/
30. Balabanovic, M., Shoham, Y., Yun, Y.: An adaptive agent for automated web browsing.

Journal of Visual Communication and Image Representation 6(4) (1995)
31. Ohsugi, N., Monden, A., Matsumoto, K.: A recommendation system for software function

discovery. In: APSEC 2002. Proceedings of the 9th Asia-Pacific Software Engineering
Conference, Gold Coast, Queensland, Australia (December 2002)

32. Ghani, R., Fano, A.: Building recommender systems using a knowledge base of product
semantics. In: 2nd International Conference on Adaptive Hypermedia and Adaptive Web
Based Systems, Malaga, Spain (May 2002)

33. Chameleon Homepage, http://adaptive.slup.cs.toronto.edu/

http://www.avantgo.com
http://citeseer.ist.psu.edu/
http://adaptive.slup.cs.toronto.edu/

	Introduction
	Adapting Multi-purpose Content
	Type of Feedback
	Prediction Algorithms
	Practical Considerations

	Experimental Methodology
	Gathering User Traces
	Trace-Based Evaluation

	Experimental Results
	Two-Sided Feedback
	One-Sided Feedback
	Summary of Results

	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

