
Jettison: Efficient Idle Desktop Consolidation with Partial VM Migration

Nilton Bila†, Eyal de Lara†, Kaustubh Joshi×, H. Andrés Lagar-Cavilla ∗,
Matti Hiltunen× and Mahadev Satyanarayanan‡

†University of Toronto, ×AT&T Labs Research, ∗GridCentric Inc., ‡Carnegie Mellon University

Abstract
Idle desktop systems are frequently left powered, often be-
cause of applications that maintain network presence or to
enable potential remote access. Unfortunately, an idle PC
consumes up to 60% of its peak power. Solutions have been
proposed that perform consolidation of idle desktop virtual
machines. However, desktop VMs are often large requiring
gigabytes of memory. Consolidating such VMs, creates bulk
network transfers lasting in the order of minutes, and utilizes
server memory inefficiently. When multiple VMs migrate
simultaneously, each VM’s experienced migration latency
grows, and this limits the use of VM consolidation to envi-
ronments in which only a few daily migrations are expected
for each VM. This paper introduces Partial VM Migration,
a technique that transparently migrates only the working set
of an idle VM. Jettison, our partial VM migration prototype,
can deliver 85% to 104% of the energy savings of full VM
migration, while using less than 10% as much network re-
sources, and providing migration latencies that are two to
three orders of magnitude smaller.

Categories and Subject Descriptors D.4.7 [Operating Sys-
tems]: Organization and Design —Distributed systems

General Terms Design, Experimentation, Measurement

Keywords Desktop Virtualization, Cloud Computing, En-
ergy

1. Introduction
Modern offices are crowded with personal computers. Pre-
vious studies have shown that office computers are left con-
tinuously running, even when idle [8, 19, 25]. These idle
times have been shown to add up to close to 12 hours per

∗ Andrés participated in this work while employed at AT&T Labs Research.

Copyright c© ACM, 2012. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The definitive
version was published in the proceedings of EuroSys’12, April 10–13, 2012, Bern,
Switzerland., http://doi.acm.org/10.1145/.

Copyright c© 2012 ACM 978-1-4503-1223-3/12/04. . . $10.00

day, excluding off times [19]. Unfortunately an idle PC con-
sumes close to 60% of the power of a fully utilized sys-
tem. While modern computers support low power ACPI
states [3], the same studies have shown that the main rea-
son these are not used is because of applications that require
always-on semantics. Applications such as instant messen-
gers, VoIP clients, and remote desktop access and adminis-
tration utilities, maintain network presence even when the
PC is idle. Remotely waking up the PC on-demand via
Wake-on-LAN [5] and similar mechanisms has been shown
not to work, as frequent gratuitous network traffic in enter-
prise environments prevents the PC from sleeping [16, 19].

An attractive solution is to host the user’s desktop in-
side a virtual machine (VM), migrate the VM to a consol-
idation server when idle, and put the desktop to sleep [13].
The key advantage of this approach is that it does not re-
quire changes to applications or special purpose proxies.
However, a straightforward implementation requires large
network transfers, to migrate memory (and optionally disk)
state, which can saturate shared networks in medium to large
offices, and utilizes server memory inefficiently.

This paper introduces Partial VM Migration, a technique
that addresses these challenges. Partial VM migration is
based on the observation that an idle desktop, even in spite
of background activity, requires only a small fraction of its
memory and disk state to function, typically less than 10% of
memory and about 1 MiB of disk state. Partial VM migration
creates a partial VM on the server, and transfers on-demand
only the limited working set that is accessed while the VM is
idle. The desktop sleeps when the consolidated partial VM
needs no state from it, and wakes up to service on-demand
requests. We call these opportune sleeps microsleeps. Mi-
grating the VM back to the user’s desktop is fast because
partial VM migration maintains VM residues on the desktop
and transfers only the dirty state created by the partial VM
back to the desktop.

Partial VM migration makes energy-oriented desktop
consolidation practical. Because its network transfers are
small, and partial VMs require only a small fraction of their
desktop mode memory footprint, partial VM migration has
the benefit that both, the network and server infrastructure,
can scale well with the number of users, while providing

migration times that are very small. High migration effi-
ciency creates more opportunities for energy savings, be-
cause shorter periods of idleness can be targeted. Fine-grain
migration also lowers the penalty for poor migration de-
cisions. If an idle user becomes active much sooner than
expected, he hardly notices that his VM has migrated. This
approach is suitable for personal computers, such as desk-
tops and laptops, which have local execution state, and we
refer to these simply as desktops.

Jettison is our desktop based partial VM migration pro-
totype. Our experience with a Jettison deployment shows
that significant energy savings are achievable without nega-
tive impact on user experience. Within an hour of inactivity,
desktops were able to save up to 78% of energy. Experienced
migration times were near 4 seconds and migration sizes av-
eraged under 243 MiB for Linux desktop VMs with 4 GiB of
nominal memory. Our experiments also show that, in a simu-
lated environment with 500 users, partial VM migration can
deliver similar energy savings as full VM migration, while
using less than 10% as much network resources, and pro-
viding migrations latencies that are three orders of magni-
tude smaller. The capital investment needed to achieve these
energy savings is modest. Even a small private cloud can
support a large number of desktop VMs because the VMs
migrated there have small network and memory footprints:
they only do what is needed to sustain always-on semantics
for desktop applications. While our current prototype tar-
gets VMs with local storage on the desktop, the approach
is equally applicable to enterprise deployments with shared
network storage. Similarly, partial VM migration is comple-
mentary to solutions like Intelligent Desktop Virtualization
(IDV) [6] that simplify desktop management by centraliz-
ing it, while supporting local execution. Whereas these ap-
proaches concentrate on managing and backing up the VM
persistent state, partial VM migration is mainly concerned
about migration of run state.

This paper makes five contributions: (i), it shows that the
working set of an idle VM is small and consists mostly of
memory state (disk is less than 1%); (ii), it shows that mi-
grating a VM in full is unnecessary, and indeed does not
scale well for energy oriented idle desktop consolidation;
(iii), it shows that on-demand state requests are clustered
enough to allow desktops to save energy by sleeping be-
tween request bursts; (iv), it shows that partial VM migration
can save as much energy as full VM migration while send-
ing less than 10% of the data, with migration latencies that
are three orders of magnitude smaller; and (v), it presents a
complete architecture used to consolidate idle partial VMs
and reintegrate them back to their desktop, when active.

The remainder of the paper is organized as follows. Sec-
tion 2 motivates the need for partial VM migration, by
demonstrating that migrating VMs in full is inadequate for
energy oriented consolidation of idle desktop VMs. Sec-
tion 3 introduces partial VM migration as a technique to

0 2 4 6 8 10 12 14 16 18 20 22

Time (hour)

Mon

Tue

Wed

Thu

Fri

Sat

Sun

Figure 1. Desktop/laptop usage and idle periods

reduce energy use of idle desktops. Section 4 describes Jetti-
son, our implementation of partial VM migration. Section 5
presents results from a our deployment of Jettison and, by
using simulations, Section 6 extends these results for large
office environments and evaluates the scalability of our ap-
proach. In Section 7, we discuss the sensitivity of our results,
the implications of using network accessible shared storage,
the implications of our approach to hardware and software
reliability, and how our approach fits within the context of
virtualization solutions in the market place. Section 8 dis-
cusses related work, and Section 9 concludes the paper.

2. Motivation
Our research confirms prior studies (e.g., [19]) that desktops
are powered up but idle significant portions of time. Figure 1
illustrates activity traces collected from desktop and laptop
machines in a research lab for 500 person days. Each line
represents one machine day, with a dot indicating that the
machine is in use, and a white space that the machine is idle.
The figure shows that, in addition to the overnight and lunch
time idle periods, there are numerous significant idle periods
that are opportunities for energy savings. However, to take
advantage of these periods, the following requirements must
be met:

1. Quick resume: To ensure user acceptance, the desktop
must be restored in a few seconds when the user resumes
their work.

2. Conservation of the network resources: With 100s or
1000s of users in one organization, frequent desktop mi-
grations put significant strain on the network.

3. Cost effective: The extra capital cost incurred by the
consolidation servers must be small enough that it does
not exceed the savings from reduced energy use.

