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1 Introduction

With the increased adoption of mobile devices,
spontaneous communication between wireless devices
that come within proximity of each other but lack
a pre-existing trust relationship will become common.
For example, patrons at a bar, guests at a party or
conference participants will use their mobile phones to
exchange private contact information over Bluetooth
or WiFi. Consumers may use their mobile devices as
electronic wallets to pay for tickets at the train station
or groceries at the store. Users will take advantage
of resources available in the environment by pairing
their mobile phones with public full-sized displays and
keyboards (Barton et al., 2006), or share music by pairing
their phone with a friend’s home entertainment system.

An important precondition for the widespread
proliferation of spontanecous communication among
wireless devices is securing these interactions against
eavesdropping, impostors, and man-in-the-middle attacks,
in which an attacker reads and inserts messages between
two parties without either party knowing that the
channel between them has been compromised. Obviously,
users would not want their private contact or banking
information to be overheard or tampered with by a
malicious third party.

We refer to the problem of securing the communication
between devices in proximity as secure pairing.
Unfortunately, traditional cryptographic techniques, such
as the Diffie-Hellman protocol (Diffie and Hellman,
1976), by themselves are not sufficient for securely pairing
devices that spontaneously come into wireless contact.
Whereas they provide a secure binding of keys to electronic
identifiers, such as network addresses or device names,
these techniques cannot guarantee that the two devices
that the user holds in their hands are in fact the ones
that are paired — an attacker hundreds of meters away
with a directional antenna could be impersonating the
device name or network address. What is required is a
natural way to ensure that the keys obtained through the
cryptographic exchange belong indeed to devices that are
within physical proximity.

This paper shows that it is possible to securely
pair devices that come within close proximity by
deriving a shared secret from dynamic characteristics of
their common radio environment. This approach takes
advantage of three observations. First, many mobile

devices come equipped with radios that can sense their
immediate radio environment. Second, devices in close
proximity that simultaneously monitor a common set of
ambient radio sources, e.g., WiFi access points or cell
phone base stations, perceive a similar radio environment.
For high frequency radio technologies, receivers only
a few centimeters away may perceive different radio
environments due to multi-path effects; however, these
differences are generally small compared to differences
perceived by receivers at larger distances. Third, due
to environmental factors the radio channel varies in
unpredictable ways over short time scales. For example,
at a single location, signal strength from a cell phone base
station fluctuates from one moment to the next, but devices
in close proximity perceive similar fluctuations.

Together, these observations imply that it is possible
for devices in close proximity to derive a common radio
profile that is specific to a particular location and time.
This paper shows that this profile can be used to securely
pair devices in close proximity by using knowledge of
their common radio environment as proof of physical
proximity.

We describe Amigo, a technique that extends
the Diffie-Hellman key exchange with verification of
device co-location. Initially, the two devices perform
a Diffie-Hellman key exchange in order to derive a
shared-secret. After this exchange alone, it is not possible
for either device to be sure whether it shares a secret
with the other co-located device or with some potentially
malicious third party. Next, both devices monitor their
radio environment for a short period of time and exchange
a signature of that environment with the other device.
Finally, each device independently verifies that the received
signature and its own signature are similar enough to
conclude that the two devices are in proximity. The
verification takes into consideration both transmissions
received by the devices and perceived signal strength
fluctuations.

An evaluation conducted using WiFi-enabled laptops
shows that without requiring user interaction, Amigo
can recognise an attacker located as close as 3 m away.
However, if the user is willing to create some localised
entropy in the radio environment by, for example, walking
or waving their hand in front of the antennas of the two
co-located devices, Amigo can detect an attacker located
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as close as 20 cm away, and can defeat a powerful attacker
that has surveyed the environment and has control over
ambient radio sources.

Amigo has three advantages over existing solutions:

e it requires no additional hardware to be present on
the devices besides the standard wireless radio
already available on most devices

e in most cases, it requires no user involvement
(beyond specifying that the devices are to be
paired)

e Dbecause devices determine co-location by listening
to their radio environment, as opposed to
transmitting, Amigo is immune to eavesdropping
attacks.

2 Problem definition and threat model

We define the problem of secure pairing of devices
in close proximity as follows. Two devices that are
located nearby (within 1 m) to each other but do not
know each other a priori need to establish a channel
between them that is both secure and authentic. A secure
channel implies that no eavesdropper may intercept
and decrypt messages between the endpoints, while
authenticity requires that both endpoints are able to
confirm the identity of the other. We assume that the
devices can communicate over compatible wireless radios
(e.g., WiFi).

We assume the presence of an attacker that will
try to pair with one or both of the legitimate devices.
We assume that the attacker is located beyond the
distance that separates the two legitimate devices, and
can sense the wireless environment, inject new traffic,
and replay packets. Moreover, we assume that the
attacker has surveyed the location where the two
legitimate devices are attempting to pair. The attacker
can use this knowledge to convince the legitimate devices
that they are co-located by predicting the perceived
signal strength of ambient radio sources at the location
and time of pairing. In the most extreme case, we assume
that the attacker both knows what packets were heard
by the legitimate device and has access to distributions
of signal strengths for each radio source as received by
the legitimate device at the time and location of pairing.
This is a best-case scenario for the attacker who, even
with full control over ambient radio sources, would at
best be able to transmit packets at known power levels
and predict which packets were received by the legitimate
device and at what signal strengths.

