
Vision: The Case for Context-Aware Selective Resume

Eric J. Wright
The University of Toronto

ejwright@cs.toronto.edu

Eyal de Lara
The University of Toronto

delara@cs.toronto.edu

Ashvin Goel
The University of Toronto

ashvin@eecg.toronto.edu

ABSTRACT
The main approach for conserving energy today is to place
idle system into one of several low-power system sleep states.
However, current transition times between the power states
are long, limiting the usefulness of these states. We propose
using a context-aware selective resume to wake a system with
only the minimal set of devices needed for the waking task.
This approach provides access to system resources with the
lowest power consumption possible and with the shortest
transition latencies. In this paper, we discuss the classes of
applications that would benefit from selective resume, dis-
cuss the design considerations for implementing selective re-
sume, and profile system sleep cycles to demonstrate that
OS modifications can reduce cycle time by as much as 87%
and energy use by up to 50%.

Categories and Subject Descriptors
D.4.0 [Software]: OPERATING SYSTEMS—General ; C.0
[Computer Systems Organization]: GENERAL—Sys-
tem architectures; Hardware/software interfaces

General Terms
Design, Experimentation, Measurement, Performance

Keywords
Power Management, Selective Resume

1. INTRODUCTION
Modern laptops, tablets and handhelds continue to in-

crease in complexity and energy use as they increase screen
size, add discrete GPUs, multicore CPUs, and multiple ra-
dios such as cellular and WiFi. These increases in com-
plexity require additional energy, but users also want longer
battery run times, hence there is an increasing need to min-
imize energy consumption. Currently, laptop, netbooks and
tabletPC’s utilize ACPI sleep states to put idle systems to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MCS’11, June 28, 2011, Bethesda, Maryland, USA.
Copyright 2011 ACM 978-1-4503-0738-3/11/06 ...$10.00.

sleep and conserve energy when not in use. When a request
is made to use the system (by the user or another device)
the system is resumed from sleep to process the request.

Currently, systems do not know why resume requests were
made, i.e., they are not aware of their resume context. As
such, both the BIOS and the OS initialize all devices on
the system at each resume, with the intent of returning the
system to its pre-sleep state, regardless of the intended use.
This monolithic approach is inflexible and causes long re-
sume latencies. While some devices quickly enable the dis-
play to make systems appear more responsive, it can still
take up to 30 seconds to fully resume from S3 sleep [2].
Furthermore, our findings indicate that when a system is re-
peatedly cycled between sleep states, the resume cycle times
are significantly higher. A shorter cycle time is important
as it means we can take advantage of low power states by
putting the system to sleep for shorter periods that would
not be practical with longer cycle times.

A system that needs to resume quickly cannot use sleep
states when the resume latency is long. For example, con-
sider a remote access scenario in which users, wanting their
systems to remain responsive to network requests, configure
their systems to resume upon receiving network traffic [5].
A large portion of this traffic does not require the system
to resume [5], but to know that, the system must first wake
up to analyze the traffic and then return to sleep. However,
the average time between packets that trigger an inspection
is shorter than current resume latencies, and so the system
cannot evaluate the traffic itself and remains awake or fully
cycles in and out of sleep modes.

This paper introduces context-aware selective resume, a
technique that reduces latencies by resuming only the hard-
ware that is specifically needed to complete a task. Selective
resume enables applications to optimize resume operations
for both power efficiency and latency. A power efficient re-
sume seeks to minimize the power consumed during the tran-
sition process and by the subsequent tasks. A fast resume
seeks to minimize the latency of the transition process and
the completion of tasks. The approaches are related, since
we may skip devices during a fast resume to both lower la-
tency and save power consumption.