While prior work (e.g., [13]) proposes desktop consol-
idation using existing VM technology (live migration [12]
and ballooning [23]), we find such techniques fall short in

meeting these requirements. We performed experiments to
quantify the performance of existing VM technologies on
enterprise class hardware1. In these experiments, the desk-
top VM was warmed up through a script that loaded a num-
ber of documents and web pages and then idled. After one
minute of idleness, the VM was migrated to the consolida-
tion server through a dedicated network switch. The VM
used shared storage, provided through Redhat’s network
block device GNBD, which ensured disk availability upon
migration. Each experiment was repeated 5 times and we
report the average results. Even though the footprint of the
VM was 4 GiB, the script would consistently lead the VM
to using only 1.2 GiB of its memory.

Live migration [12] provides an obvious baseline. In our
experimental setup, the average latency of live migration
is 38.59 seconds, and the average network bandwidth con-
sumed is 4.27 GiB. However, the migration of one VM at
a time does not give the full picture of the user experience.
Specifically, a “boot storm” occurs when multiple users start
work or resume work at the same time or in close proxim-
ity. As expected, live migrating multiple VMs out of a single
consolidation server concurrently degrades linearly: 4 VMs
takes an average of 137 seconds, while 8 take 253 seconds.
Staggering the resume times helps, but even with 20 second
pause between resumes of 8 VMs still results in average la-
tency of 115.62 seconds. Not only is live migration unable to
ensure quick resumes, but it will introduce significant strain
on the network (number of migrations times the average VM
size) as we will demonstrate in Section 6.

Ballooning is a technique that allows the memory foot-
print of a VM to be shrunk when desired and thus, using it
before consolidations could alleviate some of the disadvan-
tages of live migration. While ballooning is able to shrink
the VM footprint, this happens at a considerable expense of
time and I/O. In our experiments with Xen’s ballooning im-
plementation, our idle VM’s footprint reached its saturation
point at 423 MiB (swapping turned on to avoid killing any
processes), but ballooning took an average of 328.44 sec-
onds to reach this saturation point. In the process, it evicted
275.99 ± 9.25 MiBs of disk cached state and swapped out
449.08 ± 51.55 MiBs of main memory to secondary stor-
age, using the network resources. While the ballooned VMs
can be easily migrated—the VMs with 423 MiB footprints
were migrated on the average in 4.86 seconds—the memory
state swapped out and the cached disk state have to be recon-
structed from the shared storage after resume resulting in ad-
ditional network usage and slowed desktop responsiveness.
Thus, while ballooning reduces the VM’s footprint on the
consolidation server, it fails to significantly reduce network
bandwidth. Even if we use local disks instead of shared stor-
age in order to reduce network usage, the ballooning latency

1 Xen VMs with 4 GiB of memory and 12 GiB of disk; Dell Poweredge
R610, 24 GiB of RAM, 8 2.3 GHz Xeon cores, Fusion-MPT SAS drives,
and a Broadcom NetXtreme II gigabit NIC.

is still prohibitive for our goals and, in this case, the desktops
must to be woken up to serve pages being swapped in while
the desktop VM executes at the consolidation server.

3. Partial VM Migration
Partial VM migration allows user applications to maintain
network presence while the desktop sleeps. It transfers the
execution of an idle VM to a consolidation server, and
fetches the VM’s memory and disk state on-demand. Partial
VM migration differs from post-copy VM migration [17]
in that the migration is not executed to completion. Instead
most of the VM state remains as a residual on the user’s
desktop in anticipation of a reverse migration. Partial VM
migration does not require application modifications, the
development of specialized protocol-specific proxies or ad-
ditional hardware.

When the VM is executing on the desktop, the desktop
has all of the VM’s state, which provides full system perfor-
mance to the user. When on the server, only the working set
required for idle execution is available there.

By migrating only the limited working set that is accessed
while the desktop remains idle, partial VM migration allows
for high consolidation ratios on the server, and makes it pos-
sible to save energy by migrating often throughout the day
without overwhelming the network infrastructure. Similarly,
migrating back to the user’s desktop is fast because only the
dirty state created by the partial VM is reintegrated back into
the desktop.

Partial migration leverages two insights. First, the work-
ing set of an idle VM is small, often more than an order of
magnitude smaller than the total memory allocated to the
VM. Second, rather than waiting until all state has been
transferred to the server before going to sleep for long du-
rations, the desktop can save energy by microsleeping early
and often, whenever the remote partial VM has no outstand-
ing on-demand request for state. Existing desktops can save
energy by microsleeping for few tens of seconds. Shorter
intervals do not save energy because the transient power to
enter and leave sleep state is higher than the idle power of
the system. The challenge is to ensure that the desktop mi-
crosleeps only when it will save energy. In the next sections,
we determine strategies that answer the following questions:

1. When should a desktop microsleep?

2. How can prefetching be used to optimize microsleep
opportunities?

We first describe how we migrate idle VM working set
on-demand, and describe a deployment of our partial VM
migration prototype from which we collected memory and
disk access traces for the analysis.

3.1 Working Set Migration
When consolidating a VM from the desktop to the server,
partial VM migration transfers memory state only as the VM

0.0

0.2

0.4

0.6

0.8

1.0

 0 100 200 300 400 500 600 700 800

cd
f

size (MB)

working set

Figure 2. Distribution of working set sizes of idle Linux
VMs with 4 GiB of memory.

requires it for its execution. During consolidation, partial
VM migration transfers only a VM descriptor, which con-
tains VM configuration (e.g. device listing, memory limit),
virtual CPU register state, and page table pages set up by
the VM’s kernel. The descriptor is used to set up page tables
and start the partial VM’s execution. As the VM tries to ac-
cess its pages, it causes faults that are handled by an external
process. This process migrates each faulting page from the
desktop, on-demand. We refer to these page faults accesses
as remote faults. Once migrated, future accesses to a page
do not result in remote faults. To improve performance, ac-
cesses caused by allocations that overwrite whole pages are
handled differently. These faults are handled locally by the
VM’s kernel with no remote fault ensuing.

For VMs with local disk images rather than shared net-
work storage, disk state is also migrated from the desktop
on-demand. At consolidation time, only device configura-
tion is transmitted as part of the descriptor. Each first time
disk block access results in its migration from the desktop.
First block accesses that result in whole block writes are also
handled locally by the disk driver.

3.2 State Access Traces
We collected traces of idle VMs memory and disk accesses
in a deployment of our prototype implementation of partial
VM migration on the desktops of three users over a seven
week period. To identify idle periods, we monitored UI ac-
tivity and if the user was found to be inactive for at least
15 seconds, a 5 second dialog was displayed, warning of an
impending VM consolidation. If no response was given, we
considered the user idle and the VM was consolidated. Each
VM’s 12 GiB disk image was stored locally on the desktop.

Figure 2 shows the distribution of working set sizes of
the three user VMs over 313 idle periods. These desktop
VMs were each allocated 4 GiB of memory and were used
as general purpose Linux desktop systems with applications
such as Web browsers, document processors and instant
messengers. Idle periods occurred throughout the day.

The mean memory working set was only 165.63 MiB
with standard deviation of 91.38 MiB. The mean working set

size is barely 4.0% of the VMs allocated memory. The mean
size of disk accesses during these idle times was 1.16 MiB
with standard deviation of 5.75 MiB. The implications of a
small memory and disk footprint are: (i), little state needs to
be migrated when consolidating, a benefit in terms of re-
duced network load; (ii), little state needs to be migrated
when resuming, a network benefit, but also, more impor-
tantly an improvement of user experience by reducing rein-
tegration latency; and (iii), limited memory needs to be com-
mitted to each running VM on the server, a benefit in terms
of reduced infrastructure costs.

3.3 When to Microsleep
A desktop system experiences increased power use during
transitions to sleep and wake-up. A microsleep will only
save energy if it lasts long enough to compensate for the
transient energy rise required to enter sleep and wakeup the
system to serve a remote fault.

Specifically, the energy use of an idle desktop system is
given by:

Ei = Piti (1)

Where Ei is the energy used in watt hours, Pi is the
system’s idle power rate and ti is the idle time in hours.

