
FlurryDB: A Dynamically Scalable Relational Database
with Virtual Machine Cloning

Michael J. Mior and Eyal de Lara
Dept. of Computer Science, University of Toronto

Toronto, Ontario, Canada

{mmior,delara}@cs.toronto.edu

ABSTRACT

Stateless services are easy to scale in the cloud since new
replicas of these services can be created at any time and
they operate completely independently of other instances.
In contrast, scaling stateful services, such as a database sys-
tem, can take minutes or even hours due to the need to
present a consistent view of the system for users of the ser-
vice. Currently, this problem is addressed by resource over-
provisioning in anticipation of demand spikes. FlurryDB
uses virtual machine cloning to improve resource utilization
by drastically reducing the latency required to add a new
replica. We also show that FlurryDB is capable of handling
updates to resources in a fashion that preserves consistency
across the cloning boundary.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems

General Terms

Algorithms, Design, Experimentation, Management, Mea-
surement, Performance

Keywords

Database, Virtualization

1. INTRODUCTION

Providing scalability for relational database management
systems (RDBMS) to allow for the handling of increases in
offered load has traditionally been a complicated process
requiring a full copy of a database to be created. This pro-
cedure can potentially take several hours [4]. In some cases,
a replica must also be taken offline in order to make this
copy. Additionally, since caches are cold on the new server,
it can take even longer before the new instance can operate
at peak capacity. The current solution to the problem is to
overprovision and keep several extra instances available in

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

SYSTOR’11, May 30–June 1, 2011, Haifa, Israel.

Copyright 2011 ACM 978-1-4503-0773-4/11/05 ...$10.00.

anticipation of a spike in demand. The need for overpro-
visioning is worse than the stateless server case since the
massive latency to copy the database means that additional
slack capacity must be maintained to ensure acceptable sys-
tem performance while new replicas are brought online.

This paper introduces FlurryDB, an approach that uses
virtual machine (VM) cloning to dynamically scale cluster-
based database servers by rapidly creating clones of live
database workers. The key benefit of FlurryDB is that it
does not require that a full copy of the database be present
on the new worker in order to add it as a replica. Instead,
it uses VM cloning to create a copy of a running replica
which fetches both its memory and disk state on demand.
This reduces the latency of adding a new replica by orders
of magnitude, from minutes or hours, down to seconds.

The key challenge in FlurryDB is the need to handle re-
quests that are ongoing at clone creation time. Specifically,
if a replica is processing a request at the time of cloning (a
likely scenario on a busy server), then each of the created
clones will also be doing so when it comes alive. To handle
this case, FlurryDB inserts a cloning-aware proxy into the
VM, which is interposed in the communication path between
the cluster load balancer and the unmodified database server
instance running on the VM. The proxy enables queries
which are in progress during a VM clone operation to com-
plete in a manner that preserves database consistency.

Our experimental evaluation using unmodified instances
of MySQL shows that FlurryDB can add a new replica to
a clustered database in less than 25 seconds, enabling it to
swiftly react to changes in load.

The rest of this paper is structured as follows. Section 2
provides an introduction into cluster-based database repli-
cation and VM fork, which FlurryDB uses to clone repli-
cas. Section 3 introduces FlurryDB and discusses the main
challenges it solves. Section 4 presents our prototype im-
plementation. Sections 5 and 6 present an evaluation of the
system and discuss the applicability of FlurryDB to other
replication models, as well as avenues for future work. Fi-
nally, Sections 7 and 8 compare FlurryDB to related work
and conclude the paper.

2. BACKGROUND

In this section we first provide some background on cluster-
based database replication. We then describe the VM fork
mechanism that FlurryDB uses to swiftly clone database
replicas.

Figure 1: Traditional replica creation process

Figure 2: FlurryDB replica creation

2.1 Cluster-Based Database Replication

Cluster-based database servers are implemented as a dy-
namically changing pool of load-balanced workers. Each
worker runs an unmodified single node database server and
consistency is maintained by a replication algorithm.

While different replication algorithms have been proposed
[10], we consider in this paper read-one write-all replica-
tion [2]. In this approach, each replica keeps a full copy
of the database. Read queries can be sent to any worker,
while write queries are replicated to all workers under the
control of a distributed commit protocol, such as two-phase
commit [14]. This provides a high-level of scalability for
reads, but writes can still be a significant bottleneck since
each replica must execute all write transactions. We dis-
cuss the implications of our replica addition technique on
other database replication and partitioning approaches in
Section 6.