We consider two kinds of possible attacks: An impostor
attack where the attacker succeeds in disabling one of the
co-located devices and attempts to impersonate it; and
a man-in-the-middle attack where the attacker attempts
to pair with the two co-located devices simultaneously,
and hides its presence by relaying authentication traffic
between them.

3 Secure pairing of devices in physical proximity

In this section, we describe our algorithm to authenticate
co-located devices using measurements of their shared
radio environment as proof of physical proximity.
Our solution is based on the observation that due to
environmental effects it is very hard to predict fluctuations
in the radio environment at a specific location and at
a specific time without being physically present at that
location at that time. On the other hand, devices that
are positioned in proximity not only tend to successfully
decode radio transmissions from the same sources,
but also perceive similar fluctuations in signal strength.
We will show how this common radio environment can be
used as a basis of an authentication scheme for co-located
devices.

The Diffie-Hellman protocol allows two parties to
create a shared secret key that can be used to secure
future communications. While the protocol cannot be
compromised by eavesdropping, it is susceptible to
man-in-the-middle attacks by a third party. The protocol
also does not provide any assurances as to the identity or
the proximity of the devices that end up pairing. To both
protect the protocol against man-in-the-middle attacks
and to ensure that the pairing actually happens with a
device in close proximity (as opposed to a distant attacker
with a sensitive antenna), we extended the Diffie-Hellman
key exchange with a co-location verification stage.

In our scheme, after the two devices perform a
Diffie-Hellman key exchange, each device monitors the
radio environment for a short period of time and generates
asignature, which includes a sequence of packet identifiers!
and the signal strength at which the packets were received.
This signature is then transmitted to the other device over
the secure channel via a commitment scheme intended
to secure the pairing against a man-in-the-middle attack.
Finally, each node independently verifies that the received
signature and its own signature are similar enough to
conclude that the two devices are co-located. At the end
of the verification, each device either accepts the signature
or rejects it. Because the signatures are used only to
validate the keys being exchanged, but not as the basis for
encryption, the signatures do not have to remain secret
once the authentication takes place. The only requirement
on the signatures is that they have to be hard to guess
during the authentication phase.

Next, we present our co-location verification algorithm
and describe our commitment scheme which is designed to
prevent a man-in-the-middle attack.

3.1 Co-location verification algorithm

The problem of co-location verification can be described as
follows. Given a signature captured locally by a device A,
and a signature received from a device B, A needs to
reach a binary decision as to whether B is co-located or
not. For A to conclude that B is co-located, the signature
received from B should be sufficiently similar to the
signature captured locally. The verification algorithm has
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four stages: temporal alignment, slicing, feature extraction
and classification. This process is shown in Figure 1.

Since the two devices capture packets locally, they
may have started capturing packets at slightly different
moments. To meaningfully compare sequences of packet
identifiers and signal strength measurements, they need to
be temporally aligned. The verification algorithm begins
by aligning the packet sequences using the first common
packet identifier and discarding all preceding elements in
each sequence.

Once the signatures are temporally aligned, we
slice them into smaller consecutive subsequences of a
fixed timespan, known as segments. Slicing allows the
verification algorithm to first give a similarity score to
each pair of aligned segments and then combine these
scores into a final classification decision. Using segments
of one second in length typically allows enough packets to
be observed for good performance while still keeping the
protocol responsive.

The verification algorithm then extracts a set of
features from each of the resulting aligned segment pairs.
Each feature captures a particular relationship between
the two segments to be used by the classification algorithm.
For example, percentage of packets that are common
to both segments is a useful feature because a higher
percentage is associated with a higher likelihood that the
two devices are co-located. We describe the set of features
used by our classifier in Section 4.2. We further refer to
a set of features extracted from a pair of segments as an
instance.

Finally, we feed the set of instances (one for each
segment) into a classifier, which gives a decision as
to whether the two signatures have been captured by
co-located devices.

3.1.1 The classifier

We distinguish instances generated by co-located devices
from instances generated by non co-located devices using
a two stage boosted binary stump classifier. The first stage
was added in order to filter noisy data before the more
complex binary stump classifier, allowing effective training
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with less data. During the first stage, instances that have
less than a minimum percentage of packets in common
are marked as invalid; these are treated in a special way
at the end of the second stage. Instances with a low
percentage of packets in common (which occur much more
commonly with non co-located pairs) were found to have
very high classification error. We found experimentally
that a threshold of 75% works well.

In the second stage, valid instances are assigned a score,
referred to as a margin. A margin is derived by evaluating
a set of simple functions on an instance and combining
the results in a weighted-sum. A sample margin calculation
is shown in Figure 2. A larger positive margin indicates
more confidence that the devices are co-located. A lower
negative margin indicates more confidence that the devices
are not co-located. A margin near zero indicates a lack of
confidence about the decision.

