
Non-intrusive, Out-of-band and Out-of-the-box
Systems Monitoring in the Cloud

Sahil Suneja
University of Toronto

sahil@cs.toronto.edu

Canturk Isci
IBM T.J. Watson Research
canturk@us.ibm.com

Vasanth Bala
IBM T.J. Watson Research

vbala@us.ibm.com
Eyal de Lara

University of Toronto
delara@cs.toronto.edu

Todd Mummert
IBM T.J. Watson Research

mummert@us.ibm.com

ABSTRACT
The dramatic proliferation of virtual machines (VMs) in dat-
acenters and the highly-dynamic and transient nature of VM
provisioning has revolutionized datacenter operations. How-
ever, the management of these environments is still carried
out using re-purposed versions of traditional agents, origi-
nally developed for managing physical systems, or most re-
cently via newer virtualization-aware alternatives that re-
quire guest cooperation and accessibility. We show that
these existing approaches are a poor match for monitoring
and managing (virtual) systems in the cloud due to their de-
pendence on guest cooperation and operational health, and
their growing lifecycle management overheads in the cloud.
In this work, we first presentNear Field Monitoring (NFM),

our non-intrusive, out-of-band cloud monitoring and analyt-
ics approach that is designed based on cloud operation prin-
ciples and to address the limitations of existing techniques.
NFM decouples system execution from monitoring and ana-
lytics functions by pushing monitoring out of the targets sys-
tems’ scope. By leveraging and extending VM introspection
techniques, our framework provides simple, standard inter-
faces to monitor running systems in the cloud that require no
guest cooperation or modification, and have minimal effect
on guest execution. By decoupling monitoring and analyt-
ics from target system context, NFM provides “always-on”
monitoring, even when the target system is unresponsive.
NFM also works “out-of-the-box” for any cloud instance as
it eliminates any need for installing and maintaining agents
or hooks in the monitored systems. We describe the end-to-
end implementation of our framework with two real-system
prototypes based on two virtualization platforms. We dis-
cuss the new cloud analytics opportunities enabled by our
decoupled execution, monitoring and analytics architecture.
We present four applications that are built on top of our
framework and show their use for across-time and across-
system analytics.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMETRICS’14, June 16–20, 2014, Austin, Texas, USA.
Copyright 2014 ACM 978-1-4503-2789-3/14/06 ...$15.00.
http://dx.doi.org/10.1145/2591971.2592009 .

Categories and Subject Descriptors
K.6.4 [Management of Computing and Information
Systems]: SystemManagement—Centralization/ decentral-
ization; D.4.7 [Operating Systems]: Organization and
Design—Distributed systems; C.5.0 [Computer System
Implementation]: General; C.4 [Performance of Sys-
tems]: Design studies

Keywords
Virtualization; Virtual Machine; Cloud; Data Center; Mon-
itoring; Analytics; Agentless; VMI

1. INTRODUCTION
Cloud computing and virtualization technologies are dra-

matically changing how IT systems operate. What used
to be a relatively static environment, with fixed physical
nodes, has quickly transformed into a highly-dynamic en-
vironment, where (clusters of) virtual machines (VMs) are
programmatically provisioned, started, replicated, stopped
and deprovisioned with cloud APIs. VMs have become the
processes of the cloud OS, with short lifetimes and a rapid
proliferation trend [24].

While the nature of data center operations has changed,
the management methodology of these (virtual) machines
has not adapted appropriately. Tasks, such as performance
monitoring, compliance and security scans, and product dis-
covery amongst others are carried out using re-purposed ver-
sions of tools originally developed for managing physical sys-
tems or via newer virtualization-aware alternatives that re-
quire guest cooperation and accessibility. These approaches
require a communication channel, i.e., a hook, into the run-
ning system, or the introduction of a software component,
i.e., an agent, within the system runtime. There are two key
problems with the existing approaches:

First, proliferation of VMs and their ephemeral, short-
lived nature, makes the cost of provisioning and maintaining
hooks and agents a major pain point. Moreover, the mon-
itoring extensions “pollute” the end-user system, intervene
with guest execution, and potentially open up new points of
vulnerability. A recent observation from Amazon Web Ser-
vices [3] highlights how agent operation and maintenance
issues can impact managed systems. In this case, an incom-
plete maintenance update for DNS configuration in some of
the agents, coupled with a memory leak issue led to a per-
formance degradation for part of Amazon storage services.

This observation drives the first research question we address
in our work: How can we perform IT operations (monitor-
ing, compliance, etc.) without relying on guest cooperation
or in-VM hooks?
Second, existing techniques work only so long as the mon-

itored systems function properly, and they fail once a system
becomes unresponsive—exactly when such monitoring infor-
mation is the most valuable. A recent Google outage [12]
presents a prime example to the effect of this limitation,
where a significant portion of Google’s production systems
became unresponsive due to a dynamic loader misconfigu-
ration. As a result of this, none of the in-system agents
could publish data outside, neither was it possible to log in
to the impacted systems for manual diagnosis. Thus,it was
extremely difficult to get system information when it was
most crucial. This observation drives our second research
question: How can we monitor and manage systems even
when they become unresponsive or are compromised?
To address these research challenges, this paper intro-

duces Near Field Monitoring (NFM), a new approach for
system monitoring that leverages virtualization technology
to decouple system monitoring from system context. NFM
extends VM introspection (VMI) techniques, and combines
these with a backend cloud analytics platform to perform
monitoring and management functions without requiring ac-
cess into, or cooperation of the target systems. NFM crawls
VM memory and disk state in an out-of-band manner from
outside the guest’s context, to collect system state which is
then fed to the analytics backend. The monitoring functions
simply query this systems data, instead of accessing and in-
truding each running system. In stark contrast with existing
techniques, NFM seamlessly works even when a system be-
comes unresponsive (always-on monitoring), and does not
require the installation and configuration of any hooks or
agents in the target system (it works out-of-the-box). Unlike
the in-VM solutions that run within the guest context and
compete for resources allocated to the guest VMs, NFM is
non-intrusive and does not steal guests’ cycles or interfere
with their actual operation. We believe our approach lays
the foundation for the right way of systems monitoring in
the cloud; very much like how we monitor processes in an OS
today. NFM is better suited for responding to the ephemeral
nature of VMs and further opens up new opportunities for
cloud analytics by decoupling VM execution and monitor-
ing.
There are three primary contributions of our work. First,

we present our novel non-intrusive, out-of-band cloud mon-
itoring and analytics framework, which we fully implement
on real systems. It provides a service to query live as well
as historical information about the cloud, with cloud mon-
itoring and analytics applications acting as clients of this
service. Our work presents how we can treat systems as doc-
uments and leverage familiar paradigms from the data an-
alytics domain such as document differencing and semantic
annotations to analyze systems. We also develop methods
for low-latency, live access to VM’s memory with optional
consistency support, as well as optimizations that enable
subsecond monitoring of systems. Second, we build several
applications on top of our NFM framework based on actual
enterprise use cases. These include (i) a cloud topology dis-
covery and evolution tracker application, (ii) a cloud-wide
realtime resource monitor providing a more accurate and
holistic view of guests’ resource utilization, (iii) an out-of-

VM console-like interface enabling administrators to query
system state without having to log into guest systems, as
well as a handy “time travel” capability for forensic analy-
sis of systems, and (iv) a hypervisor-paging aware out-VM
virus scanner that demonstrates how across-stack knowledge
of system state can dramatically improve the operational
efficiency of common management applications like virus
scan. Finally, we present a quantitative evaluation showcas-
ing NFM’s high accuracy, monitoring frequency, reliability
and efficiency, as well as low impact on monitored systems.

The rest of the paper is organized as follows. Section
2 summarizes the techniques employed today for enterprise
virtual systems monitoring. Section 3 gives a high level view
of our solution architecture and discusses its benefits over
existing alternatives. Section 4 gives the implementation
details. Section 5 describes the applications we have built to
demonstrate NFM’s capability. Section 6 evaluates NFM’s
performance. Section 7 presents related work and Section 8
offers our conclusions.

2. EXISTING TECHNIQUES
System monitoring has been a major part of enterprise IT

operations. We categorize the various techniques employed
today as follows:

1. Application-specific in-VM agents for monitoring guest
systems.

2. Application specific hooks for remotely accessing and mon-
itoring systems.

3. Limited black-box metrics collected by the virtualization
layer without guest cooperation.

4. General purpose agents or hooks that provide generic in-
VM information through the virtualization layer.

Existing cloud monitoring and management solutions em-
ploy one or more of the above methods to deliver their ser-
vices. For example, Amazon’s CloudWatch [2] service falls
under the third category in its base operation, while it can be
extended by the end users with in-VM data providers (as in
the first category) to provide deeper VM-level information.
Other solutions such as Dell Quest/VKernel Foglight [14]
is a combination of all three - guest remote access, in-VM
agents, and hypervisor level metrics exported by VM man-
agement consoles like VMware vCenter and Red Hat Enter-
prise Management. To mitigate the limitations, and in par-
ticular, intrusiveness of custom in-VM techniques, an emerg-
ing approach has been the use of general purpose agents or
backdoors inside the VMs that supply in-VM state informa-
tion to the virtualization layer (fourth category). Various
virtualization extensions such as VMware tools [48], VM-
Safe API [50], VMCI driver [47] and vShield endpoint [49]
follow this approach. Other solutions also employ similar
techniques and are summarized in Section 7.

