
Iterative Adaptation for Mobile Clients
Using Existing APIs

Eyal de Lara, Member, IEEE, Yogesh Chopra, Rajnish Kumar, Student Member, IEEE, Nilesh Vaghela,

Dan S. Wallach, Member, IEEE, and Willy Zwaenepoel, Fellow, IEEE

Abstract—Iterative Adaptation is a novel approach to adaptation for resource-limited mobile and wireless environments that supports
powerful application-specific adaptations without requiring modifications to the application’s source code. Common productivity
applications, such as browsers, word processors, and presentation tools, export APIs that allow external applications to control their
operation. The novel premise in iterative adaptation is that these APIs are sufficient to support a wide range of adaptation policies for
applications running on resource-limited devices. In addition to allowing adaptation without having to change the application’s source
code, this approach has a unique combination of advantages. First, it supports centralized management of resources across multiple
applications. Second, it makes it possible to modify application behavior after the application has been deployed. This paper evaluates
the extent to which existing APIs can be used for the purposes of adapting document-based applications to run on bandwidth-limited
devices. In particular, we implement a large number of bandwidth adaptations for applications from the Microsoft Office and the
OpenOffice productivity suites and for Internet Explorer. Although we find limitations in their APIs, we are able to implement many
adaptation policies without much complexity and with good performance. Moreover, iterative adaptation achieves performance similar
to an approach that implements adaptation by modifying the application, while requiring only a fraction of the coding effort.

Index Terms—Application adaptation, low-bandwidth operation, pervasive computing, middleware.
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1 INTRODUCTION

THE need for application adaptation in mobile and
wireless environments is well established [1], [2], [3],

[4], [5]. Desktop applications, such as office productivity
suites, typically expect that resources such as bandwidth
and power are available in abundance [6]. In contrast,
mobile and wireless environments are characterized by
limited and unreliable resource availability, requiring the
applications to be adapted to perform properly in these
environments. While there has been considerable research
on adapting applications to mobile and wireless environ-
ments, very few adaptation systems have been deployed,
because existing approaches require extensive application
source code modification [7], [8], [9] or have limited
adaptive power [10], [11].

This paper presents Iterative Adaptation, a novel approach

to adaptation that supports powerful application-specific

adaptations without requiring modifications to the applica-

tion’s source code. The novel premise in iterative adaptation

is that applications providemechanisms to enable adaptation
by exporting runtime Application Programming Interfaces
(APIs) to external programs. In iterative adaptation, the
adaptation system adapts applications by calling their APIs,
instead of changing their source code. Iterative adaptation
allows sophisticated adaptations that iteratively improve the
content that the applicationprovides to theuser. For example,
when browsing the Web on a mobile device, the adaptation
system reduces the initial time to load a Web page by
providing low-fidelity versions of its images. Later, as the
user reads the page, the adaptation system acquires higher-
fidelity images and uses the browser’s API to replace the
original images. Applications thus become artifacts that can
be manipulated by the adaptation system. This iterative
improvement has not been available previously, except in
applications expressly designed to include it from the
beginning. Because no source code modifications are neces-
sary, iterative adaptation overcomes the principal roadblock
to deploying adaptation.

Modifying applications for the purpose of adaptation is at
best unattractive, because of the complex nature of many of
the applications, andmay be impossible because the source is
not available or the application has already been deployed.
Furthermore, embedding adaptation policies in the applica-
tion requires the application designer to foresee all necessary
policies at the time the application is written. Given that
adaptation policy may depend not only on operating
environments, but also on the mix of applications running
on the device, such policy decisions should not be limited to
application design time. Iterative adaptation thus provides a
proper division of policy and mechanism between the
adaptation system and the application. Finally, this policy
mechanism division has the additional benefit that adapta-
tion canbecentralized.This allows for a single specificationof
a policy to be reused for a variety of applications (e.g., load all
text first), and for the implementation of system-wide
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adaptation policies (e.g., for all applications, load all text
first),which take into account themix of applications running
on the host [12].

Many popular document-based applications, including
office productivity suites and browsers, already export
well-documented APIs [13], [14]. In this paper, we explore
the extent to which these existing APIs can support
adaptation. To the best of our knowledge, this is the first
effort to use these interfaces for adaptation. In this paper,
we focus on adapting document-based applications to
reduce latency for reading multimedia documents over
bandwidth-limited networks, but the same principles are
applicable to reducing power usage [15].

To investigate these issues, we implement iterative
adaptation in the Puppeteer system [16]. We call our
system Puppeteer because it uses the exported API’s of
the applications—the puppets—as strings to control their
behavior. Puppeteer has a modular architecture that allows
adding platforms, applications, and adaptation policies
with modest effort. Using Puppeteer, we adapt a significant
number of document-based applications on different plat-
forms in a relatively short time. In particular, we implement
Puppeteer on Linux and Windows. On Linux, we experi-
ment with adaptation policies for Presentation and Writer
from the OpenOffice productivity suite. On Windows, we
use Outlook, PowerPoint, and Word from Microsoft Office
and Internet Explorer. Much of the code is reused between
different platforms and applications. Furthermore, similar
policies for different applications (e.g., load all text first) can
often be implemented without writing additional code.
Puppeteer achieves large reductions in download latency
and bandwidth consumption and adds little overhead
when no adaptation is done. Moreover, Puppeteer achieves
performance similar to that of an approach that implements
adaptation by modifying the application, while requiring
just a fraction of the coding effort.

The rest of this paper is organized as follows: Section 2
describes the capabilities of iterative adaptation and the
requirements it places on the applications. Section 3
presents the design and implementation of the Puppeteer
system. Section 4 reflects on our experience using APIs of
existing applications for bandwidth adaptation. Specifi-
cally, we describe the limitations, from the point of view of
adaptation, in the exported APIs and file formats of the
applications. Section 5 measures the effectiveness and the
overhead of some sample adaptation policies and compares
Puppeteer’s performance to an approach that implements
adaptation within the application by modifying its source
code. Section 6 discusses how iterative adaptation differs
from previous approaches to content adaptation. Finally,
Section 7 concludes the paper.