Figure 2 A sample margin calculation for an instance ¢ during
the second stage of classification. The same feature
may appear within multiple z; definitions

Margin(i) = 2.64 x x1() + 1.79 X 29(i) + - -- + 1.16
X ZL’g(Z) —+ 2.61 x xlo(i)
. 1 ifi.features < 4.31625
w(i) =

otherwise
. 1
10 (Z) = { 1

Finally, the classification algorithm aggregates a window
of margins and makes a prediction. Windowing allows
the classifier to tolerate a lower degree of accuracy with
each individual instance classification. The decision for
each window is made with a simple voting scheme.
We convert margins into votes based on an adjustable
margin threshold; margins that are higher than the
threshold are converted to TRUE votes and margins that
are below the threshold are converted to FALSE votes.
Instances that are marked as invalid do not contribute

if i. featureg < 5.297
otherwise

Figure 1 The complete co-location verification process (see online version for colours)
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any vote. At the end, if the window contains a majority
of TRUE votes, the devices are classified as co-located.
Excessive invalid instances or a majority of FALSE votes
will cause the classified to be classified as not co-located.
In Section 4.5, we show that the margin threshold of four
works well in practice and, in Section 4.3, we evaluate
the effect of the window size on the classification
accuracy.

In order to train the classifier, appropriate features,
constants and weights for the margin calculation must be
selected. This process is discussed in Section 4.2.

3.2 Dealing with a man-in-the-middle attack

In order to deal with a man-in-the-middle attack,
our algorithm employs a simple commitment scheme.
The trace collection is broken into short periods of a
fixed duration during which a device captures one block
of data. The devices are required to exchange the blocks
at the end of each time period, otherwise the pairing is
rejected. Before sending a block, a device concatenates
the block with a hash of its Diffie-Hellman session key
and its device identifier, encrypts the result using a nonce
value and sends this encrypted block to the other device.
Concatenation of the session key is required to prevent
the attacker from simply forwarding blocks back and
forth between the co-located devices as explained below,
and concatenation of the device identifier prevents the
attacker from simply ‘mirroring’ the messages. After all
blocks have been transferred, both devices exchange the
set of nonces required to decrypt the sequence of encrypted
blocks and verify the hashes of the session keys and device
identifiers.

At the end of each time period, the attacker is required
to supply a block. Since the attacker cannot decrypt
received blocks until the end of the collection process,
he has only two choices. The attacker can either pass on the
encrypted block received from a co-located device or can
generate a new block with its own session key. Since the
session keys between the attacker and each co-located
device are different, simply passing the encrypted blocks
between devices will not allow the attacker to pair with
either of the devices. In Section 4, we show that trying to
forge new packets based on the radio environment is also
likely to be fruitless, unless the attacker is very close to the
co-located devices.

This scheme is equivalent to a fixed-delay interlock
protocol (Rivest and Shamir, 1984). The nonce used to
decrypt the blocks can be sent one collection period after
the encrypted blocks. However, unlike the fixed-delay
interlock protocol, it is not necessary to use the delays to
simply detect a man-in-the-middle; after the relevant time
period has passed, each block becomes useless, as they are
strictly time-dependent. The attacker cannot extract useful
information from any block in order to pass it to a target
when it is required. The nature of the secrets implicitly
detects a man-in-the-middle by forcing him to generate a
fake signature.

4 Evaluation

In this section, we first discuss our data collection
and training procedures, then we proceed to evaluate
the performance of Amigo under various conditions.
First, we test the basic configuration, similar in nature to
our training configuration, but using data collected at a
different time and place. We then test the effect of obstacles
between the attackers and the co-located devices and the
effect of device orientation on the performance of Amigo.
Subsequently, we experiment with more sophisticated
attacker scenarios, and explore having the user generate
localised entropy in order to improve accuracy. Next,
we investigate the effect that heterogeneous hardware has
on the accuracy of Amigo. Finally, we analyse the entropy
of the radio signatures used in our experiments.

4.1 Data collection

We collected WiFi traces using a testbed consisting of
six laptop computers (three ThinkPad, two Dell and one
Toshiba), all equipped with Orinoco Gold WiFi cards.
WiFi is a practical technology for evaluating Amigo, since
it is increasingly prevalent. At 2.4 GHz, a few centimeters
can make a difference in a multi-path channel, but in
our experience the differences in the radio environment
observed by nodes separated by greater distances tend to
dominate these smaller dissimilarities.

Two laptops that were playing the role of the co-located
devices were positioned Scm apart in an opposite
orientation, so that their WiFi cards would be located as
close as possible. Four additional laptops positioned 1, 3,
5 and 10 m away from the co-located laptops were playing
the roles of malicious devices. We felt that these distances
would provide a good indication of the ability of the
algorithm to differentiate adversaries at various distances.
Whereas most of our experiments only consider the
devices positioned 5cm apart to be co-located, we explore
stretching this distance to 1 m in Section 4.8.