To gain a better understanding of the potential benefits of
context-aware selective resume, we have conducted experi-
ments to characterize the resume latencies and energy use
associated with the ACPI sleep states. Our results show that
the time is dominated by BIOS and OS processing time and
not by hardware initialization time. This is a positive result
because selectively initializing only the required set of de-

1

vices can significantly reduce BIOS and OS processing time.
We also measure cycle times, defined as the time it takes a
computer to resume and then return to sleep. We compare
non-selective to selective cycle times to demonstrate that a
selective resume approach based on some OS modifications
can reduce cycle times by as much as 87%, with further gains
possible through BIOS changes. We also show that the po-
tential energy savings of selective resume can approach 50%
by examining the energy use of system components. Finally,
we discuss the design considerations for building a context-
aware selective resume system.

2. SELECTIVE RESUME
Selective resume provides benefits to applications that

want access to only a part of a system, such as just CPU and
memory, quickly and efficiently. Below, we briefly describe
a normal and selective resume operation, and then present
various scenarios that would benefit from selective resume.

2.1 Resume Operations
The normal resume process begins when a system receives

a power management event (PME) triggered by a device,
such as a Wireless Wake-On-LAN (WoWLAN) packet from
a network device or an interrupt from a CMOS timer. In
the normal resume process, the hardware initialization pow-
ers on the devices, then the BIOS code performs low-level
initialization of the CPU, chipsets and other devices on the
system, and then returns control to the OS by jumping to a
pre-specified resume vector, which iterates through devices
to reinitialize them to their pre-sleep state, and then starts
threads that were previously suspended. The BIOS and OS
follow a pre-determined order of events during every resume.

In contrast, with selective resume, after the hardware ini-
tialization, the BIOS would initialize only the CPU, then
determine its resume context by reading the source of the
power management event. For example, if the wake-up was
caused by a WoWLAN packet, it reads this packet from
the Wake-Up Packet Memory (WUPM) of the NIC. Based
on the resume context, which specifies the devices needed,
the system would then selectively initialize devices and then
jump to one of several selective resume vectors. For example,
a selective resume vector could be a memory address that
transfers control back to the OS which then continues the
selective resume process, or a special in-memory user-code
segment designed to operate without the OS, or a firmware
code segment.

2.2 Selective Resume Scenarios
The ability to provide context to a sleeping system upon

resume allows fine-grained control over device use, enabling
the various scenarios described below.

Computational Offloading: In cloudlet scenarios, as
described by [6], mobile systems take advantage of low-
latency, high-bandwidth connections to a nearby cloud envi-
ronment running Virtual Machines to offload computation-
ally complex tasks. In this approach, a mobile device sends a
VM overlay (the state difference between a base VM and the
instance on the device) to a cloudlet server that merges it
with the base image, performs the computation, and returns
the residual VM difference back to the device when com-
plete. A selective resume approach would enable the size of
a VM overlay to be reduced as certain components, for ex-
ample data files, could be left on the device but would still

be accessible using a pull-based approach if needed. This
smaller VM overlay means only the minimal set of data is
transferred to a cloudlet, saving both transmission energy
usage and device energy usage, as the device can be put to
sleep sooner. As an example after transferring only a small
VM overlay, a device would enter a sleep state. If more
data from the device is needed it would receive a WoWLAN
packet to wake the device that contained context specifying
a request for a specific data file. The device would initialize
only the CPU, memory and Flash RAM , but not the GPU,
display or cellular radio, fetch the required data from the
device and send it to the cloudlet for continued processing.
Additionally, the ability to rapidly resume the device means
more opportunities for putting it to sleep can be exploited
since we can take advantage of using the cloudlet for shorter
tasks that would not be worth offloading with longer resume
times.