2 ITERATIVE ADAPTATION

Bandwidth adaptations can be grouped into two types: data
and control. Data adaptations transform the application’s
data. For instance, they transform the images in a document
into a lower-fidelity format. Control adaptations modify the
application’s control flow (i.e., its behavior). For example, a
control adaptation could cause an application that other-
wise returns control to the user only after an entire

document is loaded to return control as soon as the first
page is loaded. Data adaptations are usually implemented
by interposing a proxy between the data source and the
resource-limited device, without modifications to the client
application. Control adaptations, however, have tradition-
ally required modifications to the client application.

Iterative adaptation is a novel technique that supports
both data and control adaptations without requiring mod-
ifications to the application’s source code. Iterative adapta-
tion implements control adaptation indirectly by using
exported APIs to carefully control the data on which an
application operates. For example, iterative adaptation
adapts an application that returns control to the user only
after loading an entire document by providing to the
application an initial (shorter) version of the document that
consists of just a few pages. Later, as the user interacts with
the application, iterative adaptation can fetch the remaining
pages and use the application’s exported API to extend the
application’s version of the document. In effect, iterative
adaptation does not change the application’s algorithms,
but instead fools it into believing that the initial document is
shorter than its real size.

Iterative adaptation takes advantage of the modular
structure of modern multimedia document formats (e.g.,
HTML, XML) for the purposes of adaptation. In the rest of
this document, the term component refers to a clearly
identifiable part of a modular multimedia document, such
as an image or a page in a manuscript. Iterative adaptation
adapts applications by repeated use of two techniques:
subsetting and fidelity versioning. Subsetting creates a new
virtual document consisting of a subset of the components
of the original document (e.g., the first slide in a presenta-
tion). Fidelity versioning1 chooses among multiple trans-
coded views of a component (e.g., instances of an image
with different resolution). Iterative adaptation uses the
application’s exported API to extend the subset or to replace
the version of a component (e.g., load additional slides in a
presentation or replace an image with one of higher
fidelity). This iterative improvement has not been available
previously except in applications expressly designed to
support it from the beginning and is one of the key
advantages of iterative adaptation.

In the rest of this section, we first explore the types of
adaptation policies that iterative adaptation supports. We
then describe the requirements that iterative adaptation
places on the application’s exported API and file format.

2.1 Adaptations

As with other adaptation techniques [7], [8], [11], [9], [18],
iterative adaptation supports all data adaptations. The
novelty of iterative adaptation comes into play, however,
in its support of adaptations that gradually improve the
content available on the mobile device. Such adaptation
policies have, to the best of our knowledge, only been
implemented by modifying the application. In iterative
adaptation, however, they are implemented by using the
exported APIs.
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A very large number of adaptation policies are possible.
We can, at best, give a sampling of the policies that can be
implemented with iterative adaptation. We group adapta-
tion policies into three classes. A first set of policies is based
on repeated application of subsetting. One policy that
works for most document-based applications is to load the
text first, return control to the user immediately, and then
load images and embedded elements in the background.
Response time can be further improved by adding a data
adaptation that compresses and decompresses the text.
Policies can also be constructed that rearrange the order in
which specific components, such as images, are loaded. For
example, small images could be loaded first. Subsets other
than text can also be chosen for initial loading before control
is returned to the user. A useful policy for a presentation
software loads the first slide, including text and images,
returns control to the user, and then loads the remaining
slides in the background. Other examples of subsetting
policies that work for most document-based applications
include choosing the subset based on the component type
(e.g., fetch text and images, but leave out OLE embedded
components) or the component size (e.g., fetch images
smaller than 8 KB irrespective of their location in the
document).

A second set of policies is based on repeated application
of fidelity versioning. One example is a policy that uses
Progressive JPEG compression to reduce latency. The
adaptation policy first converts all images in the document
into Progressive JPEG. A prefix of the resulting JPEG image
file is loaded and control is returned to the user, producing
an image with limited resolution. The remaining portions of
the images are loaded in the background and inserted into
the application using API calls, leading to progressively
higher-resolution images. This set of policies can be
combined with the first set in various ways.

A third and final example set of adaptation policies
combines any of the previous policies by using certain
events generated by the user to rearrange the order in
which subsets or versions are loaded. For example, one
policy first loads or refines the image over which the user
moves the mouse.

Subsetting and fidelity versioning adaptations are
effective for applications where users can do meaningful
work with just a fraction of the original document or lower-
fidelity versions of some of its components. The assumption
is that by providing a limited (but still useful) version of the
document, it is possible to significantly reduce the time
users have to wait before they can interact with the
document. Other components can then be fetched in the
background or on demand. What constitutes a useful subset
or fidelity version is application-specific. In constructing
subsets, adaptation policies need to take into consideration
the semantics of the document and ensure that, as the
subset or version available to the user is iteratively
extended, it remains meaningful in the context of the
original document.

The previous list only provides a sample of the
adaptation policies that can be implemented by iterative
adaptation, but nonetheless attests to the power and the
flexibility of the technique. In Section 5, we show that these

policies provide significant reductions in user-perceived
latencies for loading multimedia-rich documents over
bandwidth-limited networks.

2.2 Requirements

Iterative adaptation is by nature restricted to applications
with exported APIs. Moreover, for iterative adaptation to
work, the application’s API and file format must allow the
adaptation system to discover, construct, and display
component subsets of a document. We now examine these
requirements in more detail.

First, the adaptation system needs to be able to discover
the overall component structure of a document and the
types of each component. This is commonly done by
parsing the file(s) containing the input document. The
requirement in this case translates into one that specifies
that the document format needs to indicate component
boundaries and component types. For example, in an
electronic presentation, the boundary between different
slides must be visible. Alternatively, if the application’s file
format is opaque and cannot be parsed, the document
structure can still be extracted by running an instance of the
application and calling on its API methods.

Second, the application’s API must provide support for
inserting component subsets into the application and for
replacing a version of a component with a different higher-
fidelity one.

Third, the application must be able to display component
subsets or versions independently, without having other
subsets or versions available. For example, the display of a
slide should not be dependent on information about other
slides or other information.