There are important caveats with either of these options.
First, in-VM solutions are only as good as the monitored
system’s operational health. This poses an interesting co-
nundrum, where the system information becomes unavail-
able exactly when it is most critical—when the VM hangs, is
unresponsive or subverted. Second, in-VM solutions face an
uphill battle against the emerging cloud operation principles—
ephemeral, short-lived VMs—and increasing VM prolifer-
ation. Their maintenance and lifecycle management has
become a major pain point in enterprises. Furthermore,

Figure 1: Introspection and analytics architecture

both agents and hooks modify the target systems, interfere
with their operation, consume end-user cycles and are prime
candidates for security vulnerabilities due to their external-
facing nature. Third, even with generic-agent-based app-
roaches, the problems of guest cooperation and intrusion
do not completely disappear—although mitigated to some
extent. However, these create a new challenge that goes
against one of the key aspects of cloud computing: porta-
bility. Generic agents/hooks require specialization of VMs
for the virtualization layer providing the monitoring APIs,
which leads to vendor locking. Additionally, custom solu-
tions need to be designed to work with each such agent
provider.

3. NFM’S DESIGN
NFM’s key differentiating value is its ability to provide

monitoring and management capabilities without requiring
guest system cooperation and without interfering with the
guest’s runtime environment. Architecturally, our overall
framework, depicted in Figure 1, can be viewed as an intro-
spection frontend and an analytics backend, which enables
the VM execution - monitoring decoupling. The frontend
provides an out-of-band view into the running systems, while
the backend extracts and maintains their runtime state. The
analogy is that of a Google like service running atop the
cloud, enabling a query interface to seek live, as well as
historical information about the cloud. Cloud monitoring
and analytics applications then simply act as the clients of
this service. We develop introspection techniques that build
upon and extend traditional VMI approaches [20, 30], to
gain an out-of-band view of VM runtime state. The analyt-
ics backend triggers VM introspection and accesses exposed
VM state via Crawl APIs. Through these APIs, our Crawl
Logic accesses raw VM disk and memory structures. VM
disk state is accessed only once, before crawling a VM for
the first time, to extract a small amount of information on
the VM’s OS configuration. Crawl Logic uses this infor-
mation to access and parse raw VM memory to create a
structured, logical view of the live VM state. We refer to
this crawl output as a frame, representing a point-in-time
view of the VM state. All frames of all VMs are stored in
a Frame Datastore that the cloud monitoring and manage-
ment applications run against, to perform their core func-
tions, as well as to run more complex, cloud-level analytics
across time or across VMs. By decoupling monitoring and
management from the VM runtime, we enable these tasks to
proceed without interfering with VM execution. The VMs
being monitored are never modified in our approach, nor is
the hypervisor or the VMM.
NFM is designed to alleviate most of the issues with exist-

ing solutions (Section 2). We follow three key principles to
achieve this in a form that is tailored to the cloud operation
principles:

1. Decoupled Execution and Monitoring: By decou-
pling target system execution from our monitoring and
analytics tasks, we eliminate any implicit dependency be-
tween the two. NFM operates completely out of band,
and can continue tracking system state even when a sys-
tem is hung, unresponsive or compromised.

2. No Guest Interference or Enforced Cooperation:
Guest context and cycles are precious and belong to the
end user. Unlike most agent- or hook-based techniques
that are explicitly disruptive to system operation, our de-
sign is completely non-intrusive. NFM does not interfere
with guest system operation at all, nor does it require any
guest cooperation or access to the monitored systems.

3. Vendor-agnostic Design: Our design is based on a
generic introspection frontend, which provides standard
crawl APIs. Our contract with the virtualization layer is
only for base VMI functions—commonly available across
hypervisors—exposing VM state in its rawest form (disk
blocks and memory bytes). We do not require any custom
APIs or backdoors between the VM and the virtualization
layer in our design. All the data interpretation and cus-
tom intelligence are performed at the analytics backend,
which also means simplified manageability as opposed to
maintaining in-VM agents or hooks across several VMs.

In addition to alleviating some of the limitations of ex-
isting solutions, our design further opens up new oppor-
tunities for cloud monitoring and analytics. First,
the decoupling of VM execution and monitoring inherently
achieves computation offloading, where the monitoring / anal-
ysis computation is carried out outside the VM. This enables
us to run some heavy-handed, complex analytics, such as full
compliance scans with no impact on the actual systems. Sec-
ond, many existing solutions actually track similar system
features. By providing a singular data provider (backend
datastore) for all analytics applications, we eliminate redun-
dancy in information collection. Third, by shifting the scope
of collected systems data from individual VMs to multiple
cloud instances at the backend, we enable across-VM analyt-
ics, such as VM patterns, topology analysis, with simple an-
alytics applications running against the datastore. Fourth,
alongwith VM-level metrics, NFM is also exposed to host-
level resource accounting measures, enabling it to derive a
holistic and true view of VMs’ resource utilization and de-
mand characteristics.

NFM supports arbitrarily complex monitoring and analyt-
ics functions on cloud VMs with no VM interference and no
setup requisites for the users. Our framework is designed to
serve as the cornerstone of an analytics as a service (AaaS)
cloud offering, where the users can seamlessly subscribe and
unsubscribe to various out-of-the-box monitoring and ana-
lytics services, with no impact on their execution environ-
ments. These services span a wide range, from simple re-
source and security monitoring to across-the-cloud (anony-
mous) comparative systems analysis. Users would have the
choice to opt into this service, paying for the cycles the hy-
pervisor and the monitoring/analytics subsystem spends on
behalf of them. One consideration for such a service is pri-
vacy for end users, however the guests already relinquish the
same level of control to the existing agents running inside
their systems, we only argue in favour of the same level of
trust without the downside of having a potentially insecure
foreign entity installed inside their runtime environment.

One limitation of NFM is a by-product of its reliance on
VMI to crawl VM memory state, which involves interpret-
ing kernel data structures in memory. These data struc-
tures may vary across OS versions and not be publicly doc-
umented for proprietary OSes. We discuss the tractability
of this in our implementation discussion (Section 4.2). Also,
as NFM focuses on the OS-level system view, application-
level (e.g., a MapReduce worker’s health) or architectural
(e.g., hardware counters) state are not immediately observ-
able via NFM unless exposed by the guest OS. Although,
the hypervisor might allow measuring certain architectural
states (e.g., perf counters) for a guest from outside.

4. IMPLEMENTATION
We implement NFM on two real-system prototypes based

on two virtualization platforms, Xen and KVM. Currently
we only support Linux guests, support for other OSes is
discussed at the end of Section 4.2. Our overall implemen-
tation can be broken into four parts: (i) exposing VM run-
time state, i.e., accessing VM memory and disk state and
making them available over the crawl APIs; (ii) exploiting
VM runtime state, i.e., interpreting the memory and disk
images with the Crawl Logic to reconstruct the guest’s run-
time information; (iii) persisting this VM state information
in the Frame Datastore for the subscribed applications; and
(iv) developing high level applications to build on top of the
extracted VM runtime state.

4.1 Exposing VM State
Most hypervisors provide different methods to obtain a

view of guest VM memory. VMWare provides VMSafe APIs
[50] to access guest memory. Xen [7] provides userspace rou-
tine (xc_map_foreign_range) via its Xen Control library
(libxc) to re-map a guest VM’s memory into a privileged
VM. We use this technique to obtain a live read-only handle
on the VM’s memory. KVM [26] does not have default sup-
port for live memory handles. Although other techniques [8,
22] are able to provide guest memory access by modifying
QEMU, our goal is to use stock hypervisors for general-
ity. For KVM, options exist to dump VM memory to a
file, via QEMU’s pmemsave memory snapshotting, or mi-
grate-to-file, or libvirt’s dump. While the VM’s memory
can be exposed in this manner, the overheads associated
are non-trivial, as the guest gets paused during the dump
duration. Therefore, for KVM, we develop an alternative
solution to acquire a live handle on VM memory, while in-
ducing negligible overhead on the running VM. As KVM
is part of a standard Linux environment, we leverage Linux
memory management primitives and access VM memory via
QEMU process’ /proc/<pid>/mem pseudo-file, indexed by
the virtual address space backing the VM’s memory from
/proc/<pid>/maps.
We develop equivalent techniques for exposing VM disk

state. We crawl VM disk state only once to collect required
persistent system information that we use to interpret raw
memory data structures (Section 4.2). We use standard
filesystem methods to access and expose VM disks, which
are represented as regular files on the host system.
In both prototypes, the obtained external view of raw

VM memory and disk is wrapped and exposed as network-
attached devices (FUSE over iSCSI) to the backend’s Crawl
Logic over common Memory and Disk Crawl APIs. Thus,
the actual crawling and analytics components are completely

decoupled from VM execution, and the upstream logic is
transparent to the underlying virtualization technology.