The energy use of an idle system that microsleeps is:

Eµ = Piti′ + Poto + Psts + Prtr (2)

Where ti′ is the portion of time the system remains pow-
ered, Po and to the power rate and time the system spends
entering sleep, Ps and ts the power rate and time the system
spends in sleep, and Pr and tr the power rate and time the
system spends exiting sleep.

Power rates, to, and tr depend only on the desktop’s
profile. In typical desktops, Ps is often an order of magnitude
smaller than Pi, and Po and Pr are larger than Pi. Then,
microsleep can only save energy if ts is long enough to
compensate for increased energy use during to and tr. The
shortest interval for which it is energy efficient to microsleep
is one in which Ei = Eµ. In such interval the system wastes
no time awake, so ti′ = 0, and the interval is given by:

tb =
−Ps(to + tr) + Poto + Prtr

Pi − Ps
(3)

Plugging in our desktop profile from Table 1, we find
that, for our systems, tb = 32.22 seconds. Thus, our desktop
should microsleep only when there is an expectation that no
remote faults will arrive in at least the next 32.22 s.

To determine the likelihood of a fault-free period of at
least tb length, we determine the conditional probability of
that the next remote fault will arrive in less than tb as a
function of the wait time (tw), the time interval that has
elapsed since the last remote fault arrived at the desktop.

0.0

0.2

0.4

0.6

0.8

1.0

 0 5 10 15 20 25 30 35

P
(I

 <
 t b

 +
 t w

|t w
)

tw (s)

Figure 3. Conditional probability that the next remote fault
will arrive in less than 32.22 s as a function of the wait time.

More formally, p(I < tb+ tw|tw) is the probability of inter-
arrival I being energy inefficient.

Figure 3 plots the conditional probability that the next re-
mote fault will arrive in less than 32.22 s based on remote
fault inter-arrival times for the prototype deployment of the
previous section. The figure shows that as the wait time in-
creases up to 28 s, the likelihood of seeing the next remote
fault in less than 32.22 s decreases rapidly. This is because
faults are highly correlated, and indeed more than 99.23%
of remote faults occur within one second of previous faults.
The implication is that for the vast majority of faults, when
the desktop wakes up to service one fault, it will likely be
able to service faults that follow immediately, avoiding many
inefficient microsleeps. With wait times immediately above
28 s, the probability of seeing a remote fault increases sig-
nificantly because 60 s inter-arrivals are common, typically
because of timer based events.

We determine next the optimal value of wait time, tw, that
minimizes the energy waste as follows:

minEwaste(tw) = twEi + p(I < tb + tw|tw)Eµ (4)

Where Ewaste is the total energy wasted. To compute
Eµ, we assume the worst case, in which a fault occurs
immediately after the desktop enters sleep so that ts = 0
and ti′ = 0.

With our desktops’ energy profile, Ewaste is shown in
Figure 4, and it is clear that the energy waste minimizing
tw is 6 seconds.

3.4 State Prefetch
We use prefetching to increase the frequency and length of
energy efficient inter-arrivals. Prefetching proactively mi-
grates state to the server and allows faults to be serviced
locally on the server, not requiring the desktop to be awake.

As discussed in Section 3.1, most state transfer, hence re-
mote faults, is caused by memory accesses (more than 99%).
As a result, we concentrate our efforts on reducing memory
faults and allow disk requests to be serviced on-demand, in-
dependent of whether storage is local or networked.

0.0

0.2

0.4

0.6

0.8

1.0

 0 5 10 15 20 25 30 35

E
w

as
te

 (
W

.h
)

tw (s)

Figure 4. Expected energy waste as a function of sleep
timeout (tw).

 0

 50

 100

 150

 200

 0 200 400 600 800 1000

av
er

ag
e

m
ic

ro
sl

ee
p

(s
)

migration size (MB)

hoarding
on-demand prefetch

Figure 5. Effect of hoarding and on-demand prefetching on
microsleep lengths.

We explored two prefetch strategies. The first, hoard-
ing, explores similarity in page frame numbers accessed be-
tween different migrations of the same VM. At the time
of consolidation, this approach fetches a sequence of pages
whose frame numbers were requested in previous instances
in which the VM was consolidated. In the second prefetch
strategy, on-demand prefetch, we exploit spatial locality of
page accesses by using a pivot window to prefetch pages
whose frame numbers are near a requested page. Both strate-
gies fetch pages into a per VM buffer, either in disk or in
a discrete memory location, and pages are only committed
to the partial VM’s memory when the VM attempts to ac-
cess them. This approach ensures that prefetching does not
grow the memory footprint of an idle VM, and whenever the
prefetch buffer is full it can evict pages unlikely to be used.

Figure 5 compares the performance of hoarding and on-
demand prefetch per MiB of migrated state. The figure, uses
simulation results based on page access traces from a user
VM from our deployment that is consolidated 58 times. The
primary performance metric is the average length of time
of each microsleep. The objective of prefetch is to reduce
the number remote faults that interrupt microsleeps. Fig-
ure 6 shows the energy savings for the same VM, normal-
ized over the energy the desktop uses during those idle pe-
riods when left powered. We compute energy use of the

0.0

0.2

0.4

0.6

0.8

1.0

 0 200 400 600 800 1000

en
er

gy
 s

av
in

gs

migration size (MB)

hoarding
on-demand prefetch

Figure 6. Effect of hoarding and on-demand prefetching on
energy savings.

desktop by aggregating energy used over each interval the
desktop would be idle, suspending, sleeping and resum-
ing under each prefetch strategy, using Equation 2. For any
given migration size, on-demand prefetch increases average
microsleep durations faster than hoarding, which result in
slightly better energy savings. Migration size is composed
of state migrated by the prefetch strategy, and state fetched
due to a prefetch cache miss. Our results indicate that on-
demand prefetch is better at predicting contiguous sequence
of requests. Hoarding can more often miss requests in the
middle of a cluster, resulting in extra desktop wake-ups.

We also experimented with an approach that combines
hoarding and prefetch, and found it to yield an improvement
in energy savings for a given migration size of only 1 to 4%
over on-demand prefetch alone. However, an attractive fea-
ture of on-demand prefetch is that it does not create bulk
network transfers which can quickly congest the network,
rather, it amortizes state migration over the duration of con-
solidation, as state is needed by the VM. Given similar en-
ergy savings performance, on-demand prefetch is preferable.

Separately, we also explored maintaining VM residuals
on the server and found it to have limited success in reducing
remote faults. In our experiments, page content reuse across
subsequent consolidations of the same VM, averaged 28%.
Fewer than one third of a VM’s page requests could be ser-
viced from residuals stored from previous server instances of
itself. While we did not explore page content sharing across
different VMs, we expect it’s effectiveness in reducing re-
mote faults to be no better than with same VM residuals.

For the remainder of the paper we use on-demand prefetch
for memory migration and fix the prefetch pivot window
size at 20 pages, which we found to deliver the highest sav-
ings per MiB. We also fix the prefetch cache at 50 MiB as
prefetched pages are commonly used within a short period,
and with such buffer we see little re-fetch of evicted pages.

4. Jettison
Our partial consolidation prototype is Jettison. It is imple-
mented on top of the Xen 3.4 hypervisor [10]. Xen is a type

1 hypervisor which runs in the highest processor privilege
level and relegates guest domains to lower privilege ones.
Xen supports an administrative guest, domain 0 (henceforth
dom0) and multiple unprivileged guests, domUs. In our ar-
chitecture desktop environments are encapsulated in domUs.

Jettison is implemented as modifications to the hypervi-
sor, daemons in dom0, and patches to the domU kernel. Our
implementation currently supports paravirtualized guests,
and we plan to extend it to also support fully virtualized
VMs. In the discussion below, we explain where changes
are needed for fully virtualized VMs.

Jettison runs the following components on the dom0 of
the desktop system. An activityMonitor daemon, responsi-
ble for detecting user activity, initiating both consolidation
and user-triggered reintegrations, and suspending the desk-
top system to memory sleep (S3). At present, activityMon-
itor monitors keyboard and mouse and, after an user con-
figured period of inactivity, provides an on-screen warning
for another pre-configured period, before consolidating the
VM. Our defaults are 15 and 5 seconds for the inactivity and
warning periods, respectively. Only while the VM is consol-
idated, the desktop runs a memserv and a diskserv processes,
responsible for serving memory pages and disk blocks, re-
spectively, to the server over TCP. memserv, maps all of the
consolidated VM’s frames with read-only access.