Additionally, to provide powerful adaptation policies,
the adaptation system must be able to respond to events in
the application (e.g., the user is moving the mouse over an
image). Therefore, the application needs to export through
its API an event registration and notification mechanism, by
which the adaptation system can be notified of relevant
events.

While the above requirements are certainly a limitation,
we observe that many desirable candidate applications for
adaptation, including the Microsoft Office Suite, Internet
Explorer, NetscapeNavigator, the KDEOffice Suite, and Star
Office already have file formats and exported APIs that
largelymeet these requirements. Recognizing the advantages
of component-oriented software construction [19]—indepen-
dent of adaptation—we foresee an increasing number of
applications being developed with exported APIs.

3 PUPPETEER

The Puppeteer system [16] implements iterative adaptation
on Microsoft Windows and on Linux platforms.

Fig. 1a shows the four-tier Puppeteer system architec-
ture. It consists of the application(s) to be adapted, the
Puppeteer local proxy, the Puppeteer remote proxy, and the
data server(s). The application(s) and data server(s) are
completely unmodified. The Puppeteer local proxy and
remote proxy work together to perform the adaptation.

The Puppeteer local proxy runs on the mobile client and
is in charge of executing the policies that adapt the
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applications by calling on their exported APIs. The Puppet-
eer remote proxy is responsible for parsing documents,
exposing their structure, and transcoding components as
requested by the local proxy. The Puppeteer remote proxy
is assumed to have high-bandwidth connectivity (relative to
the bandwidth-limited device) to the data servers. Data
servers can be arbitrary repositories of data such as Web
servers, file servers, or databases.

The realities of the mobile computing environment
require Puppeteer to support different platforms, commu-
nication substrates, and applications with different docu-
ment formats and APIs. Therefore, we design the Puppeteer
proxies following a modular architecture, which minimizes
the overhead in moving to a new platform or adding a new
application or adaptation policy.

The Puppeteer local and remote proxies consist of four
types of modules: Kernel, Drivers, Transcoders, and Policies
(see Fig. 1b). The Puppeteer Kernel appears once in both the
local and remote Puppeteer proxies. A driver supports
adaptation for a particular component type. Transcoders
implement specific transformations on component types.
Drivers and transcodersmay execute both in the local and the
remote Puppeteer proxies. Policies specify particular adapta-
tion strategies and execute in the local Puppeteer proxy.

3.1 Kernel

The Puppeteer Kernel is an application-independent mod-
ule that runs in both the local and remote proxies and
enables the transfer of document components. The Puppet-
eer Kernel does not have knowledge about the specifics of
the documents being transmitted. It operates on a format-
neutral description of the documents, which we refer to as
the Puppeteer Intermediate Format (PIF). A PIF consists of a
skeleton of components, each of which has a set of related data
items. The skeleton captures the structure of the data used
by the application. The skeleton has the form of a tree, with
the root being the document, and the children being pages,
slides, or any other elements in the document. The skeleton
is a multilevel data structure, as components at any level
can contain subcomponents. Skeleton nodes can have

component-specific properties attached to them (e.g., slide
title, image size) and one or more related data items that
contain the component’s native data.

When adapting a document, the Puppeteer Kernel first
communicates the skeleton between the remote and the
local proxy. It then enables adaptation policies to request a
subset of the document’s components and to specify
transcoding filters to apply to specific components within
the selected subset. To improve performance, the Puppeteer
Kernel batches requests for multiple components into a
single message and supports asynchronous requests.

3.2 Drivers

Puppeteer uses drivers to handle the lack of uniformity in
document formats, exported APIs, and event handling
mechanisms. Puppeteer requires an import and an export
driver for every component type it adapts. To implement
complex policies, a tracking driver is also necessary. Import
drivers run on the remote proxy, while export and tracking
drivers run on the local proxy. The import drivers parse
documents, extracting their component structure and con-
verting them from their application-specific file formats to
PIF. In the common casewhere the application’s file format is
parsable, either because it is human readable (e.g., XML) or
there is sufficient documentation towrite a parser, Puppeteer
parses the file(s) directly to uncover the structure of the data.
This results in good performance and enables local and
remoteproxies to runondifferent platforms (e.g., running the
local proxy onWindowswhile running thePuppeteer remote
proxy on Linux). When the application only exports an API,
but has an opaque file format, Puppeteer runs an instance of
the application on the remote proxy and uses the exported
API to uncover the structure of the data, in some sense, using
the application as a parser. This configuration allows for a
high degree of flexibility and makes porting applications to
Puppeteer more straightforward, since Puppeteer does not
need to understand the application’s file format. Unfortu-
nately, running an instance of the application on the remote
proxy creates significant overhead and requires both the local
and remote proxies to run the environment of the application,
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which, inmost cases, amounts to running the same operating
system on both the local and remote proxy. For these reasons,
all the import drivers discussed in this paper uncover the
document structure by directly parsing the document’s files.

Parsing at the remote proxy does not work well for
dynamic documents that choose what data to fetch and
display by executing a script (e.g., JavaScript-enabled
dynamic Web pages). Unlike static documents, these
dynamic documents can choose to include different
components at runtime, often in response to user input.
Because of this, static parsing of the document is insufficient
to learn every possible component that may be used.
Instead, Puppeteer channels component requests made by
applications displaying dynamic documents through a
special import driver running on the local proxy. When
the import driver detects a reference to a previously
unknown component, it updates the document’s skeleton
appropriately.

Export drivers unparse the PIF and update the applica-
tion using the application’s exported API. A minimal export
driver has to support inserting new components into the
running application and replacing the contents of a
component with a higher-fidelity version. Typical export
drivers implement one of two update modalities that match
the way most applications function. For applications that
support a cut-and-paste mechanism (e.g., Microsoft Office),
the driver uses the clipboard to insert new versions of the
components. For applications that support reloading in-
dividual items they display (e.g., IE and Netscape), the
driver instructs the application to reload the component
(e.g., asking IE to refetch an image embedded in a HTML
page). Tracking drivers are necessary for many complex
policies. A tracking driver tracks which components are
being viewed by the user and intercepts load requests.
Tracking drivers can be implemented using polling (e.g.,
PowerPoint and Word) or event registration mechanisms
(e.g., IE and Outlook).