Enhancements. (i) While our methods for exposing VM
state generally have negligible latencies for most cloud moni-
toring and analytics applications, we build further optimiza-
tions to our techniques to curb down their latencies. Among
these, one notable optimization is selective memory extrac-
tion for applications that rely on near-realtime information.
The key insight behind this is that most applications actu-
ally require access to a tiny fraction of VM memory space,
and therefore we can trade off completeness for speed. Af-
ter an initial full crawl, we identify VM memory regions that
hold the relevant information, and in subsequent iterations
we opportunistically crawl only those sections. For dump-
based handles, we batch relevant distributed memory regions
together, to optimize the dump size and minimize dump cy-
cles. Since some data structures like task lists, dynamically
grow, we add additional buffering and resizing heuristics to
accommodate these. Also, several distributed memory re-
gions contained the relevant kernel data structure into small
number of larger sized chunks. Overall, with such optimiza-
tions, we further reduce our overall latency impact by an
order of magnitude. For example, for one of our realtime
applications, CTop, this approach enables subsecond gran-
ularity realtime system monitoring even with heavyweight,
dump-based methods, reducing overall latencies from few
seconds to milliseconds.

(ii) We do not expect the guest OS to be in some steady
state while extracting its live runtime state from outside
the guest context. Since we avoid making any monitoring
specific changes to the guest and not enforce any guest co-
operation, lack of synchronization with the guest OS can
potentially lead to inconsistency of views between the ac-
tual runtime state that exists inside the VM and what gets
reconstructed from the view exposed outside, eg. a pro-
cess terminating inside the guest while its memory mappings
(mm_struct) are being traversed outside. To tackle this, we
build additional routines for (optional) consistency support
for KVM guest memory access via ptrace()- attach/detach
on the QEMU container process. This trades off minor VM
stuns for increased consistency. Our experiments show that
even with a heavy (10 times/s) fork and kill workload con-
suming significant CPU, memory and network resources in-
side a VM, inconsistency of extracted state occurs not very
often—in about 2% of crawler iterations, while extracting
full system runtime state (Section 6.1).

4.2 Exploiting VM State
The backend attaches to the VM view exposed by the

frontend, and implements the Crawl Logic that performs
the logical interpretation of this raw state consisting of the
disk block device and the memory byte array. Interpreta-
tion of the disk state is relatively well defined by leverag-
ing standard filesystem drivers. The key challenge, how-
ever, is bridging the inherent semantic gap between the ex-
posed raw VM memory state and the logical OS-level VM-
internal view. The traditional in-VM approaches simply
leverage guest OS context to extract system information,
such as the /proc tree for process information. Our Crawl
Logic achieves the same function by translating the byte-
level memory view into structured runtime VM state. VM
runtime information is distributed into several in-memory
kernel data structures for processes (task_struct), mem-

ory mapping (mm_ struct), open files (files_struct), and
network information (net_devices) among others. We over-
lay these struct templates over the exposed memory, and
traverse them to read the various structure fields holding
the relevant information [30]. To correctly map these data
structures, we extract three important pieces of information
from the VM disk image and/or a kernel repository:

1. Version, Architecture and Map Parameters: From
the VM kernel log, we extract the running kernel version
and the target VM architecture (32 vs. 64bit) for cor-
rectly sizing the data structures. Also read is the BIOS
RAM map for determining the amount of VM memory to
map and the size and layout of the VM memory regions.

2. Starting Addresses for structs: To identify the start-
ing addresses for various kernel structures, such as initial
task (init_task), module list (modules), and kernel page
table (init_level4_pgt), we read the System.map file for
the guest kernel, which includes the kernel exported ad-
dresses for these structures.

3. Field Offsets: After identifying entry points for kernel
structures, we calculate the offsets to the relevant fields
in these structures. We use the kernel source (or vmlinux
build image) and the build configuration to determine
offsets of desired fields.

Given a live VM memory handle and the above-mentioned
pieces of information, the Crawl Logic’s overall memory
crawl process can be summarized as:

1. Reading a kernel exported address (X), such as the initial
process’ address (symbol init_task).

2. Mapping the associated data structure template (struct
task_struct) to the memory region at address X.

3. Reading the relevant structure member fields after adding
their relative offsets to the starting address X.

4. Continuing with the next object by reading its address via
linked list traversal (prev, next member fields, together
with offset arithmetic).

In addition to kernel structure traversal, we also traverse
per-process page tables inside the extracted memory view,
to translate a virtual addresses in a guest process’ address
space. We extract the process’ page directory from its mm_
struct, and traverse its page tables. Our Crawl Logic can
currently crawl all X86, X86 PAE, and x86 64 architectures,
and also supports huge pages.
After introspecting all the relevant data structures, the

Crawl Logic creates a single structured document (frame)
for the crawled VM. This crawl document captures a rich set
of information on VM state that the cloud monitoring and
analytics applications can build upon. Our current frame
format covers various VM features, including system, cpu,
memory and process information, modules, address map-
pings, open files, network information and runtime resource
use. This VM frame, with its corresponding timestamp and
VM ID, is then loaded into the frame datastore described in
the next section.
Discussion. (i) While we focus our backend implemen-

tation on Linux, NFM’s applicability is not limited to a par-
ticular OS. Structure-offset extraction and VMI have been
shown to work for Mac and Windows as well [5, 8, 34,
44]. Also, their versions are few as compared to Linux, and
change slowly. (ii) The tractability of kernel data structure

(DS) traversal based introspection solution is corroborated
by prior studies reporting modest DS modifications across
major Linux versions [37]. Indeed, our parsers for kernel ver-
sions 3.2 and 3.4.4 differ only in their network-device related
DS among all of our tracked DS. Furthermore, the standard-
ization trends in enterprise clouds also work in favor of this
approach, limiting the OS-version variability. Even Amazon
EC2 has a small number of base VM image types (5 different
Linux OS versions). (iii) To portray NFM’s generality, we
have implemented our memory crawler to operate across a
diverse configuration set- multi architecture (x86 / x86 64),
multi core, variably (RAM) sized VMs running Linux ker-
nels far apart in the version chain and from different vendors
— RHEL6 / Linux2.6.32, Fedora14 / 2.6.35, Ubuntu12.04 /
3.2.0, Fedora16 / 3.4.4. (iv) In our experience, to generate
structure-field information manually it takes a one-time ef-
fort of roughly an hour for a new OS version. This process
can be automated by using crash [13] or gdb on debugging
information enabled vmlinux kernel images. There also ex-
ist alternate OS-version independent memory introspection
techniques (Section 7).

4.3 The Frame Datastore
The frame datastore is a repository of historical as well

as live VM runtime states of all of the guest VMs, sent to
it as structured frame documents by the “crawler” VM run-
ning the Crawl Logic. Although intended to be an actual
database system for a full cloud deployment, in most cases
we simply use the crawler VM file system as our current
frame datastore. To ensure scalability with respect to the
space overhead for maintaining VM state history (frames)
for cloud-scale deployment, we control this by keeping incre-
mental delta frames across successive crawls of a VM over
time. Depending upon whether the delta is obtained over
the base crawl or the most recent crawl, there are tradeoffs
with regards to the ease of delta insertion/deletion vs. delta
sizes, the former being trivial with base crawl deltas, while
the latter being more manageable with latest crawl deltas.
Section 6.7 evaluates this space overhead for maintaining
system states across time.

4.4 Application Architecture
In our framework, the Cloud monitoring applications act

as clients of the Frame Datastore, building on top of the rich
system state it maintains throughout the VMs’ lifetimes, to
perform cloud analytics across time (past vs present sys-
tem states) and space (across systems). Some of our target
applications bypass the frame datastore for realtime oper-
ations (e.g. CTop resource monitoring), or for interfacing
directly against the raw VM memory view (e.g. PaVScan
virus scanning).