On the consolidation server’s dom0, Jettison runs a re-
moteWakeup daemon and two additional processes for each
domU. remoteWakeup wakes up a sleeping desktop via
Wake-On-LAN [5] whenever remote state is required. A
memtap process monitors VM page faults, notifies remote-
Wakeup and issues page requests to memserv running on
the desktop and, on response, updates the VM’s page frame.
memtap maps its VM’s frames with write access so it can
perform direct updates.

Xen employs a split device model in which a device front
end interface runs in the kernel of domU, and a backend,
implementing the functionality of the device, runs in dom0.
cownetdisk is our instantiation of the block device backend
for consolidated VMs with desktop local storage. It is based
on the blocktap interface [24] and implements a copy-on-
write networked disk device. While a VM runs on the server,
cownetdisk maintains two sparse virtual disk slices as files
in dom0. The bottom slice, the read-only slice, keeps blocks
that have only been read by the VM, and the top slice, the
dirty slice, maintains all that have been written to. A bitmap
is used to identify the valid slice for a block. Read requests
for blocks not in the server are fetched from the desktop and
placed in the read-only slice. First writes to a block cause
the promotion of the block to the dirty slice. Once a block is
promoted, all future accesses occur in the top slice. Writes
to blocks not present in the server cause a fetch from the
desktop first, and an immediate promotion. The exception
are whole block writes, which cause only a promotion. On

a remote fetch, cownetdisk also notifies remoteWakeup first,
to ensure that the desktop is awake.

When to consolidate and reintegrate? The decision to
consolidate rests on three conditions: (i) user idleness - the
user is not actively engaging the VM, (ii) server capacity -
the server has sufficient resources to accommodate the VM,
(iii) VM idleness - the VM can execute on the server with
sufficient autonomy from the desktop, such that the desktop
can sleep and save energy.

We determine user idleness by monitoring keyboard and
mouse activity. In the absence of activity, we provide an on-
screen warning, that allows the user to cancel consolidation.

On the server we care primarily about memory avail-
ability. When deciding to consolidate an idle VM, Jettison
checks that the server has enough memory to accommodate
it. Because a partial VM requires only a fraction of its nom-
inal memory, we must estimate the size of its working set
before migration, and ensure that the server can accommo-
date it. Initially, we estimate the working set size from the
observed sizes in our deployment. This estimate can then be
adjusted based on the VM’s previous history on the server.
The median working set size of our VMs was 157.87 MiB. If
during server-side execution, the VM requires less memory,
some, though minimal, server memory is left un-utilized.
If the VM requires more memory than estimated, and the
server has enough free memory, it allocates it as needed. If
not, the server evicts the VM back to its desktop.

Consolidating a VM to the server is only feasible when it
allows its desktop to sleep long enough to conserve energy.
This requires that the VM is accessing minimal amount of
disk and memory state resident on the desktop. While the
VM runs on the desktop, we monitor it’s I/O and CPU usage.
Xen already maintains these statistics, which we can access
to determine that the VM is idle. We can determine memory
usage periodically via the hypervisor’s dirty state tracking
mechanism. Xen can initially make all pages of a VM read-
only and, an attempt by the VM to make a write is trapped
by the hypervisor, which sets a dirty bit for the page.

The decision to reintegrate a VM to the desktop is sym-
metrical to that of consolidating it to the server. It hinges
on failures to meet idleness and server capacity conditions.
That is, either the user becomes active, the VM becomes ac-
tive and requires a large amount of state from the desktop, or
the server’s capacity is exceeded.

What happens during consolidation? On the desktop, the
execution of the VM is halted and our dom0 tools generate
a VM descriptor and all memory state of the VM remains
in core. The descriptor contains VM configuration metadata,
such as device configuration, VCPU register state, page table
pages, and configuration pages shared between the domain
and hypervisor. The largest component of the descriptor are
the page table pages. The descriptor is migrated to the server
which creates a new domain and begins its execution.

On the desktop, a diskserv and a memserv processes are
instantiated and device backends are disconnected from the
halted VM. Whenever these state servers receive a request,
they notify the activityMonitor so it knows not to schedule
an immediate sleep of the desktop.

As the VM begins execution on the server, it faults on
page accesses. These faults generate an interrupt handled
by the hypervisor. In turn, using an event channel, Xen’s
inter-domain communication interface, the hypervisor noti-
fies the memtap process of the fault and suspends the fault-
ing VCPU. When memtap has received the page and up-
dated the VM’s frame, it notifies the hypervisor via the same
event channel. The hypervisor then re-schedules the faulting
VCPU for execution.

What happens during reintegration? When the VM re-
sumes execution on the desktop, for example, because the
user has returned, any state that was modified while it ran
on the server needs to be integrated into the desktop state.
Because the desktop contains all of the VM’s state and, only
a small fraction of it has become stale, we only need to mi-
grate back the new state. For this, we use the disk and mem-
ory dirty state tracking mechanisms described above. When
the VM is reintegrated, only pages and disk blocks marked
as dirty are migrated to the desktop.

On the consolidation server, the VM is halted and our
dom0 tools map in dirty memory frames and VCPU register
state, and send their contents to the desktop. The dirty disk
slice, if any, is also sent. On the desktop, the VM’s memory
frames are mapped with write permission by our dom0 tools,
which update them with received dirty state. In parallel, the
dirty disk slice is merged with local disk. Once all state has
been updated, device backends are started and the VM is
allowed to begin execution.

Network Migration is supported within LAN environ-
ments where both the desktop and the server are in the same
Layer 2 broadcast domain. In these environments, because
Jettison VMs rely on host network bridging and maintain
the same MAC address across hosts, they continue to re-
ceive network packets that are destined to them after migra-
tion. This allows existing connections to remain active, with
minimal latencies during migration. When the desktop and
server connect via a Layer 3 or above network device, the
device must ensure that both are in the same broadcast do-
main. For example, a router must include both the desktop’s
and the server’s subnets within the same Virtual LAN.

Dynamic Memory Allocation is achieved by allocating
on-demand the underlying pages of memory of a consoli-
dated VM. For paravirtualized guests, we realize on-demand
allocations through the concept of a “ghost MFN”. Xen uses
two complementary concepts to address a page frame. Ma-
chine frame number (MFN) refers to the machine address
of the frame, as viewed by the MMU. Physical frame num-
bers (PFNs) are indirect addresses given to the paravirtual-

ized VM kernel to refer to the real MFNs. PFNs give the
VM the illusion of having access to a contiguous address
space. A ghost MFN has the property of serving as a place-
holder that encodes the PFN that it backs, and a flag indicat-
ing absence of actual allocation. The ghost MFN is placed in
lieu of an allocated MFN in the page tables, and the PFN-to-
MFN translation table that each Xen paravirtual guest main-
tains. The first guest access to the PFN triggers a shadow
page fault in the hypervisor, which is trapped and handled
by allocating the real MFN to replace the ghost. We limit
fragmentation of the hosts free page heap by increasing the
granularity of requested memory chunks to 2MiB at a time,
while still replacing ghost MFNs one at a time.

While we have not implemented dynamic memory allo-
cation and remote fault handling for fully virtualized guests,
known as hardware assisted VMs (HVMs), we plan to use
Xen’s built-in populate-on-demand (PoD) mechanism to do
both. PoD maps PFNs to MFNs on-demand for HVMs, by
faulting on first access to each page. This mechanism is used
to boot HVMs with lower memory commitments than their
maximum reservation, maximum. PoD allocates a preset
target memory to a per-guest cache, and maps pages to the
guest’s memory on-demand. When the cache runs out of
pages, PoD scans the memory of the guest for zero pages,
unmaps and returns them to the cache. For our purposes, we
will modify the PoD cache so it starts with a chunk-size of
memory, and when it runs out of pages, instead of scanning
for zero pages, it gets additional allocation chunks from the
hypervisor, as we do for our ghost MFN implementation.

We note that in both approaches, the faults used to allo-
cate memory on-demand are the same we use to fetch miss-
ing state on-demand. That is, when a fault occurs, first, we
commit the backing page to the VM, and then notify memtap
to fetch the content from the desktop.