3.3 Transcoders

Puppeteer’s adaptations policies use transcoders to perform
both subsetting and versioning transformations. These
transcoders operate by either modifying the encoding of a
component’s data (e.g., compressing a bitmap into a low-
fidelity JPEG image) or by changing the relationship
between a component and its children (e.g., creating a
new PowerPoint presentation with only a subset of the
slides in the original document).

3.4 Policies

Policies run on the local proxy and control the fetching of

components. Typical policies choose components and

fidelities based on available bandwidth and user-specified

preferences (e.g., fetch all text first). Other policies rely on

tracking drivers to monitor the user (e.g., fetch the images

in the PowerPoint slide that currently has the user’s focus

and prefetch the text of subsequent slides in the presenta-

tion) or react to the way the user moves through the

document (e.g., if the user skips pages, the policy can drop

the components it is fetching and focus the available

bandwidth on fetching components that become visible to

the user).
Policies choose what components to fetch by traversing

the skeleton using a navigation interface that is similar to

the interface provided by the W3C Document Object Model

(DOM) [20] for XML documents. To select a component, a

policy first gets a handle to it by navigating through the

various layers of the document skeleton, and then sets the

component’s select property to true. A policy specifies how a

component is to be transcoded by appending the Java class

names of one or more transcoders (together with the proper

transcoder parameters) to the component’s transcoding

queue.
After selecting components and setting transcoding

transformations, the policy calls on the Puppeteer Kernel,

which takes care of the actual data transfer and transcoding.

When the content is available at the local proxy, the policy

calls on the application’s export driver to load the newly

fetched components into the application.
Fig. 2 shows the code of a simple adaptation policy for

PowerPoint that loads only the first slide of a presentation

and all its embedded elements (e.g., images and OLE

Objects). The policy first instructs the Puppeteer Kernel to

open the presentation. It then selects the root element (the

presentation) and the first slide with all its embedded items

(its children). The policy then instructs the Puppeteer

Kernel to fetch the components. Finally, the policy uses

the PowerPoint export driver to load the document subset.
At present, Puppeteer supports only one active policy

per document. Users can, however, change the active policy

for a document at any time (see Section 3.5). In the future,

we plan to extend Puppeteer to allow users to combine the

effects of multiple policies by assigning multiple active

policies to a document.
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3.5 User Interaction with Puppeteer

The applications’ toolbars are extended with extra fields for
selecting an adaptation policy that determines the fidelity
level at which a document is opened or saved. Eventually,
Puppeteer could rely on monitoring bandwidth or other
resources to automatically choose a particular policy.

Puppeteer also provides a Component Viewer window
that shows the current state of components in a document.
Using this window, users can determine what components
are currently loaded in the application and what compo-
nents and what versions are in the process of being loaded.
Users can also interact with the Component Viewer to
control the fetching of component versions.

3.6 The Iterative Adaptation Process in Puppeteer

The adaptation process in Puppeteer is divided roughly into
three stages: parsing thedocument touncover the structure of
the data, fetching the initially selected components at specific
fidelity levels, and supplying these components to the
application.

When the user opens a (static) document, the Puppeteer
Kernel on the Puppeteer remote proxy instantiates an
import driver for the appropriate document type. The
import driver parses the document, extracts its skeleton and
data, and generates a PIF. The Puppeteer Kernel then
transfers the document’s skeleton to the Puppeteer local
proxy. The policies running on the local proxy ask the
Puppeteer Kernel to fetch an initial set of components at a
specified fidelity and use the application’s export driver to
supply this set of components to the application in return to
its open call. The application, believing that it has finished
loading the document, returns control to the user.

Meanwhile, Puppeteer knows that only a fraction of the
document has been loaded. The policies in the local proxy
now decide what further components or versions of
components to fetch. They instruct the Puppeteer Kernel
to do so, and then use the application’s export driver to feed
those newly fetched components to the application.

3.7 Implementation Summary

The Puppeteer system is written in Java. On the Windows
platform, we use as applications Internet Explorer (IE), and
PowerPoint, Word, and Outlook from Microsoft Office. On
Linux, we use Presentation and Writer from the OpenOffice
suite. For these applications, we implement the adaptation
policies described in Section 2.1. Fig. 3 provides a summary
of the implementation. Most of the entries in this table are

self-explanatory. There are no tracking drivers for Open-
Office Presentation and Writer, as their APIs do not yet
support event handling in the version used in this paper.
This version also does not yet support embedded objects,
explaining the absence of that entry under the component
types supported for Presentation and Writer. All import
drivers parse the document file to uncover the document’s
component structure, with the exception of Outlook, which
uses the IMAP protocol to obtain the mailbox structure and
its components from the mail server. We build the export
and tracking drivers for our Microsoft Windows-based and
Linux-based applications using COM and CORBA inter-
faces, respectively.

4 IMPLEMENTATION EXPERIENCE

Our experience in implementing a variety of adaptation
policies using iterative adaptation is very favorable. In the
rest of this section, we first comment on the portability of
Puppeteer. We then describe the functionality provided by
the APIs of the applications we adapt. Finally, we reflect on
the limitations we encounter in the APIs and file formats of
these applications.

4.1 Portability

The modular Puppeteer architecture has proven successful
in supporting a large number of adaptation policies for
popular applications on different platforms. The Puppeteer
Kernels used on the Windows and Linux platforms are
identical. In terms of programming effort to implement new
applications and new policies, Fig. 4 shows the code line
counts for the various modules. The line counts for the
Puppeteer Kernel module include the implementations of
the Puppeteer protocol and support for text and progressive
JPEG image compression. The relevant conclusion from this
table is that the application-independent Puppeteer Kernel
constitutes the bulk of the code. The amount of code specific
to each application is much smaller. Similarly, the amount
of code for a specific adaptation policy is small as well, on
average requiring less than 250 lines, even including some
of the more complicated adaptations. This is significant, as
it shows that once the effort to develop new drivers for the
application has been made, developing new policies is
relatively easy. Moreover, it is possible to reuse adaptation
policies between applications that operate on documents
with similar component structures (e.g., PowerPoint and
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Presentation). We also note that Presentation and Writer
store their data natively in XML format and that Power-
Point and Word support XML formats as well. This allows
us to use a common XML parsing package, supplied as part
of Sun’s Java library, reducing the size and complexity of
our input drivers.