In our experiments, we simultaneously switch the WiFi
cards on all laptops into a monitor mode and capture
packets overheard by the cards. The WiFi drivers on all
laptops were modified not to discard corrupted packets,
but simply mark the packets as corrupted.

An active scan for WiFi access points in the lab
environment where data collection took place reveals
11 access points on average. With a 10 minute trace
taken in the afternoon, each laptop captured between
30,000 and 50,000 packets (including all WiFi beacons,
etc.) and heard between 45 and 58 unique transmitters.
The majority of transmitters heard in this environment
were not loquacious — each laptop captured less than
100 packets from most sources.

Figure 3 shows the packets received by two co-located
devices and non co-located devices over a period of 1s.
The y axis represents the Received Signal Strength
Indicator (RSSI) value associated with each packet.
The packets marked by ‘+’ were received by only one of
the two laptops, while packets connected by lines were
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received by both laptops. For the co-located pair, during
this time period approximately 85% of the packets received
were common to both. For the distant pair, only 40%
of the packets were common. Comparing the figures also
immediately makes apparent the similarity of RSSI values
for the co-located pair.

Figure 3 The received signal strength for packets heard by two
devices in a 1 s period. Packets marked as ‘+” were
received by only one laptop. Lines connect packets
heard by both devices: (a) co-located devices and
(b) devices 10 m apart

10
e g @ H s @ o 2w &
100 g | ol 1 TR
¢ s P a0 g S o & e
@ é ® & 6 &
90_
7]
[}
€ gol

70 |

(@)

110 |

RSSI

50 ' L L L

Time (ms)

(b)

4.2 Training the classifier

As discussed in Section 3.1.1, the classifier must be trained.
For this purpose, we used a MultiBoost (Webb, 2000)
algorithm with decision stumps (single node decision trees)
as its base learner. The MultiBoost algorithm is a decision
committee technique that combines AdaBoost (Freund
and Schapire, 1996) with wagging. This approach has been
shown to be more effective in reducing error than either of
its constituent techniques (Webb, 2000). The MultiBoost
algorithm selects the appropriate set of weighted linear
classifiers that are used for the margin calculation for each
valid instance.

For training, we captured 10 min worth of packets on
all six laptops. We aligned and sliced all packet sequences
captured by each pair of laptops in our testbed, and then
extracted features from all pairs of sequences that included
the first co-located laptop. We trained our classifier using
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596 instances from co-located devices and 2279 instances
from non co-located devices.

To evaluate the effectiveness of the classifier,
we investigate its performance in terms of false positive
and false negative rates. False positives occur when the
algorithm predicts that the devices are co-located when
they are in fact not, and the false positive rate is the
number of false positives divided by the total number
of non co-located instances. False negatives occur when
the algorithm predicts that the devices are not co-located
when they in fact are, and false negative rate is the
number of false negatives divided by the total number
of co-located instances. Note that in general, reducing
false positives is ultimately more important that reducing
false negatives because confusing a malicious device for a
co-located device is a more serious flaw than not admitting
the co-located device and requiring the user to wait for a
longer period before the devices pair.

Training the classifier with all available features
achieves 23 false negatives out of 596 true instances and
50 false positives out of 2279 instances. Although we
computed dozens of features, only four were selected by the
MultiBoost algorithm during training: the mean absolute
difference in signal strength (signal:abs), the mean
exponential difference in signal strength (signal:exp),
the euclidean difference between signal strength vectors
(signal:eucl) and the euclidean difference between
exponential signal strength deltas (signalexp:diff:eucl).
These are the features shown in Table 1.

4.3 The base case

After training the classifier, we collected a second set of
data for testing our technique. To allow time for the
radio environment to evolve, the testing data set was
collected two months after the training data set was
collected. To prevent the classifier from recognising any
anomalies with the particular physical arrangement of
devices, the collection setup was moved from one end of our
lab to the other (approximately 10m). Besides changing
the location and time of collecting the testing data, the
experimental setup was left unchanged — two co-located
laptops were positioned 5cm apart and four other laptops
were positioned 1, 3, 5 and 10 m away from the co-located
laptops. All laptops were positioned at the same height
and the attackers had a line of sight to the co-located
devices, a likely best-case scenario for the attackers.