5. Prototype Evaluation
We evaluated the performance of Jettison with a deployment
that involved four users and lasted 6 days. We use the results
of this deployment to answer the following questions:

1. How much energy is saved by partial VM migration?

2. Does microsleeping save energy?

3. How much state needs to be migrated to the consolidation
server to run an idle VM?

4. How much data needs to be migrated back to the desktop
when reintegrating the VM?

5. How long does it take to migrate a consolidated VM back
to the desktop?

5.1 Experimental Setup
Our deployments employed desktop systems and a consoli-
dation server. When the users were active, VMs ran on the
desktops. When inactive the VMs migrated to the server.

State Time (s) Power (W)
Suspend 8.38 (0.22) 107.90 (1.77)
Resume 8.58 (0.85) 121.72 (24.52)

Idle N/A 61.40 (0.03)
Sleep (S3) N/A 1.95 (0.02)

Network N/A 136.63 (2.81)

Table 1. Power profile of Dell Studio XPS 7100 Desktop.

0.0

0.2

0.4

0.6

0.8

1.0

 0 100 200 300 400 500

en
er

gy
 s

av
in

gs

consolidated time (min)

experimental results
estimates for our desktops

estimates for 2s suspend/resume

Figure 7. Desktop energy savings.

Each VM was configured with 4 GiB of memory and
12 GiB of disk. The VMs ran Linux with the GNOME
desktop configured with Mozilla Firefox and Thunderbird,
OpenOffice.org, Pidgin IM client, OpenSSH, among others.
Background IM and e-mail traffic was often present, includ-
ing occasional delivery of messages. Some of our users used
the IM client to connect to Google Talk and used Thun-
derbird for e-mail, while others used web based Gmail and
chat. Our VMs were also accessible via SSH, and some
users reported downloading documents from their consoli-
dated VMs from home. Such activities, did not require VM
reintegration because they did not cause high I/O activity or
significant growth of VM memory.

The desktops were Dell Studio XPS 7100 systems, with
a 3 GHz quad-core AMD PhenomTMII X4 945 processor
and 6 GiB of RAM. Table 1 presents the desktop’s power
profile obtained with a GW Instek GPM-8212 power me-
ter. These numbers are comparable to those of other pub-
lished systems [8, 13]. The server was a Sun Fire X2250
system with two quad-core 3 GHz Intel Xeon R© CPUs and
16 GiB of memory. It’s idle power averaged 150.70 W. The
desktops connected to the server over a GigE switch shared
with approximately 100 other hosts. We measured the ef-
fective throughput between the desktops and servers to be
813.44 Mbps. Power use of the desktops during the deploy-
ment was measured with Watts up? PRO power meters.

5.2 Energy Savings
Figure 7 shows energy savings experienced by desktop users
during the deployment. Energy savings are normalized over
the energy these desktops spend if left powered during those
idle periods. The figure also shows two estimates. First, it
shows finer grained estimates of expected energy savings for

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 5 10 15 20 25 30

po
w

er
 (

W
)

time (min)

desktop
server

desktop average

Figure 8. Power usage of a desktop and server during par-
tial migration. The figure shows a reduction in the average
energy use over time.

the desktops used in the deployment over varying lengths of
consolidation time. Second, similar estimates for a desktop
with similar profile characteristic as those in the deployment,
except for having faster suspend and resume times of 2 sec-
onds rather than nearly 8.5 seconds of our systems. These
estimates were computed from memory access traces, as de-
scribed in Section 3.4. The estimates match our experimental
data well.

The experimental results show that our users were able to
see reductions on their desktop energy use from as short idle
periods as 4 minutes. While in short idle times of under 10
minutes we see savings of 7% to 16%, in longer idle times
the savings were significant. In idle times of 67 minutes, we
see 78% savings and, in idle times of 308 minutes, we see
even higher savings of 91%.

In too short idle times, the energy expended by the desk-
top going to sleep and waking up is not outweighed by the
energy savings of the short microsleeps available. The rea-
son is that the desktops we use have very slow suspend
and resume times (nearly 8.5 seconds). We note, however,
that recent laptops have demonstrated short resume times,
such as nearly 2 seconds in both the Macbook Air [2] and
Acer Aspire S3 [1]. We argue that with approaches such
as Context-Aware Selective Resume [26] that initialize only
the necessary devices on wake-up, desktops can achieve fast
suspends and resumes that are comparable to those of op-
timized laptops. The estimates for a desktop with 2-second
suspend and resume in Figure 7 shows that, faster transitions
lead to higher savings in short idle times. Intervals under 10
minutes would see savings that are closer to 30%.

Figure 8 shows detailed power usage of one desktop and
the consolidation server over a 30 minute period in which
the VM is consolidated to the server for 25 minutes. The fig-
ure shows the power usage patterns as the desktop performs
microsleeps. At 1 minute and 57 seconds the VM begins mi-
gration to the server. This is represented by the first spike in
power use in both the desktop and server. As the server runs
the VM we note, two additional spikes, as batches of pages

0.0

0.2

0.4

0.6

0.8

1.0

 0 200 400 600 800 1000

cd
f

migration size (MB)

consolidation disk
reintegration disk

reintegration mem
consolidation mem

Figure 9. Distribution of migration sizes for VMs with
4 GiB of memory. Plot order matches legend top to bottom.

are fetched for the VM. From 4 minutes and 21 seconds, the
desktop performs a series of microsleeps until VM resume
time. While initially, the energy use of the desktop nomi-
nally exceeds its idle use, as soon as the first microsleeps
take place, the average energy use of the desktop drops be-
low, and it continues to drop over the course of the idle pe-
riod. As a result, the average power use of the desktop over
the idle period drops from 61.4 W to 43.8 W, a savings of
28.8%. The energy savings of the desktop and the length of
each microsleep increase over time.

While the server adds to energy use over an environment
in which no consolidation is performed, it is worth noting
that with our VM’s working set sizes, each server is capa-
ble of hosting at least 98 VMs, so it’s power use per VM
amounts to less than 2 W. This power can be driven further
down by increasing only the memory capacity of the server.

5.3 Network Load
Figure 9 shows the distribution of disk and memory state
migrated during consolidation and resume stages. The re-
sults show that partial VM migration makes frugal use of the
network. Overall, the mean amount of memory migrated (in-
cluding data migrated by on-demand prefetching) to the con-
solidation server was 242.23 MiB, a mere 6% of the VMs’
nominal memory. The average disk state migrated to the con-
solidation server was much smaller at 0.50 MiB. Similarly,
on average, each VM migrates 114.68 MiB of memory and
6.81 MiB of disk state back to the desktop; confirming that
VMs do not generate much dirty state while idle. This dirty
state is generated by all processes that run in the VM inde-
pendent of user activity, including always-on applications,
but also tasks that run periodically, such as OS daemons and
user tasks (e.g. browser JavaScript).

5.4 Migration Latencies
User perceived latency is important because it directly af-
fects the user’s experience, and his willingness to accept any
approach that relies on migration. Of particular importance
is reintegration latency, the time it takes for a consolidated

VM to migrate to the desktop and resume execution there,
on user request.

Our experiments show that the time to migrate a VM
back to the user’s desktop is small. On average, users can
expect their VMs to reintegrate in 4.11 seconds. Similarly,
the average time to consolidate a VM is 3.78 seconds. These
results exclude the desktop hardware suspend and resume
times, found in Table 1.

5.5 Summary
Our evaluation shows that partial migration is able to achieve
significant energy savings while generating only minimal
loads on the network and providing low migration latencies
to the user. These benefits are made possible by migrating
barely more than the working set of idle VMs, and by taking
advantage of microsleeps, short sleep times in which the
desktop’s attention is not required.

6. Scalability and Comparison with Full VM
Migration

Next, we extrapolate the benefits of partial migration for set-
tings with hundreds of desktops using user-idleness traces
collected from real users in an office environment. We ad-
dress the following questions: (i) How does partial migration
compare against full migration in terms of network usage,
overall energy savings, and the desktop reintegration latency
experienced by users? (ii) Do the techniques scale with the
number of desktops? (iii) Can they weather “boot storms”
present in actual usage patterns? and most importantly, (iv)
Do the energy savings exceed the capital costs required to
deploy each technique?