4.2 Existing API Functionality

The exported APIs of our applications are implemented
based on the CORBA (Presentation and Writer) or COM
(PowerPoint, Word, IE, and Outlook) standards. COM and
CORBA are language-independent and support Java clients
provided the Java applications have the necessary bindings.2

To a Java application, the PowerPoint bindings appear to be
regular Java objects. A call to a function of a binding object,
however, results in the remote invocation of a function in the
application being adapted.

We encounter a large degree of diversity in the
functionality supported by the exported APIs of our
applications. Typically, the exported APIs mimic the
functionality available to a user interacting with the
application through its GUI. For example, PowerPoint and
Presentation provide APIs for opening presentations,
navigating between slides, creating and reordering slides,
and inserting embedded objects such as images. Some
applications provide APIs with functionality beyond what
is available to an interactive user. For example, IE provides
full access to the DOM, allowing external programs to
dynamically add elements to an HTML document or reload
embedded objects, such as images.

There is an even greater variation in event notification
mechanisms. For example, PowerPoint’s event notification

mechanism is primitive and encompasses just a handful of
large-granularity events like opening or closing of docu-
ments, making it inadequate for tracking the behavior of the
user. The PowerPoint tracking driver relies, instead, on
polling to determine the slide currently being displayed. In
contrast, IE has a rich event mechanism that allows third-
party applications to register call-back functions for a wide
range of events. The IE tracking driver uses this interface to
detect when the user types a URL or moves the mouse over
an image. We use the former event to instruct the Puppeteer
Kernel to open a new HTML document, while the latter is
used by policies to drive image fetching and fidelity
refinement (e.g., refine the image currently pointed by the
mouse).

4.3 Limitations

While we have been able to achieve a large number of
powerful adaptations, these applications and their APIs and
file formats are not designed with adaptation in mind. It
then comes as no surprise that we encounter limitations in
these APIs when we try to use them for the purpose of
adaptation. Some limitations truly prevent us from per-
forming adaptations that we want to implement. Others
simply make it more difficult.

The most restrictive limitations include limits on the
ability to recognize component boundaries and dependen-
cies between components, which prevent independent
loading. Both of these limitations occur in Word and
Writer. The Word and Writer file formats store all the
document’s text in a single component. While pages in
Word or Writer intuitively qualify as components, they are
not reflected as individual components in the document
format. Instead, pages are rendered dynamically when
loading the document. As a result, adaptations like “load
the first page of the document, return control to the user,
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Fig. 4. Code line counts for the Puppeteer kernel, policies, and drivers for PowerPoint, Word, Outlook e-mail, Internet Explorer, and OpenOffice

Presentation and Writer.

2. We synthesize the PowerPoint bindings from their COM IDL
descriptions using off-the-self software [21].



and then load the rest of the document in the background”
cannot be implemented for Word and Writer. Furthermore,
Word and Writer evaluate cross-references and biblio-
graphic citations when first loading the document. The
eager evaluation of dependencies prevents us from inde-
pendently loading paragraphs (which, as opposed to pages,
do appear as recognizable components in the file format).
Cross-references and bibliographic citations are not reeval-
uated when inserting a new paragraph and result in broken
links.

Limitations in the exported APIs for updating the
application make the implementation of some adaptations
for some applications more cumbersome than needed.
Ideally, we would like to load into the application any
document component directly from its persistent represen-
tation. For example, we would like to create a new slide or
update an image by loading its content from a file.
Unfortunately, support for creating and updating compo-
nents in this way is not available in most of our
applications. For example, to add a slide to a PowerPoint
presentation, we create a temporary document that contains
the new slide and load it in the background. We then use
the Java bindings to copy the slide from the temporary
document and paste it in the active presentation. Power-
Point supports loading presentations in invisible mode, so
the user is not aware of the existence of the temporary
document. The use of cut and paste to update images,
however, changes the contents of the clipboard and may
therefore affect the normal operation of the application.
Specifically, users may get an object different from what
they expect if Puppeteer uses the clipboard to update the
document between the times a user copies and pastes
content. While the above example concentrates on Power-
Point, Presentation has similar limitations and requires a
similar solution for adding slides into an open presentation.

The lack of an easy way to add new components or
update existing components may require loading a larger or
higher-fidelity set of initial components than otherwise
required. For example, in PowerPoint, there is no easy way
to update the master slides, which store properties that are
common to all slides in the presentation (e.g., logos,
background color, or font size). For this reason, all our
PowerPoint policies, even those that load only the first slide
or just the text components of the presentation, load all the
elements (images, embedded OLE objects) of the master
slides. Loading the master slides in all cases simplifies the
implementation (it does not have to deal with all the
properties of the master slides) at the expense of the extra
latency incurred to transfer the data for the master slides.

While these limitations are real, we have nonetheless
been able to implement a large number of adaptations for
the different applications without much complexity and
with good performance as shown in the next section.

5 EXPERIMENTAL EVALUATION

In this section, we present experimental results for loading
multimedia-rich documents using three configurations:
native, Puppeteer, and in-application. Native uses the
unmodified application without any adaptive support. This
configuration represents the normal operating mode of the

applications we use, where the application opens a direct
link to the document repository (e.g., file server, IMAP,
WWW) to download content. Puppeteer uses the Puppeteer
system to add adaptive support to the applications. The
applications are unmodified, but document data flows from
the document repository to the application through the
Puppeteer proxies. Finally, in-application uses applications
that we modify to add support for adaptation within the
application. The adaptive versions of the applications
consist of two parts: a proxy that can service individual
document components and perform transcoding transfor-
mations, and the modified application which interacts with
the user and requests components from the proxy. Docu-
ment data flows from the document repository to the proxy
and from there to the application running on the mobile
device.