Power Efficient Data Transfers: A selective resume
system would also enable energy savings and quick response
times in scenarios that wish to transfer data to or from a
sleeping machine. For example in CatNap [4], the authors
present a system that exploits the bandwidth differential be-
tween LAN and WAN links. Transfer data is buffered at a
proxy device connected to the system by a fast LAN link
(e.g. a 100Mb Ethernet). The system is put to sleep while
the data is sent over a slow WAN link (e.g. a 1Mb ADSL), or
the data received from the WAN is buffered on the proxy de-
vice, and the system is only woken up once the proxy cache
is full. With selective resume, a WoWLAN packet would
be sent with the data transfer request size in bytes, and
the storage device (memory or disk) needed. The firmware
would resume the CPU to examine the resume context, ini-
tialize the requested storage device and the NIC, while skip-
ping any input devices, optical drives, and graphics cards.
It would then transfer control to the selective resume vector,
which would send or receive data, and then put the system
back to sleep. For a receive operation, this could occur in
the firmware using a pre-determined memory buffer, resum-
ing the OS to process it only once the buffer was full. This
would maximize the sleep time and reduce the power con-
sumption while awake, lowering the overall energy usage of
the system.

Partial Laptop Migration: A partial laptop VM mi-
gration scheme [3] would also benefit from selective resume.
In this approach, a minimal working set of memory from an
idle virtualized laptop is migrated to a consolidation server
to enable it to remain active while the host machine is put
to sleep. However, if an activity occurs on the migrated
VM that triggers a page fault, the system must wake up the
original system and fetch a page of memory. This incurs a
significant delay as the system completes a full resume, en-
abling all devices and loading the OS, only to fetch a 4KB
page. With selective resume, a WoWLAN packet with a
memory page address would be sent, and it would selectively
resume only the CPU, memory, and NIC, skipping the disk,
graphics cards, and other devices, and transfer control to the
selective resume vector. This operation would not require
resuming the entire OS as the firmware would have direct
access to memory, be able to read the page, and return the
page by constructing and sending the packet directly via the
NIC. This approach would allow the remote VM to quickly
fetch the page and respond to an incoming packet within
potential socket or application time-outs.

2

Component Component System Integrated System
CPU Dual-core 2.4GHz Intel,

1066Mhz FSB, 4MB L2
Dual-core 2.6GHz Intel,
800Mhz FSB, 2MB L2

Memory 4GB 2GB
Hard Drive 74G SATA 74G SATA
Graphics Intel X4500, integrated Intel X4500, integrated
Sound Realtek, integrated Realtek, integrated
NIC Realtek, integrated Realtek, integrated
Optical <none> <none>
Power 650 Watt PSU 200 Watt PSU

Table 1: Experimental Systems

Figure 1: Suspend & Resume Times (w/o Hard-
ware)

3. PROFILING SLEEP TRANSITIONS
Since power consumption, BIOS and hardware latency

times are hardware specific, we conducted experiments on
two different systems, an integrated system, representing an
office PC, and a component system, representing a higher-
end machine, as shown in Table 1. We used the same hard
drive in both systems, configured with Debian Linux and
the 2.6.18.8 kernel. Our experiments utilize the ACPI S3
sleep state, since it uses less energy than the ACPI S1 state,
but doesn’t incur a disk read like the ACPI S4 state. Below,
we describe a series of experiments we conducted to better
understand a normal resume operation, power use on our
component system, and the impact of our selective resume
approach.

3.1 System Transition Times
We conducted experiments on our test systems and in-

vestigated the system log files to measure the transition
times from the power on state (S0) to the suspend-to-RAM
(S3) sleep state, as shown in Figure 1. The S0→S3 sleep
transition shows the OS time from issuing a pm-suspend
command from the shell until the final call to suspend the
hardware. The BIOS is not involved in the S0→S3 transi-
tion. The S3→S0 (user) resume transition shows both the
BIOS and OS time until control was returned to the shell.
The S3→S0 (net) resume transition shows both the BIOS
and OS time until a connection was established to a remote
server. In all these cases, the systems were given at least 30
seconds before another transition was initiated to stabilize.
The S3→S0→S3 case shows a complete cycle, consisting of
resuming the system, then suspending it, but without any
time to stabilize between transitions. These results do not
include hardware latencies, as those are not shown in the log
files (results with hardware latencies are shown later). We
conducted multiple runs and the average values shown have
a standard deviation of less than 0.01.