Simulation Environment. Our evaluation uses simulation
driven by real user traces collected using a Mac OS X based
tracker that runs on a desktop and tracks whether the user is
active every 5 seconds. Users are said to be inactive if they
are not using the keyboard or mouse, and no program (e.g., a
video player) has disabled the OS screen-saver timer. We de-
ployed the tracker for 4 months at an industrial research lab
on 22 researchers’ primary work Macs including both desk-
tops and laptops. The machines had user-controlled software
environments - there were no corporate lockdowns in place.
We collected 2086 person day traces from which a sample
of 500 are shown in Figure 1. Of the full traces, 1542 days
were weekdays and 544 were weekends. Because a number
of traces were from laptops that users take home, usage pat-
terns in the evenings and nights were heavier than would be
expected of office desktops. Furthermore, since the lab has
flexible work hours, the data does not show tightly synchro-
nized boot storms at the beginning of the workday - the most
highly correlated period of inactivity was the lunch hour.
Therefore, we expect this dataset to provide fewer sleep op-
portunities, but a somewhat friendlier environment for mi-
gration than a traditional office environment.

20sec 1min
5min

10min 1hr 2hrs 20sec
1min

5min
10min

1hr 2hrs
10

100

1000

10000

60 70 80 90 100 110 120

N
et

w
or

k
U

sa
ge

 (G
B

/d
ay

)

Energy Saved (kWh/day)

Full (Network Usage)
Partial (Network Usage)

20sec 1min
5min

10min
1hr 2hrs

20sec
1min

5min
10min 1hr 2hrs

60 70 80 90 100 110 120
0.1

1

10

100

1000

R
ei

nt
eg

ra
tio

n
L

at
en

cy
 (s

ec
)

Full (Reintegration Latency)
Partial (Reintegration Latency)

Figure 10. Energy savings in kW-h per day vs. reintegration
latency and network utilization for 100 desktops and varying
idle timeout values.

The traces were fed into a simulator that simulates con-
solidation and reintegration activity over the course of a sin-
gle day for a given number of users (traces) and a given value
of the idle timeout, the time of user inactivity the system
waits before consolidating a VM. Because of qualitatively
different user behavior on the weekends, we ran simulations
using weekday and weekend data separately. In the interest
of space, we report only on weekday results unless other-
wise stated. The simulations assume a shared GigE network,
desktop VMs with 4 GiB of RAM, and the same energy pro-
file as the desktops used in our experiments (Table 1). The
simulator takes into account network contention due to con-
current VM migrations when computing consolidation and
reintegration latencies. It also takes into account energy use
during migrations and desktop sleep periods when comput-
ing energy savings. We bias the results in favor of full migra-
tion by ignoring iterative pre-copy rounds or disk accesses,
and assuming exactly a 4 GiB network transfer per migration
for both, consolidation and reintegration. Finally we assume
that full migration saves 100% of the desktop’s idle power
when the VM executes on the server,

For partial migration, we used the distributions of VM
memory and disk migration sizes for consolidations and
reintegrations shown in Figure 9. Even though partial mi-
gration consolidations create network traffic on-demand, we
assumed bulk transfers on consolidations for ease of simu-
lation. This creates more network congestion and biases re-
sults against partial migration. To estimate energy savings
for partial migration while accounting for the energy costs of
consolidation, reintegration and servicing of faults, we scale
the time the VM remains on the server by a factor obtained
from Figure 7 that estimates the savings as a function of con-
solidation time for our desktops.

Is Partial VM Migration a Real Improvement? Section 5
suggests that when compared to full migration, partial mi-
gration significantly improves the network load and user-
perceived reintegration latency at the expense of reduced
energy savings. The question then arises whether full mi-
gration can be made competitive simply by increasing the

idle timeout to migrate less aggressively, thus reducing net-
work load and improving reintegration latencies, but reduc-
ing sleep opportunities and energy savings. Figure 10 shows
that the answer to this question is an emphatic no. It shows a
scatter-plot of energy savings per day against network load
(left graph), and energy savings per day against reintegra-
tion latency (right graph) for different values of idle timeout
in an office with 100 desktops. While partial migration does
not match the highest energy savings possible using full mi-
gration in this setting (although it gets to within 85%), for an
equal amount of energy saved, it has over an order of mag-
nitude lower network load and reintegration latency.

The graphs also show that for both full and partial mi-
gration, there is a sweet-spot between 5-10 min for the
idle timeout. Higher values significantly reduce energy sav-
ings, while lower values dramatically increase network load
and reintegration latency without increasing energy savings
much. For full migration, energy savings actually reduce
for small idle timeouts because the aggressive migrations
entailed lead to a lot of energy wasted in aborted migra-
tions and oscillations between the desktop and consolidation
server. Similar graphs for 10 to 500 desktops show that an
idle timeout between 5 and 10 min provided the best balance
of energy savings and resource usage across the board.

Scaling with Number of Desktops. Next, we show how the
benefits of partial migration scale with the number of users.
We use an idle timeout of 5 min for these experiments.

Figure 11(a) shows an over two orders of magnitude rein-
tegration latency advantage for partial migration at 100 users
that grows to three orders of magnitude at 500 users. In-
creased congestion and boot storms cause the performance
of full migration to degrade with scale. In contrast, the la-
tency of partial migration remains very stable. We contend
that even at 100 users, the 151 s reintegration latency of full
migration will be intolerable for users. Das et al. [13] pro-
pose using a remote desktop solution to provide immediate
reintegration access to users to mask long reintegration la-
tencies of full migration. However, remote desktop access
has many limitations, such as the inability to seamlessly ac-
cess local devices such as graphics cards, and the reliance
on the performance of an overburdened network that is the
cause of the long reintegration latencies in the first place. We
show that partial migration offers a superior alternative.

Figure 11(b) shows that network utilization of partial mi-
gration is an order of magnitude lower than full migration,
and remains low even as the number of users grows. Due to
the fast consolidation and reintegration times, there are few
aborted migrations. Aborted full migrations result from long
migration times that increase with network congestion, and
reduce successful attempts, and ultimately energy savings.
The y2 axis of the figure shows the average daily network
utilization in terms of total network capacity. Full migration
quickly dominates the network (65% utilization at 100 users)

and, as a result often requires dedicated network infrastruc-
ture to prevent interfering with other applications.

Cost Effectiveness. Figure 11(c) shows the overall energy
savings in kWh per day for partial and full migration for both
the weekday and weekend datasets. The y2 axis shows the
corresponding annualized energy savings using the average
July 2011 US price of electricity of USD 0.1058 per kWh 2.
As the number of desktops increase, partial migration be-
comes more efficient than full migration (85% of full migra-
tion at 10 users to 104% at 500 users) because the large con-
solidation times for full migration on an increasingly con-
gested network significantly reduce sleep time opportunities.
Weekends are better, but weekdays have significant savings
as well - with idle timeout of 5 minutes, VMs spend an av-
erage of 76% of a weekday on the server. With at least 100
desktops, energy savings increase almost linearly with the
number of desktops, at a rate of USD 37.35 and 33.95 per
desktop per year for partial and full migration, respectively.

We can compare these savings to the yearly depreciation
costs for the consolidation servers to determine whether the
schemes can pay for themselves. The question we ask is:
assuming a 3 year depreciation window, can each migra-
tion scheme justify the purchase of a server with energy
savings alone? We assume a server with 16 GiB of mem-
ory, similar to our testbed system. Since fully migrated idle
VMs are memory constrained on the server side, we assume
4 4 GiB VMs on a single server giving us a break-even
server budget of USD 33.95 × 4 VMs × 3 years, or USD
407.40. In comparison, the results from Section 5 show that
we can fit 98 partial VMs on a 16 GiB server when us-
ing partial migration, giving partial migration a budget of
37.35× 98 VMs × 3 years, or USD 10,980.90. To put these
numbers in context, we priced the SunFire X2250 server
used in our testbed at USD 6099.3 In conclusion, given ex-
isting server and electricity prices a large consolidation ratio
is required to make consolidation of idle desktop VMs cost
effective, and partial VM migration is able to provide this
high consolidation.