We perform our experiments on a platform that consist
of three Pentium III 500 MHz PCs running either Windows
2000 or Redhat Linux 7.0. One PC is configured as a data
server running Apache 1.3 or Cyrus IMAP 1.6.24. This PC
stores all the documents and emails we use in our
experiments. A second PC plays the role of the mobile
wireless client and runs the user’s applications. For our
experiments with Puppeteer, this PC also runs the Puppet-
eer local proxy. For our experiments with Puppeteer and in-
application adaptation, we use a third PC that runs either
the Puppeteer remote proxy or the proxy that supports the
adaptive application.

To control the bandwidth between the PC playing the
role of the mobile wireless client and the rest of the testbed,
we use an extra PC running the DummyNet network
simulator [22]. The placement of the PC running Dummy-
Net depends on the specific configuration. For the native,
Puppeteer, and in-application configurations, the PC running
DummyNet is placed between, on one hand, the PC playing
the role of the mobile wireless client and, on the other hand,
the data server, the PC running the Puppeteer remote
proxy, and the PC running the proxy that supports the
adaptive application, respectively. The Puppeteer remote
proxy and the proxy that supports the adaptive application
communicate with the data server over a high-speed LAN.

We report results for three different bandwidths: one at
which the application is network-bound, one at which it is
CPU-bound, and one in-between. Although one would
expect to use adaptation only at low bandwidths, the
higher-bandwidth results are included for completeness.

The data sets we use for PowerPoint, Word, Presentation,
and Writer consist of Microsoft Office documents down-
loaded from the Web through October 1999 and character-
ized in de Lara et al. [6]. We experiment with PowerPoint
and Word documents ranging in size from 52 KB to 21 MB
and from 280 KB to 2.4 MB, respectively. For Presentation
and Writer, we convert the documents from their original
PowerPoint and Word formats to the OpenOffice formats.
IE loads HTML documents downloaded from the Web
through March 2000 by reexecuting the Web traces collected
by Cunha et al. [23]. We present results for HTML
documents ranging in size from just over 4 KB to 756 KB.
Finally, the Outlook emailer loads synthetic emails with
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image attachments. The emails ranged in size from 7 KB to
2.9 MB.

In the rest of this section, we first measure the
effectiveness of the Puppeteer adaptation system for several
sample adaptation policies. We then compare Puppeteer’s
performance to the in-application approach that imple-
ments adaptation within the application. Finally, we
quantify the Puppeteer overhead.

5.1 Some Adaptation Policies

This section illustrates the performance of some sample
adaptation policies implemented in Puppeteer. Figs. 5, 6,
and 7 show the latencies for these sample policies as a
function of the size of the documents. We compute latency
as the time interval between the time of the initial request to
load a document and the time when some version of the
document is rendered by the application and control is
returned to the user. All figures show a common trend. For
low bandwidths, the network is the bottleneck, and the
benefits of adaptation are most significant. The latencies are
largely dependent on the size of the data transferred. They
grow more or less linearly as document size gets larger, and
the latency data points lie in a straight line. For higher

bandwidths, the data points become more dispersed. The

experiments become CPU-bound, and the latency is

governed by the time it takes the application to parse and

render the document, which depends on the document’s

size, as well as its structure (number of images, embedded

objects, pages, etc.).

5.1.1 PowerPoint and Presentation: Fetch First Slide

and Text

In this experiment, we measure the latency for loading

PowerPoint and Presentation documents with an adapta-

tion policy that returns control to the user once the

application loads all the components of the first slide, but

just the text component of all remaining slides. Afterward,

the other components of the remaining slides are loaded in

the background. With these adaptations, user-perceived

latency is much reduced compared to loading the entire

document before returning control to the user.
Fig. 5 shows the results of these experiments for 384 Kb/

sec, 1.6 Mb/sec, and 10 Mb/sec network links. For each

document, the figures contain two vertically aligned points

representing the latency in two system configurations: native
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Fig. 5. Fetch First Slide and Text. Latency for loading documents with PowerPoint and Presentation over 384 Kb/sec, 1.6 Mb/sec, and 10 Mb/sec.
Shown are latencies for native PowerPoint (PowerPoint.native) and native Presentation (Presentation.native), Puppeteer runs for loading just the
components of the first slide and the text of the remaining slides (PowerPoint.slide+text, Presentation.slide+text), and runs of a modified version of
Presentation which implements adaptation within the application and loads just the components of the first slide and the text of the remaining slides
(InAppPresentation.slide+text). (a) PowerPoint 384 Kb/sec, (b) PowerPoint 1.6 Mb/sec, (c) PowerPoint 10 Mb/sec, (d) Presentation at 384 Kb/sec,
(e) Presentation 1.6 Mb/sec, and (f) Presentation 10 Mb/sec.



PowerPoint (PowerPoint.native) or native Presentation (Pre-
sentation.native), and Puppeteer runs for PowerPoint and
Presentation for loading all the components of the first slide
and the text of all remaining slides (PowerPoint.slide+text,
Presentation.slide+text). In addition to the data for native
Presentation and Presentation with Puppeteer, Figs. 5d, 5e,
and 5f also plot latencies for loading the documents with a
modified version of Presentation (InAppPresentation.slide+-
text), which supports adaptation within the application. We
defer the discussion of these results to Section 5.2.

We expect that reduced network traffic would improve
latency with the slower 384 Kb/sec network. The savings
over the 10 Mb/sec network come as a surprise. While
Puppeteer achieves most of its savings on the 384 Kb/sec
network by reducing network traffic, the transmission times
over the 10 Mb/sec network are too small to account for the
savings. The savings result, instead, from reducing the
parsing and rendering time.

On average, for documents larger than 1 MB, Power-
Point.slide+text achieves latency reductions of 75 percent,
71 percent, and 54 percent on 384 Kb/sec, 1.6 Mb/sec, and
10 Mb/sec networks, respectively. Presentation.slide+text
achieves latency reductions of 61 percent, 36 percent, and

13 percent, respectively, for the same documents on the
same networks. These results show that, for large docu-
ments, it is possible to return control to the user after
loading just a small fraction of the document’s total data
(about 10.9 percent for documents larger than 4 MB).