We tested the ability of our classifier to authenticate
co-located devices and reject non co-located device as a
function of the classifier’s window size. Since we are using
1's segments, the window size represents the amount of
time, in seconds, that a user needs to wait to authenticate
the devices. Figure 4(a) plots the false positive rates of
attackers trying to authenticate while located 1, 3, 5
and 10m away, while Figure 4(b) plots the false negative
rate of not authenticating a co-located device located
5 cm away. The results show that in 5s both the false
negative rate falls to zero, meaning that all attempts
of the co-located device to authenticate are successful.
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Table 1 A relevant subset of features extracted from aligned segments. The sequences of RSSI values for the N common packets in

each instance are represented by a; and b;,0 < ¢ < N

Feature name Feature definition Description
. Zf’ |ai - bi‘ . . .

signal:abs =N The mean absolute difference between received signal strength
measurements

signal:eucl Ziv (ai — b;)* The euclidean difference between received signal strength vectors

ZN elai—bil

signal:exp IT The mean exponential of the difference between signal strength
measurements

signalexp:diff:eucl \/ SN (eteimain) — elbi=bi-1))? The euclidean difference between exponential signal strength deltas

In the same 5, the false positive rate falls to zero for the
attackers located 3, 5 and 10m away, meaning that the
attacks initiated from at least 3m away were all unable to
fool the system. Unfortunately, the attacker device that is
located 1 m away is able to convince the other device that
it is co-located. Since more than 60% of instances from the
attacker 1 m away are incorrectly classified as co-located,
increasing the window size results in aggregation of a
larger proportion of these instances in every window and
consequentially a more consistent misclassification of the
attacker.

Figure 4 Co-located devices are 5cm apart. The attackers are
1, 3, 5 and 10m away: (a) false positive rate and
(b) false negative rate (see online version for colours)
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To prevent attackers as close as 1 m from succeeding,
we explored a technique that we proposed (Varshavsky
et al., 2007) to generate localised entropy in the radio
environment. The user that suspects that a possible

attacker may be nearby simply needs to wave their hand
in front of the antennas of the two mobile devices during
the pairing. This motion will generate unique fluctuations
in the radio environment perceived only by the co-located
devices. We tested the effect of hand waving on the
ability of the 1 m away attacker to authenticate with a
device. In this case, the false positive rate of the attacker
falls to zero within 5s. Hand waving is a natural and
non-burdensome action for users to perform in order to
pair devices. To provide a more secure pairing, users can be
encouraged to move around and use their preferred hand
motions as if invoking some form of personal sorcery by
casting a pairing spell.

4.4 The limits of handwaving

In the previous section, we showed that our handwaving
technique works well in the case where the distance between
the attacker and the friendly devices is 1 m. To test whether
handwaving continues to work when the attacker is even
closer, we collected additional traces in a new location with
the attacker at a distances of 1, 0.5, 0.2 and 0.05 m from
the friendly devices.

Figure 5 shows the false positive rate after 10 s for the
four attacker distances.

Figure 5 The effect of handwaving on the ability of the
attacker to authenticate after 10s when he is 1, 0.5,
0.2 and 0.05m from the friendly devices (see online
version for colours)

1 T T

0.8 r :

0.6 _

04 -

False Positive Rate

0.2 r 1

5cm 20cm 50 cm 1m
Distance (m)



Proximity-based authentication of mobile devices

The results show that at 1 m and 0.5m handwaving works
well, with not a single pairing attempt by the attacker
being successful. At 0.2m, the attacker is able to pair with
one of the co-located devices in 2% of his attempts and
at 0.05m, 40% of his attempts are successful. We believe
that this is possibly because the attacker is so close that
the handwaving affects the signals received by both the
attacker and the friendly devices in similar ways.

4.5 The effect of margin threshold

Recall that the classifier assigns a margin to each valid
instance which is compared to a threshold in order to
determine a vote. Increasing this threshold makes the
classifier less likely to accept the devices as co-located,
increasing the chance of a false negative but also decreasing
the chance of a false positive. Reducing the threshold has
the opposite effect. Figure 6 plots the false negative and
false positive rates for all individual segments as a function
of this margin threshold. As the margin threshold grows,
fewer segments belonging to impostors are authenticated
and as a consequence the rate of false positives falls.
The jumps in the false positive and false negative rates
result from the finite number of values that the margin can
take, since it is the sum of a finite number of constants.
Setting the margin threshold to a value beyond eight
results in no attackers being authenticated, but also in
no co-located devices being authenticated, in which case
the false negative rate rises to one. The plateau between
the margin threshold of 2-8 seems to consistently strike a
good balance between false positives and false negatives.
We used a margin threshold of four for all our experiments.

Figure 6 The false positive and false negative rates for different
margin thresholds (see online version for colours)
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4.6 The effect of obstacles

In all the experiments described above, the attacker had
a clear line of sight to the co-located devices. In reality,
that might not be the case as different kinds of materials
may block or obstruct the path between the attacker
and the target. We looked at the effect of three common
materials blocking the line of sight between the attacker
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and co-located devices, including drywall, concrete and a
human body. Table 2 summarises our findings in terms of
false positives.