Traditionally, scaling a cluster of read-one write-all repli-
cas requires that a copy of the entire database must be made.
Depending on the DBMS and the replication algorithm used,
one of the replicas may need to be taken offline to perform
this copy. If strong consistency is desired, then the new
worker must be allowed to catch up before it is added to the
pool of accessible servers. This also requires replica addi-
tion to be an atomic operation which takes place when no
queries that modify the database are in progress. The com-
plete process is outlined in Figure 1. The break in the top
line represents the period during which queries must be in-
terrupted while the bottom line shows the steps required to
add a new replica. In contrast, FlurryDB uses VM cloning
to enable the swift addition of new replicas without requiring
database pre-copying.

2.2 VM Fork

FlurryDB uses the SnowFlock [12] implementation of VM
fork to swiftly clone database replicas. SnowFlock desig-
nates one VM as the master. From the master, VMs can
be forked in parallel onto multiple distinct physical hosts.
The forked VMs are referred to as clones of the master. The
clones start with identical memory and disk state to the mas-
ter which is fetched on demand over the network on access.
To ensure consistency at the point of cloning, all memory
on the master VM is write protected and a copy is made on
each write.

To instantiate VM clones, an architectural descriptor of
the master is created consisting only of the master’s page
tables and a small amount of additional metadata. This
descriptor is then transferred over the network and services
are started on each machine to enable state transfer. This
allows the core of the cloning operation to complete in less
than one second. Pages which are marked non-present in the
cloned VM trigger a page fault. SnowFlock uses VM state
coloring [3] to optimize the propagation of state to clones by
identifying semantically related regions. Specifically, it uses
page table introspection to tailor the prefetching of kernel
vs. user space regions and code vs. data regions, as well as
guest OS introspection to optimize the propagation of the
file system page cache.

The semantics of disk cloning are identical to memory:
clones see the same disk, although modifications to it remain
private, and are discarded upon clone termination. The local
disk is provided purely on-demand, but is rarely used by
transient clones who find most of their requests satisfied by
in-memory caches.

Upon cloning, a clone’s IP address is automatically re-
configured. Clones share an internal private network with
their parent, other clones, and select entities such as the load
balancer. Clones are assigned a new IP address within the
private network as a function of their ID. The reconfigura-
tion of IP addresses requires no developer intervention.

On the master VM’s side, network connections that are
open at the point of cloning remain open and working. On
the cloned VM, the connection is inherited but the assign-
ment of a new IP address during cloning forces all inbound
and outbound connections to drop – in many cases, this will
result in automatically discarding session state not discarded
by the parent. However, the new clone has to graciously deal
with broken connections to system resources, such as the
load balancer. Once those connections are re-established,
the new, cloned workers require no further network-plane
intervention.

Finally, SnowFlock provides two mechanisms that enable
applications running on a clone to react to a cloning oper-
ation. First, a reconfiguration hook automatically invokes
a reconfiguration script after cloning, if one has been reg-
istered. The script can be used, for example, to remount
an NFS partition after automatic IP reconfiguration. Sec-
ond, an asynchronous signal, SIGCLONE, can be sent to
processes once a clone comes alive. Processes explicitly sub-
scribe to receive SIGCLONE, which sends a POSIX real-
time signal and thus terminate the process if unhandled.

3. FLURRYDB

FlurryDB leverages virtual machine (VM) cloning to rapidly
create clones of live database workers. FlurryDB does not
require that a full copy of the database be present by leverag-
ing the copy-on-demand mechanism provided by SnowFlock.
The complete process is outlined in Figure 2.

FlurryDB is similar to the standard cluster-based database
design in that it requires a load balancer that maintains state
consistency amongst a pool of worker replicas and has the
capability to grow and shrink the replica pool in response
to changes in load. Where FlurryDB differs is in its require-
ment to handle state at clone creation time. Specifically, if a
replica is processing a request at the time of cloning (a likely
scenario on a busy server), then each of the created clones
will also be doing so when it comes alive. An alternative is

to sidestep the issue by queuing new write operations at the
load balancer and cloning only after all ongoing writes have
committed at the master (i.e., forcing a write barrier). We
decided against this approach as it adds significant latency
to the cloning operation, limiting its benefits.

FlurryDB needs to ensure that operations that are un-
derway at the time of cloning are treated as follows: (1)
read operations do not require any special treatment. The
change in IP address on the clones will force the connections
to the load balancer to be dropped, aborting the operation.
On the master VM, network connections that are open at
the point of cloning remain open and working. Thus the
read operation will proceed as normal and its result will be
communicated back to the load balancer, which can then
forward it to the client; (2) operations that modify database
state are a more complex case as they must either finish or
abort atomically on all replicas, including the new clones.