7. Discussion
We discuss next the sensitivity of our results, how our ap-
proach fits in the contexts of shared storage and virtualiza-
tion infrastructures, and the implications of our approach to
hardware reliability and software behaviour.

Sensitivity of Results. Our experimental use of Jettison
was limited to a Linux desktop based research environment
and our results demonstrate the benefits of partial VM mi-
gration in this type of environment. While we cannot spec-
ulate about the system’s behaviour under a different OS or
different office scenarios, we hope that the applications we
use, many of them available across platforms, exhibit sim-

2 US Energy Information Administration: http://www.eia.gov/electricity/
3 https://shop.oracle.com

0.1

1

10

100

1000

10000

0 100 200 300 400 R
ei

nt
eg

ra
tio

n
L

at
en

cy
 (s

ec
)

Number of Users

Full Migration Partial Migration

(a) Reintegration latency as desktops increase.
The error bars show the standard deviations.

0%

10%

20%

30%

40%

50%

60%

70%

0

1

2

3

4

5

6

7

0 100 200 300 400 500

Av
er

ag
e

N
et

w
or

k
U

til
iz

at
io

n

D
at

a
Tr

an
sf

er
re

d
(T

iB
/d

ay
)

Users

Successful full migrations
Aborted full migrations
Successful partial migrations
Aborted partial migrations

(b) Network load. Aborted migrations occur
when a new migrations overrides an ongoing one.

0

4

8

12

15

19

23

0

100

200

300

400

500

600

10 20 30 40 50 100 200 300 400 500 A
nn

ua
liz

ed
 U

SD
 S

av
in

gs
 (T

ho
us

an
ds

)

E
ne

rg
y

Sa
ve

d
(k

W
h

pe
r

da
y)

Users

Full (Weekday)

Partial (Weekday)

Full (Weekend)

Partial (Weekend)

(c) Total energy savings in kWh and USD.

Figure 11. Performance of partial migration and full migration as the number of desktops grow.

ilar behaviours in other OSes. We expect to support other
guest OSes after implementing the HVM support discussed
in Section 4. In our current prototype, the only function
that required domU kernel modification was the optional
fetch avoidance for whole page allocations described in Sec-
tion 3.1. On average, this optimization reduced the frac-
tion of the working set fetched remotely by 9.06 MiB from
165.63 MiB to 156.57 MiB. Similarly, our study did not
quantify the energy savings in a laptop computer, how-
ever, given their similarity to desktop energy profiles, with
more than an order of magnitude gap between idle and sleep
power, we expect the savings to be comparable to our desk-
top results. For example, Agarwal et al. [8] found idle and
sleep power of three laptop models to be 16.0 W and 0.74 W,
27.4 W and 1.15 W, and 29.7 W and 0.55 W, respectively.

Storage Placement. As described in Section 1, partial VM
migration is data placement agnostic. Disk state can be
placed either in network servers or locally on the desktops.
The benefit of partial VM migration is in reducing migration
of run state and, as we have shown in Section 3 more than
99% of state accessed by idle VMs is memory (165.63 MiB),
while disk represents less than 1% (1.16 MiB). An environ-
ment with shared network storage reduces the number of
faults that must be serviced from the desktop, and poten-
tially increase the energy savings with partial VM migration,
though minimally. In our deployment, we used desktop local
storage, which supports legacy environments where shared
storage is not always available.

The semantics of failure of a consolidated VM on stor-
age consistency is similar under both scenarios, and is based
on checkpointing. When a VM is consolidated, memory and
disk state is checkpointed on the desktop. Disk changes
made by the partial VM are stored in the per disk dirty
slice held as a file in the server. If a failure occurs on the
server, Jettison resumes the VM from checkpointed state on
the desktop. The benefit of this approach is that in case of
server failure, the desktop resumes from consistent disk and
memory state. The disadvantage is that disk state that was
written on the server and that may otherwise be useful can
be lost. In cases of server-side failures which do not corrupt
the host’s file system and from which the host can recover,

for example by rebooting, the dirty slice may still be recov-
ered, though this is something we have not implemented.
Presently, we have implemented the server-side disk writes
buffering, which enables desktop recovery from checkpoint,
only for the local disk driver. Adding a similar function to
shared storage drivers is left for future work.

Virtualization Context. Virtual Desktop Infrastructure (VDI)
has emerged in the past decade as a means to simplify desk-
top management. It consolidates desktop VMs permanently
on shared servers and provides remote access to desktop
clients. Full time conversion to VDI can help reducing idle
energy use, by powering off idle client devices. However,
the pace of adoption of VDI remains slow [15], and full
fledged desktops continue to outsell thin clients used in VDI.
These thick clients will remain in use for years to come.
Our approach provides the energy savings benefits of virtual
machine consolidation without incurring costs of full VDI
deployment. Our infrastructure requirements are modest be-
cause servers need only host idle VMs. In addition, partial
VM migration provides support for clients that leverage lo-
cal hardware resources, such as 3D acceleration.

Partial VM migration can be used with the Intelligent
Desktop Virtualization (IDV) model [6] to simplify desktop
management. IDV manages desktops centrally while execut-
ing them locally on desktops. Partial VM migration VMs
can be based off a single golden OS image that resides on a
shared server, with user state placed on separate image lay-
ers. Like VDI, this approach allows administrators to per-
form administrative tasks such as software upgrades on a
single master image.

Reliability Implications. Our use of microsleeps leads to
two concerns. First, frequent power state transitions may
lead to reduced life span of hardware components. And sec-
ond, slow wake up times reduce responsiveness of applica-
tions during remote faults, and for networked applications
this may cause unintended side-effects on connections.

The potential impact on the life span of system compo-
nents may arise particularly because on system wake up, cur-
rent desktops power up all devices, independent of whether
they are required. For most instances of system wake up in

partial VM migration, the majority of devices is not needed.
Indeed, most desktop wake ups require only access to CPU,
memory and network card.

This problem can be mitigated with the Context-Aware
Selective Resume approach proposed by Wright et al. [26].
That paper demonstrates that the majority of resume time
is spent on OS and BIOS re-initialization, and shows that
an approach that bypasses most devices and, in fact, does
not re-initialize the entire OS on wake-ups but only the
components necessary to, for example read memory and
access the network, may reduce resume and suspend times
by up to 87%.

In terms of software reliability, the desktop applications
we used were able to content gracefully with the increased
latency required to fulfill a remote fault when the desktop is
microsleeping. In our experience, applications that rely on
TCP and do not expect real time network performance can
function reliably even during short absences of an end point.
For example, the default Linux configuration for TCP allows
for retries for up to 13 to 30 minutes, which has proven far
more than sufficient to deal with the 8 to 17 seconds remote
fault latency, in the worst case, in our usage of the system.

8. Related Work
Although VM consolidation is one of the oldest ideas in
cloud computing, previous work has focused on coarse-grain
migration of VM memory state. Once the decision to migrate
a VM has been made, the migration is executed to comple-
tion. Live migration [12] allows execution to begin at the
destination before state is fully transferred from the source,
but the transfer is completed in the background. After com-
pletion, no residual VM state is retained on the source ma-
chine in anticipation of a future reverse migration. This state-
less model makes sense in the context of large public clouds,
where all machines are viewed as a common pool. In our
use case, however, a user is typically associated with a spe-
cific desktop. Preserving migrated state in anticipation of a
reverse migration is likely to have high payoff and, indeed,
our work shows that it does.

Enterprise energy savings through desktop consolidation
in a private cloud has been previously explored in the con-
text of LiteGreen [13]. However, the consolidation technique
used there is the coarse-grain migration approach described
in the previous paragraph. While LiteGreen shows signifi-
cant energy savings, we expect many advantages with fine-
grain migration. As discussed, these advantages include the
ability to target shorter periods of idleness, a smaller private
cloud, and greater tolerance of unpredictable user behavior.