Table 2 The effect of different materials on the ability of the
attacker to authenticate with a device

Obstruction False positive rate
None (1 m) 0.81
Drywall (10 cm) 1.00
Human (1 m) 0.12
Concrete wall (30 cm) 0.00

For the attacker 1 m away and with a 5s window, the false
positive rate is about 80% as was shown in Figure 4(a).
In contract, when the attacker is separated from the
co-located devices by two sheets of gypsum drywall, a wall
about 10cm thick, the false positive rate climbs to one.
This has the implication that drywall does not protect
users from an attacker who is immediately behind the
wall. This is in line with other signal propagation studies
that have shown that dry wall does not have a profound
effect on radio signal propagation in the 2.4 GHz range
(Stone, 1997). When a human being is standing between
the the attacker and the two co-located laptops located
1 m away, the false positive rate falls to just above 10%.
This is encouraging, as it means that humans, being
basically bags of water, by just the sheer blocking of the
authentication with their bodies, may make it significantly
more secure. Finally, when a 30cm-thick concrete wall
separates the attacker from the co-located devices, the false
positive rate is zero. When passing through a concrete
wall, radio signals attenuate strongly enough to make it
extremely hard for the simple attacker to authenticate
without more sophisticated attacks.

4.7 The effect of device orientation

We investigated the effect that the orientation of the
co-located devices has on the accuracy of Amigo.
We experimented with three different laptop orientations:

e opposite — the two laptops are positioned in the
opposite directions such that their WiFi cards are in
front of each other

e adjacent — the two laptops are adjacent to each other

e stacked - the two laptops are stacked one on top of
the other.

We collected an additional set of testing traces using
all three orientations at the same location where we
collected the training traces. We chose the same location
to minimise the number of variables effecting our results.
Recall that the base classifier was built with two co-located
laptops positioned in the opposite orientation.

Table 3 summarises our findings in terms of false
positives after 10s for an attacker located 1m away
from the co-located devices. For both the opposite and
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adjacent orientations, the false positive rate is 0%, and
for the stacked orientation the false positive rate is 14%.
We believe that the stacked orientation performs worse
because the WiFi card of the upper laptop partially
obstructs the WiFi card of the lower laptop, causing signal
attenuation. Overall, this result is encouraging because
it suggests that the orientation of the co-located devices
might have only a small effect on the accuracy of Amigo.

Table 3 The effect of device orientation on the ability of the
attacker to authenticate with a device. The distances in
parentheses are between the friendly devices’ wireless
interfaces in each configuration

Orientation False positive rate
Opposite (5 cm) 0.0
Adjacent (30 cm) 0.0
Stacked (2 cm) 0.14

4.8 Stretching co-location

Up until now, we used a classifier trained with data that
indicated that two devices were co-located if they were 5cm
apart. In this section, we study the effects of extending
the notion of co-location to include devices located up to
1 m away. We retrained our classifier on the same training
data, but this time we marked the segments belonging to
the device located 1 m away as also co-located. Figure 7(a)
and (b) plot the false positive and false negative rates as
a function of time the user needs to wait to authenticate
the devices. The results show that after 5s the false positive
rate falls to zero for all attackers located 3 m or more away,
while the false negative rate falls to 5%. This means that
in 5% of cases a user will not succeed to pair co-located
devices in 5s from the first attempt, and will need to retry
again. However, waiting for 20 s always results in a correct
pairing.

4.9 Sophisticated attacks

A powerful attacker may have surveyed the location where
the two legitimate devices are attempting to pair, and could
attempt to use this knowledge to convince the legitimate
devices that he is currently present at that particular
location. We implemented a simulated powerful attacker
for the purpose of evaluating the robustness of our system
under such a threat.

We conducted an experiment in which the attacker
had access to a distribution of received signal strength
measurements for each radio source, sampled by the target
device itself at the pairing location only a few hours prior
to the current authentication. During the authentication,
when the attacker receives a packet from a radio source that
he has observed before, he substitutes the signal strength
value in this packet with a sample from the recorded
distribution of packets previously observed at the pairing
location from that transmitter. Whenever the attacker
receives a packet from a source that he has no distribution
for, the attacker has a choice of either pretending he never

received the packet in the first place, thereby potentially
decreasing the percent of common packets if the target
device did get this packet, or simply leaving the signal
strength in the packet as is. Experiments showed that not
discarding these packets is beneficial to the attacker.

Figure 7 Co-located devices are up to 1 m apart. The attackers
are 3, 5 and 10m away: (a) false positive rate and

(b) false negative rate (see online version for colours)
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Figure 8 shows that attackers located 1 m and Sm away
can successfully authenticate in 45% and 15% of the cases
using 5s windows, respectively. The adversary positioned
5m away actually performed better in our experiments
than the laptop positioned 3 m away, due to the fact that the
laptop at a distance of 5m generally shared a slightly larger
number of packets with the target. The laptops positioned
3m and 10 m away were not able to authenticate because
a large portion of their instances were rejected due to
insufficient common packets before moving to the second
stage of classification.

In order to defend against the attacker who has gone
to the measure of rigorously surveying the environment in
this way, we propose to use the hand waving enhancement
discussed earlier. Even equipped with a location-specific
distribution, the system has a false positive rate of zero
within all 5s windows of the experiment for all attackers.

In a worst-case scenario, an attacker could also be
powerful enough to have complete control over the radio
environment. We assume that such an attacker has injected
every packet into the environment, and that he knows
exactly what packets the target device receives. Also, for
our simulation, the attacker is equipped with an oracle,
that allows the attacker to sample from the distribution
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of signal strength values as perceived by the target device
over the duration of the experiment.