The approach that aborts the operation is easier to im-
plement. On the new clones, the change in IP address will
force the connection to the load balancer to drop and the
operation to abort. What is left to do is for the distributed
commit protocol on the load balancer to instruct all pre-
existing replicas, including the master VM, to roll back the
operation. This approach, however, wastes work and is likely
to add even more latency than implementing a write barrier,
as the operation has to be resubmitted by the client.

An approach that guarantees that operation will finish
atomically on all replicas requires adding cloning awareness
to the application running inside the cloned VM. One possi-
bility is to modify the database server so that after receiving
the SnowFlock SIGCLONE signal it reconnects to the load
balancer, runs the in-flight requests to completion and joins
the distributed commit protocol. Instead, we opted for a
less intrusive approach that inserts a cloning-aware frontend
proxy into the VM. The frontend proxy maintains database
connections with the database server on behalf of the load
balancer. Since it lies inside the VM, its connections to the
database server are not affected by the change in IP address
and are maintained across the boundaries of the VM clone
operation. This allows queries which are in progress during
a VM clone operation to complete. After cloning, the fron-
tend proxy reconnects to the load balancer, and joins the
distributed commit protocol. As an optimization, the fron-
tend proxy and load balancer communicate using a light
weight protocol without heavy authentication. This pro-
tocol provides lower connection latency compared to tradi-
tional database connection setup. Figure 3 shows the layout
of the complete system.

4. IMPLEMENTATION

We implemented our cloning-aware proxy using the MySQL
client library as well as some code from the MySQL server.
The proxy is capable of serving as both load balancer and
frontend proxy depending on the runtime configuration. A
detailed diagram of the architecture of the proxy is given in
Figure 4. The arrows in the diagram represent the path of a
query through the server. A single loop accepts connections
and passes them off to threads which handle each client.
When a new query arrives, it is run through the query map-
per which defines the mapping between query strings and
backend servers. If the query only needs to be passed to a
single backend, the client grabs a connection from a pool and
issues the query. If the query needs to be sent to multiple

Figure 3: FlurryDB system architecture

Figure 4: Proxy architecture

#define SELECT "SELECT"
#define SHOW "SHOW"
#define DESCRIBE "DESCRIBE"
#define EXPLAIN "EXPLAIN"

proxy_query_map_t proxy_map_query(char *query,
char *new_query) {

new_query = NULL;

/* Anything which starts with the keywords above
* goes to any backend, otherwise, go everywhere */
if (strncasecmp(query, SELECT, sizeof(SELECT)-1) == 0
|| strncasecmp(query, SHOW, sizeof(SHOW)-1) == 0
|| strncasecmp(query, DESCRIBE, sizeof(DESCRIBE)-1) == 0
|| strncasecmp(query, EXPLAIN, sizeof(EXPLAIN)-1) == 0)

return QUERY_MAP_ANY;
else

return QUERY_MAP_ALL;
}

Figure 5: Read-one write-all query mapper

backend servers (i.e. the query modifies the database), it is
passed on to several threads which execute the request in
parallel, and then synchronize before one of those backend
servers forwards the response to the client.

To allow for flexibility in the way queries are passed to
backends, the proxy supports dynamically loading “mapper”
libraries. Only a single mapper library may be loaded by the
server at any given time. In the absence of a mapper library,
a backend server is selected at random. The mapper takes a
query string as input and returns a flag which specifies where
the query should be sent (currently either ANY or ALL). The
load balancer currently uses read one, write all replication
to maintain consistency (see Figure 5). This has the advan-
tage of simplicity and strong consistency (in the absence of
network partitions). We plan to examine other techniques
to improve performance in the future, as this strategy scales
poorly with write-heavy workloads. When serving as the
frontend proxy, we have no need for a mapper, since queries
which require replication have already been tagged by the
load balancer.

The proxy server also introduces several additional SQL
statements which are used in the distributed commit proto-
col in the next section. Using the MySQL protocol to exe-
cute these statements eliminates the need to design a new
protocol and makes it easy to manage interactive sessions
during debugging and testing since the standard MySQL
client can be used. The additional commands introduced
are given in Table 1.

4.1 Cloning and Distributed Commit

Database cloning is performed using the SnowFlock im-
plementation of VM fork, which is built on top of Xen 3.4.0.
The decision to clone is made by the load balancer, which
we will refer to as the coordinator. When clones become
live, they contact the coordinator so it can add each clone
as a new backend server and manage committing across all
clones. To ensure consistency, the load balancer queues new
writes from the time cloning starts until all new clones are
added as replicas. Thus, minimizing the latency of this op-
eration is critical for the performance of the system.