More broadly, there has been extensive previous work on
understanding the potential for energy savings from desk-
top computing infrastructure. Modern computers ship with
built-in mechanisms to reduce the power usage of idle sys-
tems by entering low power sleep states [3] . However, re-
cent studies have found that users are reluctant to put their

idle systems in low power states. Nedevschi et al. [19] find
that desktop systems remain powered but idle for an average
of 12 hours daily. Webber et al. [25] find that 60% of cor-
porate desktops remain powered overnight. It is conjectured
that people refuse to put their system to sleep either for the
off-chance they may require remote access, run background
applications (IM, e-mail), among other uses [8], or because
many idle periods are short, often interspersed with active
periods [13]. While there have been approaches to support
remote access [4, 5, 7, 21], they do not support always-on
application semantics. Support for always-on applications
have been proposed [8, 9, 16, 19, 22] either through remote
proxies or specialized hardware. These approaches require
developers to re-engineer most applications to support bi-
modal operation, transferring control and state between the
full-fledged application and its proxied instance. Alterna-
tively, thin clients [20] allow users to run low power clients,
which waste little power when idle. However, thin clients
remain unpopular due to poor interactive performance, lack-
ing crispness in response and local hardware acceleration.
Also, thin clients require fully-provisioned cloud infrastruc-
ture that is capable of supporting their peak collective load.

Exploiting short opportunities for sleep while a host is
waiting for work is also explored in Catnap [14]. Catnap
exploits the bandwidth difference between WLAN interface
of end hosts and the WAN link to allow idle end hosts to
sleep during network downloads while content is buffered
in network proxies. That approach is focused on energy
reduction in ongoing network transfers and not in providing
continued execution of desktop applications during sleep.

In the data center, SnowFlock [18] has demonstrated the
benefits of on-demand state migration to instantiate stateful
worker replicas of cloud VMs. Our work has shown that on-
demand migration is suitable for reducing energy use of idle
desktops with our support of host sleep, the working set of
an idle desktop VM is small and consists mostly of memory,
on-demand migration scales better than full VM migration in
shared office networks, and provides a means to reintegrate
a partial VM state back to its origin.

In previous workshop paper [11], we proposed Partial
VM migration. That work, however, only estimated the mi-
gration size and used simulation to estimate energy savings.
In contrast, this paper presents a working implementation
and an evaluation with a real deployment.

9. Conclusion
This work introduces fine-grain migration of VM state with
long-term residues at endpoints. An important use of this
capability is for energy savings through partial consolida-
tion of idle desktops in the private cloud of an enterprise
to support applications with always-on network semantics.
When the user is inactive partial VM migration transfers
only the working set of the idle VM for execution on the
consolidation server, and puts the desktop to sleep. When

the user becomes active, it migrates only the changed state
back to the desktop. It is based on the observation that idle
desktops, in spite of background activity access only a small
fraction of their memory and disk state, typically less than
10% for memory and about 1 MiB for disk. It migrates state
on-demand and allows the desktop to microsleep when not
serving requests. Partial VM migration provides significant
energy savings with the dual benefits that network and server
infrastructure can scale well with the number of users, and
migration latencies are very small. We show that a desktop
can achieve energy savings of 78% in an hour of consoli-
dation and up to 91% in longer periods, while maintaining
latencies of about 4 s. We show that in small to medium of-
fices, partial migration provides energy savings that are com-
petitive with full VM migration (85% of full migration at 10
users to 104% at 500 users), while providing migration la-
tencies that are two to three orders of magnitude smaller,
and network utilization that is an order of magnitude lower.

Acknowledgments
We thank Vidur Taneja for his early assistance exploring
on-demand prefetching of pages. We thank our shepherd
Orran Krieger and the anonymous EuroSys’12 reviewers for
helping improve the quality of the final version of this paper.
This research was funded in part by the National Science and
Engineering Research Council of Canada (NSERC) under
grant number 261545-3. Satyanarayanan was supported in
this research by the National Science Foundation (NSF)
under grant number CNS-0833882.

References
[1] Acer Aspire S3. http://us.acer.com/ac/en/US/

content/series/aspiresseries.

[2] Macbook Air. http://www.apple.com/macbookair/

performance.html.

[3] Advanced configuration and power interface specifica-
tion. http://www.acpi.info/DOWNLOADS/ACPIspec10b.
pdf, Feb 1999.

[4] Intel R© Centrino R© mobile technology wake on wireless
LAN (WoWLAN) feature: Technical brief. http://www.

intel.com/network/connectivity/resources/doc_

library/tech_brief/wowlan_tech_brief.pdf, 2006.

[5] Wake on LAN technology. http://www.liebsoft.com/

pdfs/Wake_On_LAN.pdf, Jun 2006.

[6] Vision paper: Intelligent desktop virtualization. http://

goo.gl/MNmEa, Oct 2011.

[7] Y. Agarwal, R. Chandra, A. Wolman, P. Bahl, K. Chin, and
R. Gupta. Wireless wakeups revisited: Energy management
for voip over wi-fi smartphones. In MobiSys ’07, Jun 2007.

[8] Y. Agarwal, S. Hodges, J. Scott, R. Chandra, P. Bahl, and
R. Gupta. Somniloquy: Augmenting network interfaces to
reduce pc energy usage. In NSDI ’09, Apr 2009.

[9] Y. Agarwal, S. Savage, and R. Gupta. Sleepserver: A
software-only approach for reducing the energy consumption

of pcs within enterprise environments. In USENIX ATC ’10,
Jun 2010.

[10] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. In SOSP ’03, Oct 2003.

[11] N. Bila, E. de Lara, M. Hiltunen, H. A. L.-C. Kaustubh Joshi,
and M. Satyanarayanan. The Case for Energy-Oriented Partial
Desktop Migration. In HotCloud ’10, Jun 2010.

[12] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield. Live migration of virtual machines.
In NSDI’05, May 2005.

[13] T. Das, P. Padala, V. N. Padmanabhan, R. Ramjee, and K. G.
Shin. LiteGreen: Saving energy in networked desktops using
virtualization. In 2010 USENIX ATC, Jun 2010.

[14] F. R. Dogar, P. Steenkiste, and K. Papagiannaki. Catnap:
Exploiting high bandwidth wireless interfaces to save energy
for mobile devices. In MobiSys 2010, Jun 2010.

[15] K. Fograrty. The year of the virtual desktop fails to
materialize–again. http://www.cio.com/article/

691303/The_Year_of_the_Virtual_Desktop_Fails_

to_Materialize_Again, Oct 2011.

[16] C. Gunaratne, K. Christensen, and B. Nordman. Managing
energy consumption costs in desktop pcs and lan switches
with proxying, split tcp connections, and scaling of link speed.
IJNM, 15(5):297–310, Sep 2005.

[17] M. R. Hines, U. Deshpande, and K. Gopalan. Post-copy live
migration of virtual machines. In VEE 2009, Mar 2009.

[18] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell, P. Patchin,
S. M. Rumble, E. de Lara, M. Brudno, and M. Satya-
narayanan. Snowflock: rapid virtual machine cloning for
cloud computing. In EuroSys ’09, Mar 2009.

[19] S. Nedevschi, J. Chandrashekar, J. Liu, B. Nordman, S. Rat-
nasamy, and N. Taf. Skilled in the art of being idle: Reducing
energy waste in networked systems. In NSDI ’09, Apr 2009.

[20] T. Richardson, Q. Stafford-Fraser, K. Wood, and A. Hopper.
Virtual Network Computing. IEEE Internet Computing, 2(1),
Jan/Feb. 1998.

[21] E. Shih, P. Bahl, and M. J. Sinclair. Wake on wireless:
An event driven energy saving strategy for battery operated
devices. In MobiCom 2002, Sep 2002.

[22] J. Sorber, N. Banerjee, M. D. Corner, and S. Rollins. Tur-
ducken: Hierarchical power management for mobile devices.
In MobiSys ’05, Jun 2005.

[23] C. A. Waldspurger. Memory Resource Management in
VMWare ESX Server. In OSDI ’02, Dec 2002.

[24] A. Warfield, S. Hand, K. Fraser, and T. Deegan. Facilitating
the development of soft devices. In USENIX ATC ’05, Jun
2005.

[25] C. A. Webber, J. A. Robertson, M. C. McWhinney, R. E.
Brown, M. J. Pinckard, and J. F. Busch. After-hours power
status of office equipment in the usa. Energy, 31(14):2487–
2502, Nov 2006.

[26] E. J. Wright, E. de Lara, and A. Goel. Vision: The case for
context-aware selective resume. In MCS 2011, Jun 2011.