Latency reductions for Presentation are lower because
rendering is done more efficiently in Presentation than in
PowerPoint. The Puppeteer overhead for adapting the same
document is similar for both applications. Presentation’s
lower rendering time, however, effectively increases the
relative contribution of the Puppeteer overhead to overall
latency. This, in turn, results in lower relative latency
reductions. We discuss Puppeteer’s overhead in more detail
in Section 5.3.

5.1.2 Word and Writer: Text and Small Images

In this experiment, we reduce user-perceived download
latency for Word and Writer documents by loading only the
text of the documents and images smaller than 4 KB before
returning control to the user. We also explore the use of text
compression to further reduce download latency. Fig. 6
shows the latency for loading the Word and Writer
documents over 56 Kb/sec, 384 Kb/sec, and 10 Mb/sec
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Fig. 6. Text and Small Images. Latency for loading documents with Word and Writer over 56 Kb/sec, 384 Kb/sec, and 10 Mb/sec. Shown are
latencies for native Word and Writer (Word.native, Writer.native), Puppeteer runs that load text and images smaller than 4 KB (Word.smallimag,
Writer.smallimag) and load compressed text and images smaller than 4 KB (Word.text+smallimag, Writer.text+smallimag), and runs of a modified
version of Writer which implements adaptation within the application, and loads compressed text and images smaller than 4 KB
(InAppWriter.text+smallimg). (a) Word 56 Kb/sec, (b) Word 384 Kb/sec, (c) Word 10 Mb/sec, (d) Writer 56 Kb/sec, (e) Writer 384 Kb/sec, and
(f) Writer 10 Mb/sec.



networks. The figures show latencies for native Word and
Writer (Word.native, Writer.native) and for Puppeteer runs
that load only the text and images smaller than 4 KB
(Word.smallimag, Writer.smallimag), and load gzip-com-
pressed text and images smaller than 4 KB (Word.text-
comp+smallimag, Writer.textcomp+smallimag). In addition to
the data for native Writer and Writer with Puppeteer,
Figs. 6d, 6e, and 6f also plot latencies for loading the
documents with a modified version of Writer (InApp-
Writer.text+smallimg), which supports adaptation within
the application. We differ the discussion of these results
to Section 5.2.

Word.smallimag and Writer.smallimag show how loading
images smaller than 4 KB reduces latency for about half of
the documents. For these documents, smallimag achieves an
average reduction in latency of 55 percent for Word and
57 percent for Writer, over 56 Kb/sec. Word.textcomp+smal-
limag and Writer.textcomp+smallimag further reduce latency
for all documents. For all documents, textcomp+smallimag
achieves on average a reduction in latency of 85 percent for
Word and 59 percent for Writer, over 56 Kb/sec. For
documents larger than 1 MB, it achieves a reduction of
61 percent for Word and 50 percent for Writer over 384 Kb/
sec. The textcomp+smallimag latency reductions for Writer
are smaller than for Word. As was the case for Presentation

and PowerPoint, Writer is more efficient at parsing and
rendering documents than Word and, therefore, the relative
contribution of Puppeteer’s overhead to the overall latency
is higher for Writer than for Word. We discuss Puppeteer’s
overhead in more detail in Section 5.3. Finally, Figs. 6c and
6f show that, for most documents on 10 Mb/sec networks,
text compression is detrimental to performance.

5.1.3 Outlook and IE: JPEG and Text Compression

In this experiment, we explore the use of progressive JPEG
compression to reduce the user-perceived latency for
HTML pages and emails. Our goal is to reduce the time
required to display a page or load an email by lowering the
fidelity of some of the document’s images.

Our prototype converts, at runtime, GIF and JPEG
images embedded in the HTML documents or e-mails into
a progressive JPEG format using the PBMPlus [24] and
Independent JPEG Group [25] libraries. We then transfer
only the first 1

7 th of the resulting image’s bytes. In the client
we convert the low-fidelity progressive JPEG back into
normal JPEG format and supply it to IE or Outlook as
though it comprised the image at its highest fidelity. Finally,
the prototype only transcodes images that are greater than a
user-specified size threshold. The results reported in this
paper reflect a threshold size of 8 KB, below which it
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Fig. 7. JPEGand Text Compression. Latency for loading document with IE over 56 Kb/sec, 384 Kb/sec, and 10Mb/sec, and emails with Outlook over
384 Kb/sec, 1.6 Mb/sec, and 10 Mb/sec. Shown are latencies for native IE and Outlook (IE.native, Outlook.native), and Puppeteer runs that load
transcoded images (IE.imagtrans, Outlook.imagtrans). For IE, the figures also show the latency for Puppeteer runs that load transcoded images and
gzip-compressed text (IE.fulltrans). (a) IE 56Kb/sec, (b) IE 384Kb/sec, (c) IE 10Mb/sec, (d)Outlook384Kb/sec, (e)Outlook1.6Mb/sec, and (f)Outlook
10 Mb/sec.



becomes cheaper to simply transmit an image rather than to
run the transcoder.

Fig. 7 shows the latency for loading the HTML
documents over 56 Kb/sec, 384 Kb/sec, and 10 Mb/sec
networks, and for loading the e-mails over 384 Kb/sec,
1.6 Mb/sec, and 10 Mb/sec networks. The figures show
latencies for native IE and Outlook (IE.native, Outlook.native)
and for Puppeteer runs that load transcoded images
(IE.imagtrans, Outlook.imagtrans). For IE, the figures also
show the latency for Puppeteer runs that load transcoded
images and gzip-compressed text (IE.fulltrans). We do not
show Outlook runs with gzip-compressed text, since the
text components of our emails are small (under 8 KB) and
the results are similar to Outlook.imagtrans.

IE.imagtrans shows that, on 10 Mb/sec networks,
transcoding is always detrimental to performance. In
contrast, on 56 Kb/sec and 384 Kb/sec networks, Puppeteer
achieves an average reduction in latency, for documents
larger than 128 KB, of 59 percent and 35 percent for 56 Kb/
sec and 384 Kb/sec, respectively. A closer examination
reveals that roughly two thirds of the documents see some
latency reduction. The remaining third of the documents,
those seeing little improvement from transcoding, are
composed mostly of HTML text and have little or no image
content. To reduce the latency of these documents, we add
gzip text compression to the adaptation. The IE.fulltrans run
shows that, with image and text transcoding, Puppeteer
achieves average reductions in latency, for all documents
larger than 128 KB, of 76 percent and 50 percent, for 56 Kb/
sec and 384 Kb/sec, respectively.