Our findings show the resume operations typically take
considerable longer than the suspend operation, 1.48s vs.
0.42s, for the component system, and 1.53s vs. 0.66s, for

Integrated System - Resume Timeline (seconds)

0 1 2 3 4 5 6 7 8 9

PME Wake-Up Event (0s)
H/W Initialization Complete (0.44s)

BIOS Routine Complete (1.25s)
Kernel Level Resume Complete (1.91s)

Hard Drive Back to Pre-Sleep State (4.45s)
NIC back to Pre-Sleep State (4.26s)

10

Component System - Resume Timeline (seconds)

0 1 2 3 4 5 6 7 8 9

PME Wake-Up Event (0s)
H/W Initialization Complete (1.18s)

BIOS Routine Complete (1.90s)
Kernel Level Resume Complete (2.65s)

NIC back to Pre-sleep State (4.49s)

10

Connection to Remote Host (4.95)

Connection to Remote Host (5.70)

Figure 2: System Resume Timelines

the integrated system. More interesting was the impact of
calling a suspend directly after a resume. The cycle times
were 5.95s, for the component system, and 4.64s, for the
integrated system, which are significantly larger than the
sum of the S3→S0 and S0→S3 times. This large increase was
a result of the systems having to complete the background
device resume operations, prior to beginning the subsequent
suspend operation.

3.2 System Resume Profiling
Our next experiment is designed to estimate the poten-

tial benefits of selective resume, by breaking down the time
spent in different components of the system during a resume
operation. The test systems were connected to a server on
the same subnet. The server issued a WOL packet to initi-
ate a resume, and we measured how long it took before a re-
sponse was received from the test systems by the server. We
instrumented the kernel to log key events, then conducted
multiple runs and used average times based on the times-
tamps found in the system log (/var/log/syslog). Hardware
initialization time was inferred by subtracting the BIOS and
OS time accounted for in the system logs from the total time
taken to open a connection to the remote server (measured
on the server).

As shown in Figure 2, the activities and time spent ini-
tializing the hardware and executing the BIOS code is spe-
cific to each system, but the majority of the resume time
is spent in software, either the BIOS or the OS. Comparing
the two systems, the time spent in the OS is roughly equal
at 3.7s and 3.8s respectively. We can also see how quickly
the hardware responds, indicating that sub-second response
times are achievable. For example, our integrated system
completes its hardware initialization in 0.44s, so a selective
resume that does not waste any time initializing unused de-
vices (e.g., with a BIOS implementation) could complete a
memory page fetch or packet inspection operation without
running the full BIOS code or starting the OS and return to
sleep in under one second.

Our resume times are comparable to previous work, al-
though our suspend times are lower [1, 2]. However, it is
hard to compare these times because the hardware is dif-
ferent and their methodology for collecting timing was not
fully specified. We plan to run these experiments on other
hardware to get a more comprehensive set of results.

3

Figure 3: System Cycle Times (w/ Hardware)

3.3 Cycle Time
Our next experiment demonstrates the potential cycle time

improvement possible with selective resume. Cycle time im-
provement would benefit certain applications such as the
remote access scenario, described in Section ??. In this sce-
nario, if we find that the incoming packet is not worth wak-
ing the system, then we put the system to sleep as quickly as
possible without initializing additional devices in the BIOS
or the OS.

This experiment uses a modified version of the Linux ker-
nel. After the first suspend, the subsequent resumes and
suspends take a highly optimized kernel path designed to
resume and suspend the system as quickly as possible. To
measure the total cycle times, including hardware initial-
ization times accurately, we used a digital oscilloscope and
current probe connected to the common ground of the main-
board power supply. We conducted multiple runs and used
average times based on the oscilloscope readings. In these
experiments the unmodified BIOS transfers control back to
the kernel via the normal ACPI resume vector. We do not
return control to the user space, and instead put the system
to sleep as quickly as possible in the kernel.