As a proof of concept, we have chosen to use a two-phase
commit (2PC) protocol with read-one write-all replication
due to its ease of implementation. Other distributed com-
mit protocols such as Paxos commit [8] or eventual consis-

(a) Pre-cloning (b) Post-cloning

Figure 6: Cloning procedure

tency [9] may provide better scalability and performance,
but this is outside of the scope of this project.

We implement 2PC using the standard technique when the
set of backend servers is static (i.e. when a cloning opera-
tion is not taking place). The load balancer sends the query
to each backend and waits until it has received a successful
response from each. It will then send a commit message to
each backend if all reported success, otherwise the transac-
tion will be rolled back. In either case, a result packet is
then synthesized and sent to the client.

The situation becomes more complicated when a query
is in progress during cloning. The statement will continue
to complete on the backend server and the frontend proxy
will receive the response. However, the connection to the
coordinator will be severed as a result of the change of IP
address on the clone. The clone must therefore reconnect to
the coordinator and notify it of the status of the transaction.
In order to facilitate identification of the transaction, we add
an identifier to each replicated query which can be returned
in the status message. It is also used by the coordinator
to send a commit or rollback message to the clone once all
responses have been received.

Figure 6a illustrates how the system works during nor-
mal operation. A write T is initially submitted by the client
and then passed through the load balancer and proxy to the
backend database. When the database has completed pro-
cessing on this transaction, it will be return via the same
path to the client. Figure 6b shows how the process changes
when the database is cloned. While cloning the virtual ma-
chine, we have also cloned the write operation, resulting in
T’. The load balancer is aware of this change, and thus waits
until it receives the result of both T and T’ before responding
to the client. The result of T is returned via the same path
as the input query. Since the network connection between
the load balancer and the cloned VM is severed, when the
cloned frontend proxy receives the result of T’, it will open
a new connection with the load balancer to pass the result.

FlurryDB currently does not support transactional work-
loads since we make use of the transactional features of
MySQL in order to implement 2PC. It is still possible to

Statement Description Parameters

GLOBAL STATUS Status information on the server N/A
STATUS As above, but for the current connection N/A
CLONE Create a new virtual machine clone number of clones
ADD Add a clone to the list of backends clone ID, clone IP

SUCCESS Report success of a transaction clone ID, transaction ID
FAILURE Report failure of a transaction clone ID, transaction ID
COMMIT Signal a commit to a clone transaction ID

ROLLBACK Signal a rollback to a clone transaction ID

Table 1: Proxy commands

support transactional workloads by tracking when clients
commit and roll back transactions, but this is left as future
work. Therefore, updates to the database must consist of
single statements. The semantics are equivalent to running
a traditional RDBMS in autocommit mode.

5. EVALUATION

In this section we first use microbenchmarks to quantify
the performance benefits of being able to clone a database
replica while write operations are ongoing. We then use
a realistic benchmark (RUBBoS) to show that FlurryDB
can swiftly grow the replica pool of a cluster-based database
server enabling it to react to changes in demand.

5.1 Microbenchmarks

The master and clone VMs used in our evaluation are run-
ning MySQL 5.1.4.9 with 1GB of RAM, one virtual CPU,
and a 3GB disk. Each is hosted on a Sun Fire X2550 with
eight 3.0GHz Xeon cores, 8GB RAM, and dual gigabit Eth-
ernet NICs. Traffic produced by SnowFlock and traffic pro-
duced by benchmarks are each sent on separate interfaces.
Virtualization is performed using SnowFlock, which is built
on top of Xen 3.4.0 and Linux 2.6.18. Both the host machine
and the VMs are running 64-bit Debian Core 5.

Our load balancer runs on a third machine with identical
hardware and operating system, but uses version 2.6.26 of
the Linux kernel. We also use an additional machine to run
the clients that drive the benchmarks. This system has four
3.6GHz Xeon processors running Fedora Core 8 with ver-
sion 2.6.16.29 of the Linux kernel and dual gigabit Ethernet
NICs.

5.1.1 Benefits of cloning ongoing queries

To examine the benefits of cloning the database while
write operations are in progress, we create a simple test ta-
ble with two integer columns and insert one million rows
with consecutive primary keys. We then measure the time
it takes to clone the database under four write workloads
as we vary the number of concurrent clients issuing queries
to the database. We consider two types of queries: Small ,
which updates 1,000 rows; and Large, which updates 10,000
rows. For each type, we run two versions: Different , where
multiple copies of the query target different sets of tuples;
and Same, where queries modify the same tuples. We dis-
abled table-level locking for these tests so writes to different
rows can occur simultaneously.