A benefit of visualizing system information as data doc-
uments (aka frames) is that it enables leveraging familiar
paradigms from the data analytics domain such as diff-ing
systems just like diff-ing documents and tagging systems
with semantic annotations. This makes it easier to tackle
modern day cloud management concerns arising from ag-
gressive cloud expansion such as tackling system-drift— track-
ing how a deployed system with an initial desired state devi-
ates over time— and performing problem diagnosis—drilling
down into individual VM’s to diagnose what caused the drift.
Tagging point-in-time system states as being ‘healthy’ and

������� ���� ����	�
� �����

����		�	�	�����
����	 � �

����		�������
����	 � �

���������������	���	�������
��������	���	�	���	�

� �

���������		�����	����
	�	�������
����

� �

Table 1: Key capabilities of our prototype applications

diff-ing them against faulty states, makes it easier and effi-
cient to potentially troubleshoot system issues.

5. PROTOTYPE APPLICATIONS
Here we describe four concrete applications that we have

built over our cloud analytics framework. These applica-
tions highlight NFM’s capabilities and target some interest-
ing use cases. Our fundamental principles for system analyt-
ics in the cloud are preserved amongst all applications: they
all operate out-of-band with VM execution, are completely
non-intrusive, and operate without requiring any guest co-
operation.
Table 1 shows our four applications, TopoLog, CTop, RCon-

sole and PaVScan and the key capabilities they highlight.
TopoLog is a cloud topology discovery application that fo-
cuses on across-system analytics. It discovers VM and appli-
cation connectivity by analyzing and correlating frames of
cloud instances. It can also provide across-time analytics by
tracing the evolution of cloud topology over frame history.
CTop is a cloud-wide, realtime resource monitor that can
monitor even unresponsive systems. CTop also showcases
how deep, across-the-stack system information can provide
more accurate and reliable system information. RConsole is
an out-of-VM, console-like interface that is mainly designed
with cloud operators in mind. Its pseudo-console interface
enables administrators to query system state without having
to log into guest systems, and even when the system is com-
promised. It also enables a handy“time travel”capability for
forensic analysis of systems. PaVScan is a hypervisor-paging
aware virus scanner, and is a prime example of how across-
stack knowledge of system state, combining the in-VM view
with the out-of-VM view, can dramatically improve the op-
erational efficiency of common management applications like
virus scan.

5.1 TopoLog
TopoLog is a network and application topology analyzer

for cloud instances. It discovers (i) the interconnectivity
across VMs, (ii) communicating processes inside each VM,
(iii) connectivity patterns across high level applications, and
(iv) (topology-permitting) per VM network flow statistics,
without installing any hooks inside the VMs. TopoLog fa-
cilitates continuous validation in the cloud by ensuring that
a desired topology for a distributed application (deployed
as a pattern/set of VMs, e.g. via a Chef recipe [36]) is
maintained. It detects unauthorized connections, bottle-
neck nodes and network resource use patterns. TopoLog
offers other potential use cases, such as (i) optimizing inter-
and intra-rack network use by identifying and bringing closer
highly-communicating VMs, and (ii) simultaneous patching
of interconnected VMs for minimal service downtime at the
application level.

Figure 2: VM and app connectivity discovered by Topology

Analyzer for 4 VMs

For each VM, topology analyzer extracts the per-process
network information from the latest frame in the Frame
Datastore. The extracted information (containing the socket
type and state, associated source and destination IP ad-
dresses, and the process owning the socket) is correlated
across all or a specified subset of cloud instances to generate
a connectivity graph. We discover higher-level application
information for the communicating processes by traversing
the process tree within each VM frame. These steps are suf-
ficient to generate the cloud network and application topol-
ogy. In addition to these, TopoLog further discovers network
traffic statistics for each VM by extracting and comparing
counts for received, transmitted and dropped packets/bytes
across two different timestamped frames.

Depending upon application knowledge and a particular
topology, we can go one step further and estimate the weight
of the connection edges in the topology graph. Since Linux
does not maintain per process data transfer statistics, we es-
timate these by converting the connectivity graph to a linear
system of equations. For a VM-to-VM connectivity graph
of N VMs, we have at most N2 − N potential unknowns
(graph edges) and 2 ∗N equations (per-VM system-wide re-
ceived and transmitted bytes). If the number of equations
are sufficient to solve for the actual number of edges, we can
determine the weight of each connection. To bring down the
number of unknowns, we also use domain knowledge such
as information about connections with negligible or known
constant weights.

Figure 2 shows one such connectivity graph generated au-
tomatically by the topology analyzer for an application pat-
tern composed of 4 VMs. This application includes (i) a
MasterControl VM, which monitors each application com-
ponent and serves data to a DataStore VM; (ii) a WebServer
VM, which serves client-side requests over http; (iii) a Data-
Store VM, which warehouses application data and receives
updates from the MasterControl VM; and (iv) a LogAna-
lyzer VM, which downloads and analyzes the logs from the
WebServer VM. As can be seen, the topology analyzer was
able to discover all cluster connections such as the master-
ControlVM having long lived hooks into all other VMs over
ssh, and feeding the dataStoreVM with data files. Also
found was a connection that does not belong to the clus-
ter, labeled as “exit to outside world”. Also note that al-
though the connection between dataStoreVM and httpWeb-
ServerVM is detected as an ssh connection, by traversing
the process tree inside the latter’s frame, we can get the
higher level picture of this actually being a secure file trans-
fer. A packet sniffing based topology discovery would not be
able to detect intra-host connections for colocated VMs, or

0.00

0.56

0.00

0.00

0.00

109.08

0.00

0.86

0.00

0.00

0.00

42.67

0.00

0.14

0.00

0.00

0.00

0.22

0.00

0.00

0.00

0.00

0.00

0.00

0.00

L−VM W−VM D−VM M−VM Ext

LogAnalyticsVM

WebServerVM

DataStoreVM

MasterCtlVM

External

Figure 3: VM Connectivity Matrix [Mbps].

capture application-level information for the communicating
systems.
Figure 3 further shows a snapshot of the derived network

traffic statistics, as a VM connectivity matrix depicted as an
intensity plot, for the same application pattern. An entry
M(r, c) in the matrix represents the rate of data transferred
from VMc to VMr in Mbps. The row and column labels
are identical (column labels are abbreviated in the plot).
The connectivity matrix highlights the strongly-connected
application components, which are the {WebServerV M →
LogAnalyzerVM} and {DataStoreV M → WebServerV M} tu-
ples in our case. This information is useful for both network-
aware optimization of application resources and for contin-
uous validation—by identifying unauthorized or abnormal
application communication patterns.

5.2 CTop
CTop is a cloud-wide, realtime consolidated resource mon-

itoring application. CTop is of equivalent fidelity and time
granularity as the standard, in-band Linux top utility, with
two enhancements for cloud-centric monitoring rather than
traditional, system-centric techniques. First, modern cloud
applications typically span across multiple VMs and hosts,
requiring a distributed application-level view of resource use
across system boundaries. CTop provides a single unified
view of resource utilization across all applications and VMs
distributed onto various physical machines within a cloud.
Allowing for host and VM normalization (scaling), CTop dis-
solves VM and host boundaries to view individual processes
as belonging to a single global cloud computer, with addi-
tional drill-down capabilities for restricting the view within
hosts or VMs. Second, since CTop operates outside the VM
scope, it is aware of both VM-level and hypervisor-level re-
source usage. Thus, it can provide a more accurate and
holistic view of utilization than what the guest sees in its
virtualized world. It appropriately normalizes a process’ re-
source usage inside a VM to its corresponding usage on the
host, or in terms of what the user paid for, for direct com-
parison of the overall application’s processes across VMs.
Equation 1 shows this normalization, where the actual CPU
usage of a VM V ’s process P on host H is calculated in
terms of the CPU usage of P inside the VM (CPUP

V), over-
all CPU utilization of V (CPU∗

V), and the CPU usage of
the VM on host H (CPUV

H).

CPUP
H =

CPUP
V

CPU∗
V

× CPUV
H (1)

To achieve realtime monitoring, CTop directly uses the
crawler to emit a custom frame on demand at the desired

Figure 4: Above: in-VM top; Below: CTop

monitoring frequency, bypassing the Frame Datastore. Fields
of the frame include per-process PID, PPID, command, vir-
tual and physical memory usage, scheduling statistics and
CPU runtime. CTop analyzes frames from successive moni-
toring iterations to generate a top-like per-process resource
usage monitor. Figure 4 compares the output of CTop with
the standard in-VM top for a single VM. In this case, in VM
measures and CTop measures match, as there is no host-level
contention.

CTop’s unified application-level resource utilization view
allows for straightforward comparison of different instances
of the same application across different VMs. This provides
a simple form of problem diagnosis in the cloud, by tracking
unexpected resource use variability among instances of an
application. As we show in Section 6.3, CTop’s holistic view
of the operating environment helps explain performance and
capacity conflicts that are hard to reason when monitoring
is bound to the VM scope. We also evaluate CTop’s latency
and accuracy in Sections 6.1 and 6.2.