Figure 3 shows the complete cycle times, including hard-
ware suspend and resume latencies. Compared to the results
in Figure 1that show only BIOS and OS time, we see that
the cycle time increases from 5.95s to 6.7s (0.75s) for the
component system, which is reasonable based on observed
hardware initialization times, but for the integrated system
the increase from 4.64s to 8.06s (3.42s) is higher than ex-
pected. Examining the oscilloscope readings, we found that
for roughly 3s of the 3.42s, the hardware is not powered up.
We believe that the hardware is in some transient shutdown
state and does not respond to WoL packets during the 3s.

Our results also demonstrate that the opportunity for re-
ducing cycle times is high, with our streamlined kernel being
able to reduce the overall cycle time from 6.7s to 1.51s for
the component system, a 77% reduction, and from 8.06s to
1.33s for our integrated system, an 83% reduction. Based
on the oscilloscope readings, the 3s delay described above
does not occur with selective resume, but unfortunately, we
cannot pinpoint the reason for this difference, without more
control over the BIOS. We believe that BIOS programming
will also allow cycle times to be reduced much closer to the
hardware times.

3.4 Device Energy Usage
To demonstrate the potential energy savings that can be

achieved through selective resume, we profiled the power
usage of each device in our component system. We did not

have access to the BIOS source to selectively enable devices
upon resume, so device power was measured manually by
removing each device and measuring the change in energy
draw using a Watts-Up power meter. We measured and av-
eraged power levels over 2 minute intervals with the system
idling at the boot loader prompt. The graphics card used
the largest amount of energy, consuming 84.4 of the 190
watts used by the system, followed by the hard drive at 9.5
watts, sound card at 3.1 watts, optical drive at 2.5 watts and
NIC at 0.7 watts. This shows that a selective resume that
does not enable these devices could reduce system energy
consumption by over 50%.

4. SELECTIVE RESUME DESIGN
Having demonstrated the potential of our selective resume

approach, we consider the design requirements for building
a context-aware selective resume system.

4.1 Specifying the Resume Context
A fundamental aspect of the selective resume approach

is that a system must have knowledge of the context under
which it is being resumed. To specify the resume context,
the system will need to know, at a minimum, the list of de-
vices we wish to resume and where to pass execution control
after devices are initialization. The resume context can be
provided to the sleeping machine either prior to sleeping or
upon the resume. In the former case, systems are provided
with resume context data prior to suspending (e.g., through
a user command or system policy). In the latter case, sys-
tems are provided with resume context data as part of the
resume operation (e.g., embedded in a WOL packet). A
system could also be given two resume contexts, one prior
to sleeping and another on resume, and could be designed
to handle both contexts by enabling the union of the two
contexts.

4.2 Initiating the Resume
System resumes occur whenever a device generates a Power

Management Event (PME) and these can be triggered ei-
ther remotely or locally. Remote initiation is typically done
through inbound communication devices such as a NIC re-
ceiving a Wake-On-Lan (WOL) packet or a modem config-
ured to Wake-On-Ring. WOL packets are particularly useful
as we can embed our resume context in the WOL the packet,
which is then held in the NIC’s Wake-Up Packet Memory
(WUPM). The WUPM typically holds the first 128 bytes
of the incoming packet, including the packet header, giv-
ing us up to 108 bytes to store the resume context, and is
accessible by either the BIOS or the OS. Local initiations
can be done through either the CMOS timer event or an
attached device, such as a keyboard. While it may be possi-
ble to provide some limited context on local initiations, the
resume context will likely have to be specified prior to sleep.
To address security concerns, selective resume requests will
need to be authenticated, and the selective resume vectors
must be chosen from a well-known set of vectors.

4.3 Modifying Firmware/BIOS
Modifications to the OS and firmware will be required

to enable fine-grained control of device operations to realize
time and energy savings. We must determine the timing and
order of device initializations, taking into account hardware
dependencies, such as initializing the SATA bus prior to ac-

4

cessing the hard drive. System firmware code has historically
been closed source, but recently open-source alternatives
such as the Coreboot BIOS and Intel’s TianoCore UEFI
will make it easier and more practical to modify firmware.