Figure 8 False positive rate for a simulated attacker who
samples from the distribution of co-located devices
and then uses that signal strength to impersonate one
of the devices (see online version for colours)
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We tested whether hand waving will prevent this attacker
from authenticating with the target device in this case.
Figure 9 shows the false positive rate of authentications
with the oracle attacker. The figure shows that with hand
waving, after 5s, the attacker is able to authenticate
successfully in only 30% of the cases. If the user is willing
to pair the devices for 60s, the false positive rate falls
to 0%. This is encouraging given the small likelihood of
encountering an attacker this powerful.

Figure 9 Hand waving allows Amigo to prevent even the most
sophisticated attack, when the attacker can predict
the signal strength of the current distribution of
packets (see online version for colours)
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4.10 Different hardware

So far, we have evaluated Amigo using the same WiFi
cards that we used for training the classifier. However,
WiFi cards with different chipsets may perceive different
signal strengths and provide RSSI values in different
ranges. Therefore, the signal strength values as received
by various WiFi cards need to be normalised before
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they can be used for authentication. This normalisation
typically takes the form of a linear transformation
between signal strength values as reported by various
chipsets (Haeberlen et al., 2004). We envision that such a
transformation could be supplied ahead of time for every
chipset.

To test the effect of heterogeneous hardware on the
accuracy of Amigo, we conducted an experiment using
different types of 802.11 g capable wireless interfaces: two
Zydas ZD1211-based 802.11 b/g USB dongles and an
Atheros-based 802.11 b/g PCMCIA card. Before starting
experiments, we computed a linear mapping between signal
strength values as reported by the two new cards and the
Orinoco card. The mapping was computed by minimising
the mean difference between sequences of signal strength
values of different cards, collected simultaneously at a
single location over a period of approximately 1 min.

We positioned the first USB dongle and an Atheros
card 5cm apart and the second USB dongle 2m away.
The second USB dongle played the role of an attacker,
trying to authenticate to the first USB dongle. Effectively,
we tested the worst case scenario, where the two nearby
devices have different chipsets, but the attacker has the
same hardware as the device it is trying to authenticate
with. After applying the linear transformations on the
signal strength sequences, we tested our classifier with the
new traces.

Figure 10(a) and (b) plot the false positive and false
negative rates as a function of time the user needs to wait
to pair the devices. The results show that the rate of false
positives falls below 5% immediately, and reaches 0% after
15s. The rate of false negatives falls to below 10% within
10s, and tends towards 0%. These results suggest that a
simple linear transformation may be sufficient to make
Amigo work with common WiFi interfaces.

4.11 Entropy calculation

In this section, we report the entropy of the radio signatures
that were used for authentication in our experiments.
Recall that a radio signature consists of an ordered
sequence of packet hashes and associated discrete RSSI
values. Note that the numbers reported are an upper bound
on the entropy, meaning that the actual entropy may be
lower if an attacker does not simply guess values, but uses
some additional knowledge of the radio domain.

An attacker that is not physically close to the actual
location where the pairing takes place will have to guess the
sequence of packets in a radio signature and the RSSI value
for each packet. However, blindly guessing a sequence of
packet hashes will result in very large entropy. Therefore,
we assume that the attacker is located somewhere nearby
and therefore succeeded to guess the sequence of packets
in a radio signature correctly. In this case, the attacker
still needs to learn the RSSI values of packets in the radio
signature.

To calculate the number of bits of entropy per second
in a radio signature, we first calculate the number of bits
of entropy there are per packet and then multiply it by
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the average number of packets per second in the signature.
In our experiments, packets were received with a total
of 41 different RSSI values, which results in 5.36 bits of
entropy per packet. Since, on average, laptops received
160.15 packets per second, the entropy of the radio
signatures is thus 858 bits per second. However, in practice,
the attacker might try to guess a rough range of RSSI values
per packet if he is located in a vicinity. If the attacker is
able to guess the RSSI range down to ten different RSSI
values or ranges, the entropy becomes 532 bits per second.
Moreover, if the attacker reduces the range of the RSSI
values down to five possibilities, the entropy is still 372 bits
per second.

Figure 10 A simple normalisation of signal strength makes
Amigo work well with heterogeneous WiFi cards:
(a) false positive rate and (b) false negative rate
(see online version for colours)
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Although we have established only an upper-bound on the
entropy of the signatures used by Amigo, we believe that
the true entropy compares favourably with that of keys
used in widely-deployed authentication systems such as
Bluetooth, with approximately 13 bits of entropy using a
4-digit PIN.