Table 2 shows the time it takes to add a new replica un-
der two experimental configurations: FlurryDB , which uses

Write
Workload Barrier FlurryDB Clients

Small, Same data 7.5s 6.6s 50
Small, Different data 7.7s 5.5s 50
Small, Same data 20s 7.4s 100

Small, Different data 11.5s 7.4s 100
Large, Same data 28.1s 6.5s 50

Large, Different data 21.5s 6.8s 50

Table 2: Time to add a new replica. Small and Large update
1,000 and 10,000 rows, respectively. In Different data exper-
iments, multiple copies of the query target different sets of
tuples; whereas in Same data experiments, all copies of the
queries modify the same tuples.

our frontend proxy to enable cloning while write operations
are ongoing, and Write Barrier , which waits for all ongoing
writes to finish before cloning the VM. Shortening the time
it takes to add a new replica is important as it reduces the
length of time the load balancer has to wait before issuing
new writes.

The experimental results show that FlurryDB facilitates
the swift addition of new replicas. Replica addition times
varied between 5.5 sec and 7.4 sec and experienced modest
increases as we added more concurrent clients. In contrast,
waiting for writes to finish before cloning can significantly in-
crease blocking time (by a factor of 4.3 in our experiments),
and results in variable replica addition times that are depen-
dent on both the workload and the number of concurrent
queries.

Figure 7 further examines the worse case scenario of large
writes to the same block of data as we increase the number
of clients. We see that as the number of clients increases,
there is a significant increase in waiting for the queries to
complete. This is expected as each query is blocked un-
til all other queries which arrived before complete. In con-
trast, FlurryDB handles ongoing queries effectively, enabling
cloning to proceed almost immediately.

5.1.2 Reconnection time

As mentioned in Section 3, we don’t use any form of au-
thentication between the frontend proxy server and the load
balancer. This approach is acceptable in our environment
because the database servers are not publicly accessible and
SnowFlock uses MAC-level filtering to provide a private net-
work between the clones and the master.

As a result, we establish connections with significantly
less overhead. We measure the overhead by opening and
closing 100,000 connections to a standard MySQL server,

�� �� �� �� �� �� �� 	�
��

�

�

�

�

�

��

��

��

��

��

��

�����������

��������

������

�
�
�
��
�
��
�
�
��
�

� !
�
�"
�
#

Figure 7: Effect of waiting for query completion on replica
addition delay

Time (s)

MySQL 17.3
FlurryDB 1.55

Table 3: Connection establishment

followed by the same number of connections to the FlurryDB
proxy. To eliminate network overhead, we establish all of
these connections on the same host. As shown in Table
3, the elimination of authentication allows us to establish
connections an order of magnitude faster.

5.1.3 Overhead

To measure the overhead introduced by adding the fron-
tend proxy to the data path, we measure the time it takes to
select 367 MB from a test database. We execute the state-
ment (SELECT * FROM test) before measurement to ensure
caches are warm. We consider three different configurations:
(1) a client directly connected to the database server; (2) a
client connected to the database server through the load
balancer; and (3) a client connected to the database server
through the load balancer and the front end proxy. Each
hop in the transfer process is on a different physical host.
Results are given in Table 4. The final overhead observed
is approximately 5% for two levels of proxying as compared
to no proxying. The overhead introduced by the frontend
proxy is larger than the overhead of the load balancer be-
cause the former competes with resources with the database
server running on the same VM, whereas the latter runs on
a dedicated host.

In practice, the extra overhead of the frontend proxy need
not apply to read-only queries, since it would be possible
to modify the load balancer so that it sends read queries
directly to the database server bypassing the frontend proxy.
However, our current prototype does route all reads through
the frontend proxy.

Latency is another significant factor affecting performance.
Adding an additional network hop can significantly increase
this delay. We feel this can be mitigated via kernel-level

Proxying level Bandwidth (MB/s)

No proxying 28.5
Load balancer 28.4

Frontend proxy and
Load balancer 27.1

Table 4: Read bandwidth

layer 7 routing, i.e. performing query mapping in the ker-
nel, as in the Kernel TCP Virtual Server (KTCPVS)[19].
This removes one layer of memory copying along the data
path. This also enables the possibility of direct server reply
for read-only queries by routing the packet directly to the
backend server and allowing it to reply with the IP of the
load balancer.

5.2 RUBBoS

We use RUBBoS [1] to illustrate how FlurryDB can swiftly
grow the replica pool of a cluster-based database server en-
abling it to react to changes in load. The RUBBoS bench-
mark simulates traffic generated by users viewing and com-
menting on an online news forum. The benchmark is imple-
mented as a PHP application which makes database requests
coupled with Java clients which drive the workload.