5.3 RConsole
RConsole is an out-of-band“console-like”interface for VMs

being monitored by NFM. It is a read-only interface, with
no side effects on the running instances. RConsole supports
basic system functions such as ls, lsmod, ps, netstat and
ifconfig. It is designed for cloud operators, to provide vis-
ibility into running instances without requiring access into
the systems. RConsole runs against the system state cap-
tured in the frames indexed into the Frame Datastore. It
implements a sync API call to crawl the current live state
of a VM and retrieve its most up-to-date state, and a seed
API to retrieve a prior stored state of a VM, which enables
traveling back in time to observe past system state.

With RConsole, we perform simple security, compliance
and configuration monitoring in an out-of-band fashion, with-
out disrupting or accessing into the running systems. As
RConsole operates by interpreting raw VM memory struc-
tures rather than relying on in-VM OS functions, it is also
more robust against certain security attacks that may com-
promise a guest OS. We demonstrate this by infecting our
VMs with the AverageCoder rootkit [18] that covertly starts
and hides malicious processes, unauthorized users and open
network connections from the guest OS. Figure 5 shows an
example to this for network connections. Here the top box
shows the (simplified) output of the standard in-VM net-
stat command, while the bottom box shows the output from

Active Internet connections (servers and established)
Proto Local Address Foreign Address State
tcp 127.0.0.1:25 0.0.0.0:* LISTEN
tcp 9.XX.XXX.110:52019 9.XX.XXX.109:22 ESTABLISHED
:
tcp 9.XX.XXX.110:22 9.XX.XXX.15:49845 ESTABLISHED

In-VM Console:

Active Internet connections
Proto Local Address Foreign Address State PID Process
tcp 127.0.0.1:25 0.0.0.0:0 SS_UNCONNECTED 741 [sendmail]
tcp 9.XX.XXX.110:52019 9.XX.XXX.109:22 SS_CONNECTED 6177 [ssh]
:
tcp 9.XX.XXX.110:22 9.XX.XXX.15:49845 SS_CONNECTED 14894 [sshd]
tcp 0.0.0.0:2476 0.0.0.0:0 SS_UNCONNECTED 23304 [datacpy]

RConsole:

Figure 5: RConsole captures datacpy’s hidden listener con-

nection

RConsole’s netstat. Both outputs remain mostly similar,
except for one additional entry in RConsole: a malicious
datacpy process with a listening connection on port 2476.
In-VM netstat fails to discover this as it relies on com-
promised guest OS exported functions, while RConsole can
easily capture it from crawled VM state. More sophisticated
attacks and VM introspection based counter-measures are
well-established in prior studies [6, 20, 51].
RConsole is also greatly useful in troubleshooting system

issues owing to its ability to travel back and forth in time.
Once an anomaly is detected, it can trace back system state
to detect the root cause, and compare across systems to
identify similar good and bad system configurations. RCon-
sole is even able to inspect a VM that we made completely
dysfunctional by forcing a kernel panic; the entire runtime
state still exists in the VM’s memory, which RConsole is able
to retrieve to pinpoint the culprit process and module. This
ability to analyze unresponsive systems also plays a critical
role in dramatically improving time to resolution in certain
problems, as in the Google outage example of Section 1. A
similar example to this has also been recently observed in
one of our cloud deployments, where a network misconfigu-
ration in one of the systems caused a serious routing problem
in VM network traffic, rendering most of the VMs inacces-
sible. In both cases, RConsole’s ability to perform simple
troubleshooting operations (such as tracking network con-
figurations via ifconfig) across time and across systems
plays a critical role to pinpoint the offending systems and
configurations in a simple and more efficient way.

5.4 PaVScan
PaVScan is a hypervisor paging [52] aware virus scan-

ner that operates outside a VM’s context, working directly
on the raw VM memory state. We built PaVScan over the
popular open source anti-virus project, ClamAV [11] and
used its publicly available virus signature database. PaVS-
can searches for signatures of known viruses inside the VM’s
memory using the Aho-Corasick algorithm for pattern match-
ing, and works by building and traversing a finite state ma-
chine from the signature database. Our use of the PaVS-
can application bypasses the Frame Datastore and interfaces
with the memory crawler directly to get the live handle on
the target VM’s memory. Once VM memory is exposed, the
virus signatures are directly scanned over the raw memory.
While one obvious main advantage of PaVScan is its abil-

ity to perform out-of-band virus scanning, this is not unique
to this work [25]. The key differentiating aspect of our appli-
cation is that it tracks hypervisor-paging—guest-agnostic re-
claim of VM memory by the hypervisor. Using the crawler’s
interface to the hypervisor, PaVScan identifies which VM
page frames are actually mapped on the physical RAM and

which are paged out on disk. It then scans only the RAM-
backed VM memory, while scanning the rest of the pages
when they originally get paged out. This prevents unnec-
essary and costly page-ins from disk and ensures that the
VM’s working set does not get “thrashed” by the virus scan
operation.

PaVScan presents a prime example of how deep, across-
the-stack knowledge of system state can crucially impact
across-system performance in the cloud. Traditional in-VM
scanning techniques—for viruses or otherwise—are limited
by their guest-only scope. Their actions, oblivious to the
broader operating environment view, can be severely detri-
mental to both the system itself that they are monitoring
and other instances sharing the cloud. In our case of virus
scanning, a typical in-VM scanner(or even a paging-unaware
out-of-VM solution) will indiscriminately scan all memory
pages, as neither the guest nor the scanner are aware of any
guest pages that have been paged out. Every such page ac-
cess will cause a page-in from swap and potentially a page-
out of a currently-loaded page (so long as the hypervisor
doesn’t give this VM more memory), severely impacting the
performance of other applications on the VM. Depending
on overall resource allocation and resource scheduler actions,
this paging behavior can further impact other instances shar-
ing the same memory and I/O resources in the cloud. In
contrast, PaVScan’s paging-aware, out-of-VM scanning ap-
proach operates with negligible impact on the monitored
systems, while providing the same level of system integrity.
We compare PaVScan with an in-VM scanner in Section 6.4.

6. EVALUATION
To evaluate NFM’s performance, we use our cloud analyt-

ics applications to answer the following questions:

1. How frequently can we extract runtime VM information?
2. How accurate is our out-of-band VM monitoring?
3. Can we perform better than existing in-VM techniques

with our holistic view of cloud operating environment?
4. How does out-of-VM monitoring improve operational ef-

ficiency in the cloud?
5. What is the overhead imposed on the VMs being moni-

tored?
6. What is the impact of out-of-band monitoring on co-

located VMs?
7. What is the space overhead of storing across-time (foren-

sic) frame data in the datastore for each cloud instance?

Our experimental setup consists of physical systems with
Intel Core-i5 processors, 4-64GB of memory and VT-x hard-
ware virtualization support. These serve as the hypervisor
hosts of our cloud environment, where our VM instances
are deployed. The hosts run Linux 3.7.9, Xen 4.2.1 and
QEMU-KVM 1.4. Our VMs run a variety of Fedora, Red-
Hat and Ubuntu distributions (both 32 and 64 bit) in our
experiments to ensure our crawlers work with a range of OS
versions. Our analytics backend is run as a specialized VM
with baked-in datastore and API components. The bench-
marks used in our experiments are: bonnie++ v1.96 [42],
x264 v1.7.0 [35], and httperf v0.9.0 [33]

6.1 Latency and Frequency of Monitoring
The amount of time it takes for our crawlers to extract

runtime VM information varies with the richness of the de-

0.0

0.1

1.0

10.0

100.0

Xen KVM

Cr
aw

l L
at

en
cy

 [m
s]

10

100

1000

10000

100000

M
on

ito
rin

g
Fr

eq
. [

H
z]

Basic
Crawl
Full
Crawl

Safe: 10Hz

KVM: 20Hz

Xen: 200Hz

10
20

100
200

1000

10^4

10^5

Figure 6: Measured crawling latencies and achievable mon-

itoring frequencies (log scale).

sired information. Here we compare time required to extract
basic process level resource use information for our CTop ap-
plication, as well for deeper, full system information includ-
ing all of system configuration, OS, module, process, file,
CPU, memory, network connection data. All times are av-
eraged over several runs while varying configured VM mem-
ory and CPUs, and the in-VM workloads emulating heavy
process fork/kill behaviour and stressing the CPU, memory,
disk and network (500 runs for each configuration).
For Xen, there is a one-time only operation for getting

an initial handle on a target VM’s memory (Section 4.1).
This takes on average 0.37s per GB of VM memory. After
this one-time operation, the crawler takes on an average
0.165 ms to extract the basic state and 4.5 ms for full state.
For KVM, there is no separate memory handle acquisition
step. The time taken to extract basic and full VM state
information is 2.5 ms and 47.4 ms respectively. Figure 6
summarizes these results and highlights the corresponding
achievable monitoring frequencies. As shown in the figure,
full system crawls can be performed over 20 times/s (Hz)
for KVM and 200 times/s for Xen (dashed horizontal lines).
These times do not include the frame indexing time into the
datastore, as this is off the critical path and is bypassed by
the realtime monitoring applications, where latency matters.
In either case, our results show that NFM can safely operate
at a 10Hz monitoring frequency (solid horizontal line), which
more than meets the practical requirements of most cloud
applications.
The crawler has a negligible memory footprint and its

CPU usage is proportional to the desired monitoring fre-
quency and the number of VMs being monitored. In our
KVM setup, for example, the crawler utilizing a full CPU
core can monitor 1 VM at 20Hz or 20 VMs at 1Hz. Thus,
there also exists a tradeoff between time granularity of moni-
toring and number of VMs that can be monitored in parallel.
Summary: Our crawlers extract full system state in less

than 50ms, and our live out-of-VM monitoring can easily
operate at a 10Hz frequency.