5 Related work

SWAP-CA (SWAP-CA, 1998) is a specification that gives
users a way to associate devices by pressing a button on
two devices simultaneously, but does not provide security.
In Bluetooth, users pair devices by providing each device
with a secret PIN number. While the PIN provides for
device authentication, it requires active user involvement

and interaction with both devices. Moreover, Bluetooth
pairing has been shown to be susceptible to attack
by eavesdroppers equipped with sensitive directional
antennas, which enable attackers to breach the security
of the system from more than a mile away (Cheung,
2005; Shaked and Wool, 2005). LoKey (Nicholson et al.,
2006) uses SMS messages as an out-of-band channel to
authenticate a key exchanged over the internet. While this
approach is secure, SMS delivery is slow and may incur
monetary cost.

Physically shaking two devices together for
authentication has recently received significant attention in
the research community. Smart-It (Holmquist et al., 2001)
used common readings from accelerometers to establish
an association between devices shaken at the same time.
Mayrhofer and Gellersen (2007) extended this technique
to provide secure authentication between the shaken
devices. Both of these techniques use the accelerometer
readings as the basis of the authentication. In Shake Them
Up! (Castelluccia and Mutaf, 2005), two devices establish
a shared secret over an anonymous broadcast channel by
taking turns transmitting parts of the key. Shaking the
devices randomises the reception power of their packets by
a potential eavesdropper and makes it hard for attackers
to exploit power analysis to break the channel anonymity.
Unfortunately, this approach is vulnerable to attack by an
eavesdropper that exploits the differences in the baseband
frequencies of the two radio sources, which result from
differences in their crystal clock oscillators, to differentiate
between packets sent by the two transmitters. In general,
shaking techniques are easy for users to understand
and when accelerometers are available, provide intuitive
and reliable device pairing. The obvious drawback with
shaking techniques is that there are objects such as ATM
machines and vending machines that are too large or too
heavy to be shaken vigorously. This inspired our hand
waving technique as it does not require both objects to be
shaken together and only requires hands to be waved or
shaken near the antennas of the two co-located devices to
generate localised entropy.

Numerous research projects have suggested the use of
physically constrained channels as a means of establishing
secure association between devices in close proximity.
Some examples include the use of a direct electric contact
(Stajano and Anderson, 1999), infrared beacons (Balfanz
et al., 2002; Smetters et al., 2006), ultrasound (Kindberg
and Zhang, 2003b), and laser beams (Kindberg and Zhang,
2003a). Unfortunately, physically constrained channels
often require extra hardware (e.g., an extra cable), and can
be susceptible to attacks by sensitive receivers that can
detect dim signal refractions and reflections (Cheung, 2005;
Shaked and Wool, 2005).

Another technology that can be used for secure device
pairing is Near Field Communication or NFC. Unlike
radio-transmission based wireless communication like
802.11 and GSM, NFC transmits data via inductive
loading. This limits the working range of NFC links to
a few centimeters (NFC, 2006). While obviously a good
fit for many use cases, NFC is not without issues: like
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traditional radio transmissions, the range of the inductive
loading can be drastically increased by eavesdropping with
a large antenna — a large loop of wire in the case of NFC.
Itis also the case that for cultural or hygiene reasons, there
are situations in which the ‘almost touching’ nature of
NFC may be inappropriate and for which the notion of
proximity may be better suited by a larger distance. Lastly,
NFC does add additional cost, size and weight to a mobile
device in addition to the far-field communication already
present.

Another solution to establishing trust between mobile
devices is to use a public key infrastructure. In this case,
every mobile device is uniquely named and certified by a
trusted authority. Even if the effort is spent to grant every
device a unique and certified name, pairing may still require
significant user involvement since there may be multiple
nearby devices to choose from.

Several projects proposed to delegate the verification
of whether the two intended devices have been paired
to the user. McCune et al. (2005) and Saxena et al.
(2006) proposed to use the visual channel for verification,
while Goodrich et al. (2006) proposed to use the
audio channel. Uzun et al. (2007) recently performed
a comparative evaluation of a number of user-driven
verification methods.

In contrast, we propose to use the common radio
environment as a basis to the shared secret between
co-located devices — if two devices perceive a similar radio
environment they are probably very close to each other.
A key advantage of our approach is that it makes use
of the existing radio interfaces already present on mobile
devices and does not require any additional hardware.
The approach is also automatic and does not require user
involvement to verify the correctness of the pairing.

6 Conclusions

In this paper, we showed that it is possible to securely
pair devices that come within close proximity by using
knowledge of dynamic characteristics of their common
radio environment as proof of physical proximity.
We introduced Amigo, an algorithm that extends the
Diffie-Hellman key exchange with verification of device
co-location. Amigo has three key advantages: it does not
require additional hardware beyond the wireless interface
used for normal communication, it does not require user
involvement to verify the pairing, and it is not susceptible
to eavesdropping.

We evaluated Amigo using WiFi-enabled laptops and
showed that within 5 s it is possible to recognise attackers
located as close as 3 m away from the co-located laptops.
However, if the user is willing to wave their hands in front
of the antennas of the two co-located devices in order to
generate some localised entropy, Amigo is resilient to an
attacker located 1 m away, even in the unlikely case of an
attacker that controls allambient radio sources and is using
the signal strength values from a distribution collected at
the exact location of the current pairing.
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