We use two Sun Fire X2550s to host the master VM and
the clone VMs. These machines each have eight 3.0GHz
Xeon cores and 8GB of RAM. Each machine also has dual
gigabit Ethernet NICs which we use to separate SnowFlock
and benchmark traffic. The operating system is 64-bit De-
bian Core 5 with Linux 2.6.18. The version of SnowFlock
we use to perform cloning is built on top of Xen 3.4.0. The
load balancer and application server are run on identical
hardware. The application server is running Fedora Core 8
with Linux 2.6.23.

Two additional machines are used to execute the RUB-
BoS Java clients. These systems have four 3.6GHz Xeon
processors and dual gigabit Ethernet NICs. Each system
runs Fedora Core 8 with Linux 2.6.16.29.

The PHP application uses Apache 2.2.6 and PHP 5.2.4.
We use the default state transition tables provided with
the RUBBoS distribution for selecting the types of requests
made by clients. We did however require slight changes to
the PHP application to fix bugs and resolve incompatibil-
ities with the newer version of PHP. Our modifications to
RUBBoS may be found on GitHub[15].

We start FlurryDB with a single VM and a copy of the
327MB test database provided with RUBBoS. All tables use
the InnoDB database engine. In order to increase the load
on the system, we set the think time of all clients to zero.
We begin with 25 clients executing a one-minute warmup
workload. We then run at full capacity for 5 minutes before
executing a clone operation. After the clone has successfully
been created and reconnected to the load balancer, we start
a second instance of the benchmark with an additional 25
clients.

Figure 8 shows a time series of queries per second passing
through the system as observed by the load balancer. As ex-
pected, we see a sharp drop in throughput while the cloning
operation takes place (around the 300 second mark), fol-
lowed by a period of degraded performance while SnowFlock
fetches the working set. The server then stabilizes and is able
to fully utilize the resources of the new replica.

� ��� ��� ��� ��� ��� ���

�

����

����

����

����

�����

�����

�����

	
�����

�
�
�
�

�
�
��

Figure 8: Query throughput for RUBBoS as we clone a new
replica during cloning

Figure 9: Effect of bursty workload on benchmark through-
put

The delay before achieving stability is a result of three
factors: (1) writes blocking until completion on the new
clone; (2) memory pages being transferred to the clone; (3)
clients delaying new requests until previous requests have
completed. Interestingly, the average throughput of the
server more than doubles after the clone becomes available.
This is explained by the bursty nature of the benchmark
resulting from the non-uniform distribution of request ar-
rival times and large variations in the run times of different
query types. With a single replica, the load offered by the 25
clients creates spikes that surpass the capacity of the server,
and periods of low demand when the server is under-utilized.
With two replicas, and twice the number of clients, the av-
erage load doubles, but spikes become less pronounced as
the aggregate load is more uniform. Figure 9 illustrates this
process by showing the effect of adding the offered load of
two sets of clients.

6. DISCUSSION

FlurryDB could implement a more conservative replica-
tion policy. This may require relaxed consistency, but this
is acceptable for many classes of applications. The choice of

different policies could provide a range of options for trade-
offs between consistency and performance. One such scheme
is master-slave replication [17]. In the case of FlurryDB, we
have the possibility of cloning either a master or a slave.
If we make a clone of the master database, the frontend
proxy would ensure that queries that are in progress com-
plete in a manner that preserves database consistency. After
cloning, the new replica would become a slave. Cloning a
slave database should simply require reconnection with the
master. At this point, replication could continue after any
transactions which were in progress at the time of cloning
are committed to the database.

A more complex possibility is to incorporate dynamic par-
titioning as clones are created. With an appropriate parti-
tioning scheme (e.g., sharding [5]), the need for replication
could be significantly reduced. This is likely to be highly
challenging in the absence of application-level support. The
abandonment of read-one write-all also introduces the prob-
lem of reintegration of changes which have not been seen on
the master, which complicates scaling down.

To make replication even simpler, we would also like to
implement load metrics and a policy based on service level
agreements (SLAs) for creating and destroying clones to en-
able fully automated scalability. This could be coupled with
an adaptive Web server, such as that used by the Kaleido-
scope [3] project to create a dynamically scalable multi-tier
Web application platform.

It is feasible to extend FlurryDB to support transactional
workloads by tracking when the MySQL server believes it
is in a transaction. One option is to intercept all COM-

MIT/ROLLBACK statements and ensure they are issued only
when all statements in the transaction have succeeded on
all clones. Another option is to use XA distributed trans-
action support in MySQL and convert transactions in user
workloads into distributed transactions on-the-fly.