6.2 Monitoring Accuracy
We use our CTop application here to validate NFM’s ac-

curacy. We run a custom workload that dynamically varies
its CPU and memory demand based on a configurable sinu-
soidal pattern. Figure 7 shows how well our remote monitor
tracks the CPU resource use for a VM process with respect
to top. The memory results are similar and omitted for
brevity. The slight variation in measurements is due to the
inevitable misalignment of the update cycles / sampling time
points, as the two solutions operate asynchronously. Over-

0
10
20
30
40
50
60
70
80
90

100

0 60 120 180 240 300 360 420 480
Time [s]

CP
U

 [%
]

VM Top
CTop

Figure 7: CPU utilization: in-VM top vs. CTop.

all, our out-of-VM CTop monitoring is very accurate and
reliable. The average sample variation between in-VM top
and CTop metrics is very low, ranging between 4% and 1%
at different time scales.

Summary: Our out-of-VM monitors accurately track VM
process and resource usage information, providing the same
level of fidelity and time granularity as in-VM techniques.

6.3 Benefits of Holistic Knowledge
As we previously discussed, NFM is privy to both in-VM

and out-of-VM resource use measures. This unified, holistic
view of systems enables significantly-better resource man-
agement in the cloud. We demonstrate the quantitative
elements of this capability here with a webserver applica-
tion, distributed across 3 identical instances, each running
a LAMP stack. The VMs are facing high incoming HTTP
load causing them to run at full utilization, the load originat-
ing from three separate httperf clients (one per server VM)
generating identical request streams for 2MB files. While
the VMs’ configurations are identical, their current alloca-
tion of resources is not. Due to varying contention and pri-
orities with respect to other colocated instances, the three
VMs receive a 100%, 70% and 30% share of the CPU re-
spectively. We demonstrate the holistic view of application
performance characteristics with CTop and contrast this with
the VM-only view of in-VM top in Figure 8.

Figure 8 shows the httperf statistics observed for each
of the three VMs (top chart), the CPU utilization of the
Apache, PHP and MySql processes inside each of these VMs
as measured by top (middle chart) and as derived by CTop
(bottom chart). As seen, top’s CPU utilization statistics
look the same for all three VMs and thus cannot be used to
reason for the different httperf sustained request rate, ob-
served bandwidth and response times across the three VMs.

Figure 8: top vs. CTop: comparing LAMP processes across

3 VMs to explain httperf statistics.

Figure 9: Httperf replyrate, connection drops vs Virusscan

However, by using CTop’s CPU utilization metrics (Section
5.2) that dissolve VM boundaries and normalize utilization
of all of the LAMP processes across the application’s in-
stances at the host level, a clear CPU utilization difference
can be spotted across the LAMP processes in different VMs.
Thus, although the CPU utilization of the LAMP processes
looks very similar when viewed inside the VMs in isolation,
the true picture is in fact very different as captured by CTop.
This clearly explains the application-level performance vari-
ability in httperf statistics comparing the true resource uti-
lization across the application’s distributed instances.
Summary: The unified, holistic view of the cloud envi-

ronment enables accurate monitoring and interpretation of
distributed application performance.

6.4 Operational Efficiency Improvements
We quantify the efficiency improvements achievable with

NFM by evaluating virus scanning—representative of com-
mon scanning/inspection operations in the cloud—in our ex-
perimental framework. We use PaVScan as our out-of-VM
scanner and install an identical in-VM scanner in the test
VM, and compare their impact on the test VM’s primary
workload. We configure the VM with two VCPUs, where a
web server is run as the primary application on one CPU
and the in-VM virusscan application is run on a separate
CPUs to avoid introducing any CPU contention. Hypervi-
sor paging is enabled on the host via Xenpaging reclaiming
256MB from the VM’s configured 1GB memory. A medium
workload httperf server is setup on the VM with a work-
ing set of 256MB, from which it serves 2KB random content
files to 3 different httperf clients running on 3 separate ma-
chines. The file size is chosen to be 2KB so that server is
not network bound, and the working set size is chosen to be
256MB so that no guest level swapping is introduced. The
average base-case runtime for the virus scanner was 17.5s to
scan the entire VM memory. All httperf server statistics
that follow are averaged over 5 runs.
Figure 9 shows the kind of reply rates that can be sus-

tained by the webserver VM in this setup. Specifically, with
the virusscanner turned off, the webserver VM is able to
match an incoming request rate of upto 2400 requests/s
without dropping any connections. PaVScan matches this
reply rate very closely, reaching 2395 replies/sec with only
0.27% connection drops. On the other hand, httperf ex-
periences a major performance hit with the in-VM scanner,
where around 30% of connections are dropped with requests
rates higher than 900 requests/s. Even with 900 requests/s,
a drop rate of 5% is observed meaning that the actual sus-
tainable rate is even below that. Effectively there is a de-
crease in performance by more than 63% (from 2400 to 900
serviced requests/s with in-VM scanning.). Additionally, re-

 0

 500

 1000

 1500

 2000

 0 100 200 300 400 500 600
Time in seconds --->

response_time(ms)
timeout_errors(#)

avg_reply_rate(#/sec)

Figure 10: Httperf over 10 rounds (each bounded between

successive vertical lines); Virusscan starts between round 2-3

sponse times degrade by an order of magnitude. The viruss-
canner’s running time itself degrades to around 59s from
17.5s.

Furthermore, the performance impact of the in-VM virus
scanner lasts much longer than just the scan duration. Fig-
ure 10 shows that it takes a much longer time for httperf
to recover after the in-VM virusscanner destroys httperf’s
file cache due to swapped page-ins. Shown are 10 httperf
rounds (bounded by vertical lines in the figure) of servic-
ing 256MB worth file requests each, fired at a rate of 2100
requests/s. The in-VM virusscanner starts around between
rounds 2-3 and completes by round 5. As can be seen it takes
about 7 rounds (460 seconds) for httperf to re-establish its
file cache for sustaining the incoming request rate. For the
entire 10 rounds, there is an 18.6% performance degradation
in terms of serviced requests per second and 12.5% connec-
tion drops. Thus, in this hypervisor paging scenario, the
in-VM scanner’s impact is felt even long after it exits. In
contrast the out-of-VM scanner shows only negligible impact
on the guest during and after its execution.

Summary: The ability to push common cloud operations
out of the VMs’ scope can lead to dramatic improvements in
system performance compared to their in-VM counterparts.

6.5 Impact on VM’s Performance
We measure NFM’s overhead on a target system’s work-

load with three experiments. We expose the live VM state to
(i) monitor the VM with CTop, (ii) hash the VM’s memory,
and (iii) scan the VM’s memory with PaVScan. All experi-
ments are repeated 5 times. The target VM and workload
setup are similar to those in Section 6.4 (except hypervisor
paging turned off). We use two workload configurations for
the webserver VM: (i) A 256 MB working set to avoid guest
swapping, serving all requests from memory without access-
ing the disk, and (ii) a 512 MB working set that involves
the standard kswapd swap daemon. The httperf server is
pushed to CPU saturation in both cases. The host system
is never overloaded in the experiments. Figure 11 shows the
performance impact on the VM for both workload config-
urations, when the three described out-of-VM monitoring
applications are run for the same VM.

Realtime Monitoring: We measure the impact of moni-
toring the webserver VM at a 10Hz frequency, while extract-
ing the full system state (Section 6.1) in addition to CTop’s
per process state, at each monitoring iteration. No drop is
recorded in the VM’s serviced request rate, but the response
time degrades by about 2%, only for 256 MB working set.

Figure 11: Impact on webserver VM with parallel out-of-

band monitoring and management

Hashing VM’s Memory: As a stress-test benchmark for
memory crawling, we hash all of the VM’s memory pages
with Mhash library’s MD5 hashing [31]. Even this bench-
mark has no visible impact on the VM’s httperf server ca-
pacity as it continues to sustain the original request rate.
However, the average response time degrades from 0.8 ms/
request to 4.5 ms/request for the 256 MB working set sce-
nario, while remaining within the timeout threshold. For
the 512 MB working set, the overhead is merely 1.5%.