4.4 Firmware / OS Interaction
Selective resume operations require the firmware and OS

to work together and ensure that the required devices are
available and no other devices are activated. With selective
resume, the firmware will need to determine if it should call
the OS resume vector at all, as there may be cases where
the context specifies that all the processing happens without
the OS being required. The firmware will also need to pass
context information to the OS to inform the OS of which
devices it has enabled, so that the OS knows which devices
are available for its use. Otherwise, the OS may attempt
to use uninitialized devices or mistakenly believe that the
device have been removed from the system.

5. RELATED RESEARCH
While ACPI sleep states have been available on systems

for many years, prior research to take advantage of them has
focused primarily on avoiding unnecessary resumes. These
approaches have, in part, been driven by the lack of flexi-
bility and high latency of resume transitions, and they all
require system augmentation with external servers or em-
bedded systems. In contrast, our research seeks to remove
the underlying problem by making sleep states more flexible
and responsive.

Many systems have been designed to provide the illusion
of on-line availability, by building a networking proxy that
can filter and/or respond to incoming network requests [2,
5]. These approaches all require an external proxy server
to check incoming requests and determine when the resume
a system. By contrast, our approach would increase sleep
times and provide the illusion of being online without re-
quiring additional hardware.

Other research has focused on taking advantage of sleep
states by offloading processing. For example, virtualized
desktops can be offloaded to a separate server [3]. The Gum-
Stix device augments the system NIC for machine offload-
ing [1]. Our work complements these works by providing
fast fine-grained access to resources as they are needed.

6. CONCLUSIONS
We have made the case that the current monolithic re-

sume functionality does not have the flexibility to meet the
needs of modern and emerging mobile applications. We have
shown that resume latencies are mostly dominated by soft-
ware and can be reduced significantly. We have outlined spe-
cific improvements that can be made at the firmware or OS
level to improve both power efficiency and response times.
We envision that context-aware selective resume function-
ality will enable new uses for putting systems to sleep for
shorter durations. If we can reduce the cycle times below
an application’s or user’s ability to perceive them then we
have effectively created an always-on system that consumes
almost no power.

7. REFERENCES
[1] Agarwal, Y., Hodges, S., Chandra, R., Scott, J.,

Bahl, P., and Gupta, R. Somniloquy: augmenting
network interfaces to reduce PC energy usage. In
Proceedings of the USENIX symposium on Networked
systems design and implementation (NSDI) (2009),
pp. 365–380.

[2] Agarwal, Y., Savage, S., and Gupta, R.
SleepServer: a software-only approach for reducing the
energy consumption of PCs within enterprise
environments. In Proceedings of the 2010 USENIX
annual technical conference (2010).

[3] Bila, N., de Lara, E., Hiltunen, M., Joshi, K.,
Lagar-Cavilla, H. A., and Satyanarayanan, M.
The case for energy-oriented partial desktop migration.
In Proceedings of the USENIX conference on Hot topics
in cloud computing (2010).

[4] Dogar, F. R., Steenkiste, P., and Papagiannaki,
K. Catnap: exploiting high bandwidth wireless
interfaces to save energy for mobile devices. In
Proceedings of the international conference on Mobile
systems, applications, and services (MobiSys) (2010),
pp. 107–122.

[5] Nedevschi, S., Chandrashekar, J., Liu, J.,
Nordman, B., Ratnasamy, S., and Taft, N. Skilled
in the art of being idle: reducing energy waste in
networked systems. In Proceedings of the 6th USENIX
symposium on Networked systems design and
implementation (NSDI) (2009), pp. 381–394.

[6] Satyanarayanan, M., Bahl, P., Caceres, R., and
Davies, N. The case for vm-based cloudlets in mobile
computing. IEEE Pervasive Computing 8 (October
2009), 14–23.

5