The SnowFlock virtual disk was not intended to provide
high performance, but rather to provide a base image where
applications and configuration files are stored. One major
bottleneck in FlurryDB (for databases which do not fit in
memory) is the latency of this disk access on clones, as the
disk is fetched on-demand over the network. Ideally, the ma-
jority of disk state which is used will be otherwise available
in either the buffer cache on the clone or application-specific
cache in the DBMS. However, some requests inevitably hit
the disk, so improvements in SnowFlock virtual disk perfor-
mance will likely prove to be highly advantageous to Flur-
ryDB. Currently all disk reads to pages not present on a
clone are serialized and disk pages are sent one at a time
over the network. Possible areas for performance improve-
ments include support of parallel requests and a policy for
prefetching to exploit the locality of reads.

7. RELATED WORK

A currently popular solution for database scalability is
the use of databases providing eventual consistency or key-
value stores such as Cassandra [13] or Amazon’s Dynamo [7].
Many systems designed for horizontal scalability abandon
the relational model and lose features such as joins. The
modified data model often results in data duplication. These
alternative data models present an obstacle for database ad-
ministrators and developers who are familiar with the use
of RDBMS. The relational model provides a more intuitive
data model and also simplifies application logic. Eventual

consistency is a plausible alternative to two-phase commit
currently used by FlurryDB with the potential to improve
performance.

Kaleidoscope [3] also makes use of SnowFlock, with the
intent of providing similar scalability for Web servers. How-
ever, the replicated servers are stateless and thus require
no effort to maintain consistency. Urgaonkar et al. [18] use
rapid changes in resource allocation to provision servers for
a multi-tier Internet application. However, they acknowl-
edge that databases are difficult to replicate on-the-fly and
instead limit the rate of requests to the database tier. Also,
when a server for a tier is deallocated, its resources are re-
duced such that any cached state is lost.

Soundararajan et al. [16] describe dynamic replication poli-
cies for scaling database servers. This work identifies the la-
tency in introducing new replicas as a major bottleneck in its
approach. The combination of this replication policy with
FlurryDB for provisioning and replication would likely pro-
duce a significantly more efficient system. The central issue
experienced by Soundararajan et al. was oscillation caused
by the delay in adding replicas. Since adding new replicas
is a high latency operation, several replicas are added when
query response times increase. Finally, when these replicas
are available, response time plummets and a replica is de-
stroyed. If the load continues to increase, this cycle could
continue. Since FlurryDB is capable of reducing replica ad-
dition delay by orders of magnitude, it provides a clean so-
lution to this issue.

Curino et al. introduce a “database-as-a-service” (DBaaS)
called Relational Cloud [6] which aims to present efficient
multi-tenancy, elastic scalability, and database privacy. For
scalability, Relational Cloud relies on a cluster of backend
servers running MySQL and Postgres database servers. A
transaction coordinator periodically examines the workload
to determine an efficient partitioning scheme. Relational
Cloud hopes to support live migration of partitions between
nodes by fetching data on-demand from the previous node
where the backend data was stored. As this has not been
implemented, it is not possible to evaluate the performance
of this approach. While this approach may be suitable for
DBaaS providers who wish to manage their own infrastruc-
ture, Relational Cloud does not provide efficient scaling for
a single-tenant system. This may be desirable to allow exe-
cution in a hybrid cloud computing environment.

Finally, HyPer [11] uses process fork and memory snap-
shots to enable a hybrid main-memory database which can
simultaneously support OLAP and OLTP workloads. Since
it is acceptable for OLAP queries to use stale data, HyPer
periodically takes a snapshot of the database via fork, em-
ploying OS-level copy-on-write mechanisms to maintain the
performance of the OLTP workload. While this is a similar
approach to the one taken by FlurryDB, it is only designed
for use on a single node and provides no solution for handling
an OLTP or OLAP workload which exceeds the capacity of
the node.

8. CONCLUSION

FlurryDB provides a transparent method of replicating
relational databases in the cloud using virtual machine fork.
We do this using an off-the-shelf RDBMS and unmodified
applications by providing a layered proxying mechanism able
to manage the consistency of a virtual cluster across the
boundary of VM fork.

The use of VM fork allows FlurryDB to quickly add repli-
cas, reducing delay by orders of magnitude – from minutes
or hours to seconds. In addition, allowing writes to continue
during the fork allows a further reduction in this delay. For
a workload with heavy locking, this can produce a further
fourfold decrease in delay. The reduced delay achieved by
this approach enables FlurryDB to rapidly adapt to changes
in load, reducing the need to maintain idle workers. As fu-
ture work, we plan to examine the scalability of FlurryDB
to larger numbers of nodes as well as to larger database sizes
where the overhead of copying is more pronounced.