VM Memory Scanning: Our virus scanner prototype,
which is close to a worst-case application, introduces a 2.9%
degradation on the httperf sustainable request rate with
an average response time of 3.3ms for the 256 MB working
set. In this case, the VM runs at its absolute limit, continu-
ously serving requests directly from memory. Interestingly,
the higher httperf working set size of 512MB (involving
kswapd) records no impact on the httperf server capacity
with PaVScan running simultaneously, as the application oc-
casionally requires new page-ins, which is the common case
for most practical applications.
Summary: The target VMs are not heavily impacted in the

common operating case of realtime monitoring. The negative
impact observed with heavy handed operations needs further
analysis.

6.6 Impact on Co-located VMs
Here, we measure the performance overhead introduced on

a VM (X) while other co-located VM’s on the same host are
being monitored. Since the VM X itself is not being moni-
tored, any impact on its performance can be attributed as a
side effect of monitoring the other colocated VMs. We use
Xen for a clean administrative domain-guest domain separa-
tion for this experiment. We run the memory crawler inside
Dom0 itself, and monitor VMs at 10Hz, extracting the full
system state from the VM at each iteration. Alongside Dom0,
three other VMs run on their separate cores on a quad-core
host. We measure the impact on each VM separately, while
monitoring the other two VMs. The 3 VMs are put under
stress, each running a different workload: (i) CPU-bound
x264 video encoding benchmark, (ii) disk-bound bonnie++
disk benchmark, and (ii) a full-system stress workload sim-
ulated by an httperf webserver configured exactly as de-
scribed in Section 6.5. By virtue of Xen’s frontend/backend
driver model, Dom0 becomes responsible for arbitrating VMs’
access to network and disk. Disk caching at hypervisor is
disabled so that true disk throughputs can be measured.
The host system (including Dom0) itself is never overloaded
for repeatable and consistent measurements.
While monitoring the remaining 2 VMs at a 10Hz fre-

quency, and repeating each experiment 5 times, neither the
bonnie++ VM nor the x264 VM see any impact on their

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Samples (Days)

Pe
rc

en
ta

ge
 o

f B
as

e
Fr

am
e

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

Pe
rc

en
ta

ge
 o

f V
M

 M
em

 S
iz

e
(x
1
0
^
-
4

)

Dynamic Resource Info Core Process Info
Delta w.r.t. Base Image Delta w.r.t. Prior Sample

Figure 12: State management overhead with delta frames.

read/write throughputs and framerate respectively, but the
httperf server VM’s maximum sustainable request rate drops
by 2.2%. For the latter, as in Section 6.5, relaxing the artifi-
cial “no guest swapping” constraint and thus increasing the
working set size from 256MB to 512MB, also results in no
impact on VM performance. An important point to further
note is that a 10Hz frequency is actually high for most cloud
monitoring and analytics operations, and the crawler’s im-
pact can be further minimized by operating at lower but still
largely practical frequencies at 1Hz or less. Moreover, our
execution - monitoring decoupled design favours these oper-
ations to be handed off to other lightly loaded or dedicated
hosts, further minimizing crawler impact.

Summary: NFM is lightweight and does not have a heavy
monitoring side-effect on the host’s colocated VMs.

6.7 Space Overhead
Here we evaluate the storage requirements for maintaining

VM state history in our frame datastore to enable across-
time system analytics. We use the two delta frame extrac-
tion approaches described in Section 4.3. Shown in Figure
12 are the delta frame sizes relative to the base frame and
relative to the previous frame, for a daily crawl of a VM over
a 3-week period, while running various routine tasks and ad-
ditional end-user applications. When computing deltas over
the base fame (top curve) the frame sizes grow from 2.5% to
3% of the base frame size. However, when deltas are com-
puted over the most-recent crawled state, the frame sizes do
not grow over time (lower curve), averaging around 1.5% of
the full frame size. Also, as can be seen, the amount of in-
formation that we need to keep for each VM for across-time
analysis is minuscule compared to the actual VM sizes (delta
frame sizes are only 0.00015% of the VM’s 4GB memory
size). In our experiments, the full frame sizes vary around
300KB-400KB and the delta frames are about 3KB-8KB.

If we scale these numbers out for a hypothetical cloud
deployment with 10,000 VMs, the overall space overhead
for our datastore with daily system snapshots and a year-
long time horizon amounts to 14GB to 33GB, which is quite
manageable even without any potential across-VM optimiza-
tions.

Summary: The overall space overhead of maintaining VM
state across all instances and across time is manageable and
is potentially scalable to large-scale cloud deployments.

7. RELATED WORK
Memory Introspection Techniques. Previous studies
explored various methods for exposing VM memory state
for introspection. Some of these employ hardware methods,
such as direct memory access [1, 32] or PCI hooks [9]. While

others rely on software techniques, including in-VM ker-
nel modules (Volatilux [17]), in-VM memory mapping (i.e.,
via /dev/mem), VMM-level memory mapping / snapshotting,
and remapping of guest address space inside a trusted VM
(XenAccess [38], and LibVMI [8]). Prior work on interpret-
ing the memory data structures describe different appro-
aches with different requisites and degrees of inference. IDe-
tect [30] interprets memory by accessing OS-specific, pre-
determined offsets to extract specified system information.
Other techniques for automatically detecting the offsets also
exist, which rely on pattern matching, function disassembly
heuristics, guest support or additional kernel debug informa-
tion [17, 27, 4, 10, 28, 13]. Recent work has also proposed au-
tomated introspection solutions that do not require detailed
knowledge of OS kernel internals. Virtuoso [15] collects in-
VM training code traces to create out-of-VM introspection
code. VM Space Traveler [19] uses instruction monitoring
at VMM layer to identify and redirect introspection related
data to guest OS memory. Our framework leverages VMM
memory mapping or snapshotting capabilities for our two
prototypes, and our crawling approach shares some aspects
of IDetect. We use this introspection framework, however,
for fundamentally different applications- non-intrusive, out-
of-band cloud monitoring.

Memory Introspection Applications. Most previous
VM introspection work focuses on security, digital foren-
sics, malware and intrusion detection applications [21, 43,
50]. Garfinkel and Rosenblum [20] use memory introspec-
tion for intrusion detection, with detectors for tracking pro-
gram integrity, virus signatures and network sockets. Other
work employs introspection techniques for detecting rootk-
its, identifying hidden drivers and anti-malware solutions [16,
19, 25]. Outside the security domain, IBMon [40] comes clos-
est to our approach, using memory introspection to estimate
bandwidth resource use for VMM-bypass network devices.

Other Cloud Monitoring Techniques. In addition to
the ones already discussed, other existing VM monitoring
techniques can also be viewed as falling into one or more
categories described in section 2. PHD Virtual’s [39] ba-
sic VM-as-blackbox metrics use only hypervisor level infor-
mation, while in depth VM level metrics requires running
scripts / installing ’intelligent agents’ inside the VMs. Re-
flex vWatch monitoring [41] uses information from VMware
vCenter. VMware vCenter Operations Management Suite
[45] is also a combination of hypervisor level metrics, to-
gether with in-guest agent (vFabric Hyperic). VMware VIX
API [46] uses VMware Tools to track VM information and
actuate actions through this interface. Several security so-
lutions such as McAfee MOVE, TrendMicro DeepSecurity,
Reflex vTrust, SADE, CloudSec use VMSafe / vShield single
agent approach.
Some exceptions include: (i) Hypertection [23], that also

calls its security solution agentless, it can access memory of
Hyper-V VMs only but their approach is unknown, and (ii)
Litty and Lie’s out-of-VM patch auditing [29] that uses ar-
chitectural/ hardware introspection to be guest OS-agnostic.
They monitor virtual hardware information (page bits, cpu
registers) that exists at the hypervisor level to detect exe-
cution of unpatched binaries and non-binary files, given a
database of known binaries and patches. A departure from
the usual memory introspection way of inferring VM’s run-
time state, it is limited in the kind of information that can

be recovered while operating at the virtual hardware level
and relies on a functional VM environment.

8. CONCLUSION
In this paper we propose Near Field Monitoring, a fun-

damentally different approach to systems monitoring and
analytics in the cloud. We show that traditional in-VM tech-
niques or newer virtualization-aware alternatives are not a
good fit for modern data centers, and address their limita-
tions with our non-intrusive, out-of-band cloud monitoring
and analytics framework. NFM decouples system execution
from monitoring and analytics functions, and pushes these
functions out of the systems’ scope. The NFM framework
provides “always-on” monitoring, even when the monitored
systems are unresponsive or compromised, and works “out-
of-the-box” by eliminating any need for guest cooperation
or modification. We describe the implementation of NFM
across two virtualization platforms, and present four proto-
type applications that we built on top of our framework to
highlight its capabilities for across-systems and across-time
analytics. Our evaluations show that we can accurately and
reliably monitor cloud instances, in realtime, with minimal
impact on both the monitored systems and the cloud infras-
tructure. Our ongoing work with NFM involves deploying
our framework in a real production data center to evaluate
its scalability characteristics, to explore new potential appli-
cations, and to discover emerging patterns across large-scale
system data.