9. ACKNOWLEDGEMENTS

We would like to thank Alexey Tumanov for his input in
the early stages of this project. Thanks are also owed to
Roy Bryant for his assistance based on his work on state-
less server cloning and to the Kaleidoscope team for im-
provements to the SnowFlock platform on which FlurryDB
is currently built. Finally, to the numerous members of the
Systems & Networks Group at the University of Toronto for
their feedback prior to submission.

10. REFERENCES

[1] Amza, C., Chanda, A., Cox, A. L., Elnikety, S.,
Gil, R., Rajamani, K., Zwaenepoel, W.,
Cecchet, E., and Marguerite, J. Specification and
implementation of dynamic web site benchmarks. In
5th Workshop on Workload Characterization

(November 2002).
[2] Bernstein, P. A., Hadzilacos, V., and Goodman,

N. Concurrency control and recovery in database

systems. Addison Wesley, Massachusetts, 1987.
[3] Bryant, R., Tumanov, A., Irzak, O., Scannell,

A., Joshi, K., Lagar-Cavilla, H. A., and
de Lara, E. Kaleidoscope: Cloud micro-elasticity via
VM state coloring. In Proceedings of the 6th European

Conference on Computer Systems (2011), ACM Press,
pp. 273–286.

[4] Cecchet, E., Candea, G., and Ailamaki, A.
Middleware-based database replication: The gaps
between theory and practice. In Proceedings of the

2008 ACM SIGMOD international conference on

management of data (June 2008), ACM Press.
[5] Ceri, S., Negri, M., and Pelagatti, G. Horizontal

data partitioning in database design. In Proceedings of

the 1982 ACM SIGMOD international conference on

management of data (June 1982), ACM Press.
[6] Curino, C., Jones, E., Popa, R. A., Malviya, N.,

Wu, E., Madden, S., Balakrishnan, H., and
Zeldovich, N. Relational cloud: A database service
for the cloud. In 5th Biennial Conference on

Innovative Data Systems Research (2011).
[7] DeCandia, G., Hastorun, D., Jampani, M.,

Kakulapati, G., Lakshman, A., Pilchin, A.,
Sivasubramanian, S., Vosshall, P., and Vogels,
W. Dynamo: Amazon’s highly available key-value
store. In Proceedings of twenty-first ACM SIGOPS

symposium on Operating systems principles (Oct.
2007), vol. 41, ACM Press, pp. 205–220.

[8] Gray, J., and Lamport, L. Consensus on
transaction commit. ACM Transactions on Database

Systems 31 (March 2006), 133–160.

[9] Gustavsson, S., and Andler, S. F.
Self-stabilization and eventual consistency in
replicated real-time databases. In Proceedings of the

first workshop on Self-healing systems (2002), ACM
Press, pp. 105–107.

[10] Kemme, B., and Alonso, G. A suite of database
replication protocols based on group communication
primitives. In Proceedings of the The 18th

International Conference on Distributed Computing

Systems (1998), IEEE Computer Society.
[11] Kemper, A., and Neumann, T. HyPer: A hybrid

OLTP&OLAP main memory database system based
on virtual memory snapshots. In Proceedings of the

IEEE 25th International Conference on Data

Engineering (2011), IEEE Computer Society.
[12] Lagar-Cavilla, H. A., Whitney, J. A., Scannell,

A. M., Patchin, P., Rumble, S. M., de Lara, E.,
Brudno, M., and Satyanarayanan, M. SnowFlock:
Rapid virtual machine cloning for cloud computing.
European Conference on Computer Systems (2009),
1–12.

[13] Lakshman, A., and Malik, P. Cassandra: A
decentralized structured storage system. ACM

SIGOPS Operating Systems Review 44, 2 (Apr. 2010),
35–40.

[14] Lampson, B., and Sturgis, H. Crash recovery in a
distributed storage system. Tech. rep., Xerox Palo
Alto Research Centre, April 1979.

[15] Mior, M. RUBBoS source repository.
https://github.com/michaelmior/RUBBoS, 2011.

[16] Soundararajan, G., Amza, C., and Goel, A.
Database replication policies for dynamic content
applications. ACM SIGOPS Operating Systems

Review 40, 4 (Oct. 2006), 89–102.
[17] Stonebraker, M. Concurrency control and

consistency of multiple copies of data in distributed
INGRES. IEEE Transactions Software Engineering 5,
3 (1979), 188–194.

[18] Urgaonkar, B., Shenoy, P., Chandra, A., Goyal,
P., and Wood, T. Agile dynamic provisioning of
multi-tier Internet applications. ACM Transactions on

Autonomous and Adaptive Systems 3, 1 (2008), 1–39.
[19] Zhang, W., and Zhang, W. Build highly-scalable

and highly-available network services at low cost.
Linux Magazine (2003), 14–14.