We believe our work lays the foundation for the right way
of systems monitoring and analytics in the cloud. With its
ability to support non-intrusive, fine-grain monitoring and
complex analytics, NFM serves as the the cornerstone of an
“analytics as a service (AaaS)” cloud offering, where the end
users of the cloud can seamlessly subscribe to various out-of-
the-box monitoring and analytics services, with no impact
or setup requisites on their execution environments.

9. ACKNOWLEDGEMENTS
We would like to thank our anonymous reviewers and our

shepherd Thu Nguyen for their helpful suggestions on im-
proving this paper. This work is supported by an IBM Open
Collaboration Research award.

10. REFERENCES
[1] Adam Boileau. Hit by a Bus: Physical Access Attacks with

Firewire. RuxCon 2006. http://www.security-assessment.com/
files/presentations/ab_firewire_rux2k6-final.pdf.

[2] Amazon. CloudWatch. http://aws.amazon.com/cloudwatch/.

[3] Amazon. Summary of the October 22,2012 AWS Service Event
in the US-East Region.
https://aws.amazon.com/message/680342/.

[4] Anthony Desnos. Draugr - Live memory forensics on Linux.
http://code.google.com/p/draugr/.

[5] M. Auty, A. Case, M. Cohen, B. Dolan-Gavitt, M. H. Ligh,
J. Levy, and A. Walters. Volatility - An advanced memory
forensics framework. http://code.google.com/p/volatility.

[6] S. Bahram, X. Jiang, Z. Wang, M. Grace, J. Li, D. Srinivasan,
J. Rhee, and D. Xu. DKSM: Subverting Virtual Machine
Introspection for Fun and Profit. In SRDS, pages 82 –91, 2010.

[7] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. In SOSP, pages 164–177, 2003.

[8] Bryan Payne. Vmitools - An introduction to LibVMI.
http://code.google.com/p/vmitools/wiki/LibVMIIntroduction.

[9] B. D. Carrier and J. Grand. A hardware-based memory
acquisition procedure for digital investigations. Digital
Investigation, 1(1):50–60, 2004.

[10] A. Case, L. Marziale, and G. G. RichardIII. Dynamic
recreation of kernel data structures for live forensics. Digital
Investigation, 7, Supplement(0):S32 – S40, 2010.

[11] ClamAV. Clam AntiVirus. http://www.clamav.net.

[12] C. Colohan. The Scariest Outage Ever. CMU SDI/ISTC
Seminar Series, 2012.

[13] David Anderson. White Paper: Red Hat Crash Utility.
http://people.redhat.com/anderson/crash_whitepaper/.

[14] Dell Quest/VKernel. Foglight for Virtualization. http://www.
quest.com/foglight-for-virtualization-enterprise-edition/.

[15] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee.
Virtuoso: Narrowing the Semantic Gap in Virtual Machine
Introspection. In IEEE Security and Privacy ’11, pages
297–312.

[16] B. Dolan-Gavitt, B. Payne, and W. Lee. Leveraging forensic
tools for virtual machine introspection. Technical Report
GT-CS-11-05, Georgia Institute of Technology, 2011.

[17] Emilien Girault. Volatilitux- Memory forensics framework to
help analyzing Linux physical memory dumps.
http://code.google.com/p/volatilitux/.

[18] M. F. Linux Rootkit Implementation. http:
//average-coder.blogspot.com/2011/12/linux-rootkit.html,
2011.

[19] Y. Fu and Z. Lin. Space Traveling across VM: Automatically
Bridging the Semantic Gap in Virtual Machine Introspection
via Online Kernel Data Redirection. In IEEE
Security&Privacy’12.

[20] T. Garfinkel and M. Rosenblum. A Virtual Machine
Introspection Based Architecture for Intrusion Detection. In
NDSS, pages 191–206, 2003.

[21] B. Hay and K. Nance. Forensics examination of volatile system
data using virtual introspection. SIGOPS Oper. Syst. Rev.,
42(3):74–82, 2008.

[22] O. S. Hofmann, A. M. Dunn, S. Kim, I. Roy, and E. Witchel.
Ensuring operating system kernel integrity with OSck. In
ASPLOS, pages 279–290, 2011.

[23] Hypertection. Hypervisor-Based Antivirus. hypertection.com.

[24] Jack of all Clouds. Recounting EC2 One Year Later.
www.jackofallclouds.com/2010/12/recounting-ec2/.

[25] X. Jiang, X. Wang, and D. Xu. Stealthy malware detection
through VMM-based out-of-the-box semantic view
reconstruction. In CCS ’07, pages 128–138.

[26] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori.
KVM: the Linux Virtual Machine Monitor. In OLS ’07: The
2007 Ottawa Linux Symposium, pages 225–230, 2007.

[27] I. Kollar. Forensic RAM dump image analyser. Master’s Thesis,
Charles University in Prague, 2010.
hysteria.sk/~niekt0/fmem/doc/foriana.pdf.

[28] Z. Lin, J. Rhee, X. Zhang, D. Xu, and X. Jiang. SigGraph:
Brute Force Scanning of Kernel Data Structure Instances Using
Graph-based Signatures. In NDSS, 2011.

[29] L. Litty and D. Lie. Patch auditing in infrastructure as a
service clouds. In VEE ’11.

[30] Mariusz Burdach. Digital forensics of the physical memory.
2005. http://forensic.seccure.net/pdf/mburdach_digital_
forensics_of_physical_memory.pdf.

[31] N. Mavroyanopoulos and S. Schumann. Mhash.
http://mhash.sourceforge.net.

[32] Maximillian Dornseif. 0wned by an iPod. PacSec Applied
Security Conference 2004.
http://md.hudora.de/presentations/firewire/PacSec2004.pdf.

[33] D. Mosberger and T. Jin. httperf - a tool for measuring web
server performance. SIGMETRICS Perform. Eval. Rev.,
26(3):31–37, 1998.

[34] Nirsoft. Windows Vista Kernel Structures.
http://www.nirsoft.net/kernel_struct/vista/.

[35] OpenBenchmarking/Phoronix. x264 Test Profile.
http://openbenchmarking.org/test/pts/x264-1.7.0.

[36] Opscode. Chef. http://www.opscode.com/chef/.

[37] Y. Padioleau, J. L. Lawall, and G. Muller. Understanding
collateral evolution in linux device drivers. In EuroSys’06.

[38] B. Payne, M. de Carbone, and W. Lee. Secure and Flexible
Monitoring of Virtual Machines. In Twenty-Third Annual
Computer Security Applications Conference, pages 385 –397,
2007.

[39] PHD Virtual. Virtual Monitoring. http://www.phdvirtual.com/.

[40] A. Ranadive, A. Gavrilovska, and K. Schwan. Ibmon:
monitoring vmm-bypass capable infiniband devices using
memory introspection. In HPCVirt, pages 25–32, 2009.

[41] Reflex. vWatch Monitoring.
http://www.reflexsystems.com/Products/vWatch.

[42] Russell Coker. Bonnie++. http://www.coker.com.au/bonnie++/.

[43] A. Srivastava and J. Giffin. Tamper-Resistant,
Application-Aware Blocking of Malicious Network Connections.
In RAID, pages 39–58, 2008.

[44] S. Thomas, K. Sherly, and S. Dija. Extraction of memory
forensic artifacts from windows 7 ram image. In IEEE ICT ’13,
pages 937–942, April 2013.

[45] VMware. vCenter Operations Management Suite. http:
//www.vmware.com/products/vcenter-operations-management/.

[46] VMware. VIX API Documentation.
http://www.vmware.com/support/developer/vix-api/.

[47] VMware. VMCI Overview. http://pubs.vmware.com/vmci-sdk/.

[48] VMware. VMWare Tools. http://kb.vmware.com/kb/340.

[49] VMware. vShield Endpoint.
http://www.vmware.com/products/vsphere/features-endpoint.

[50] VMWare Inc. VMWare VMSafe security technology. http:
//www.vmware.com/company/news/releases/vmsafe_vmworld.html.

[51] S. Vogl. A bottom-up Approach to VMI-based Kernel-level
Rootkit Detection. PhD Thesis, Technische Unversitat
Munchen., 2010.

[52] C. A. Waldspurger. Memory resource management in VMware
ESX server. SIGOPS Oper. Syst. Rev., 36(SI):181–194, 2002.