Outlook.imagtrans shows that on 10 Mb/sec networks,
transcoding is useful only for emails with image attach-
ments larger than 512 KB. The latency savings at 10 Mb/sec
result from reducing the parsing and rendering time of the
attachments. Outlook.imagtrans achieves an average reduc-
tion in latency, for documents larger than 128 KB, of
85 percent and 71 percent, for 384 Kb/sec and 1.6 Mb/sec,
respectively.

Overall transcoding time takes between 11.5 percent to
less than 1 percent of execution time. Moreover, since
Puppeteer overlaps image transcoding with data transmis-
sion, the overall effect on execution time diminishes as
network speed decreases.

5.2 Comparison with In-Application Adaptation

In this section, we compare iterative adaptation to in-
application adaptation, an approach where applications
have native support for adaptation. Our comparison
focuses on the performance of these approaches for loading
remote content over bandwidth-limited links and the ease
with which new adaptation policies can be implemented.

5.2.1 Performance

Extending an application to support in-application adapta-
tion requires access to its source code. This requirement
prevents us from adding native adaptation support to our
Windows-based applications. Fortunately, Presentation and
Writer are part of the OpenOffice suite, an open-source
initiative, which enables us to modify them to add native
support for adaptation.

We modify Presentation and Writer to implement the
adaptive policies described in Section 2.1. In the rest of this
discussion, we refer to the modified applications, which

have native support for bandwidth adaptation, as Adaptive
Presentation and Adaptive Writer.

Figs. 5d, 5e, and 5f plot the latencies for loading
presentations over 384 Kb/sec, 1.6 Mb/sec, and 10 Mb/
sec network links with native Presentation without any
adaptation support (Presentation.native), Presentation with
Puppeteer support (Presentation.slide+text), and Adaptive
Presentation (InApplication.slide+text). The Puppeteer and
Adaptive Presentation runs implement an adaptation policy
that returns control to the user after it loads the components
of the first slide and the text component of all remaining
slides. The components of the remaining slides are loaded
afterward in the background.

The results for native Presentation and Presentation with
Puppeteer support are discussed in Section 5.1.1. We now
focus on the results for Adaptive Presentation. Our first
observation is that Adaptive Presentation always outper-
forms Presentation with Puppeteer support. This result is
expected as Adaptive Presentation incurs less extra proces-
sing overhead. While in Puppeteer every document is
parsed twice, first by the Puppeteer system and then by the
application being adapted, Adaptive Presentation only has
to parse the document once. The performance gap between
Adaptive Presentation and Puppeteer is, however, small,
averaging 4 percent, 13 percent, and 28 percent, for
presentations larger than 2 MB, over 384 Kb/sec, 1.6 Mb/
sec, and 10 Mb/sec, respectively. Moreover, the perfor-
mance gap narrows rapidly as document size grows and
network speed goes down. The results for Adaptive Writer
and Writer with Puppeteer support shown in Figs. 6d, 6e,
and 6f are similar to those of Adaptive Presentation.

5.2.2 Programming Cost

While the source code for OpenOffice Presentation and
Writer is freely available on the Web, modifying these
applications to add native support for adaptation is a
challenging undertaking. OpenOffice sources consist of
more than 20,000 files with over 8 million lines of code, for a
code base of roughly 200 MB.

Independent of the approach to adaptation, the cost of
adding adaptive support for an application can be split into
two components: a base cost that includes the required
infrastructure for making the application adaptable and an
incremental cost incurred for each adaptation policy that is
implemented. For in-application adaptation, the base
adaptation cost to support Presentation and Writer consists
of the programming cost of providing a transcoding proxy.
Fortunately, the OpenOffice distribution already includes a
proxy server that can service individual document compo-
nents to OpenOffice applications over the network. This
limits our programming effort to extending the proxy with
transcoding support. The incremental cost consists of
adaptation policies that modify the control flow of the
application, changing the order in which it loads compo-
nents or their fidelity. In our experience, adding a new
adaptation policy to Presentation or Writer typically
requires close to 1,000 lines of code.

In the case of Puppeteer, the base adaptation cost
consists of the programming effort required to develop
drivers for the application, which handle the lack of
uniformity in document formats, APIs, and event handling
mechanisms. Once these drivers are available, however,
creating a new adaptation policy is straightforward. On
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average, our adaptation policies require less than 250 lines
of code. Moreover, we are able to reuse adaptation policies
between applications that operate on documents with
similar component structures (e.g., PowerPoint and Pre-
sentation).

The difference in the programming effort for implement-
ing adaptation policies in iterative adaptation and in-
application adaptation derives from the level of abstraction
at which adaptation policies are defined. Adaptation
policies in Puppeteer are written at a high level of
abstraction, as the exported APIs that Puppeteer uses for
adaptation tend to encompass significant functionality in a
single function call. The API shields the Puppeteer policy
developer from much of the complexity involved in
implementing the actual functionality supported by the
interface. In contrast, in-application adaptation policies are
written using lower-level primitives, requiring more work
from the policy developer.

Moreover, because exported APIs are meant to be used
by a large set of users, they tend to be better documented
and change at a much lower rate than the internals of an
application. For example, COM interfaces once published
are considered immutable.3

Conversely, because in-application adaptation has full
access to the application’s source code, it is not limited by
the specific functionality that the application chooses to
export through its API. Therefore, a wider set of adaptation
policies can be implemented (albeit at a higher program-
ming cost) with in-application adaptation than with
iterative adaptation.

5.2.3 Summary

The results presented in this section confirm the intuition
that an in-application approach to adaptation can achieve
larger latency reductions than a centralized approach to
application adaptation, such as iterative adaptation. The
experimental results show, however, that the performance
gap is small and narrows rapidly as document size grows

and network speed goes down. In contrast, the program-
ming effort required to add a new adaptation policy is
significantly larger for in-application adaptation than for
iterative adaptation.

5.3 Puppeteer Overhead

The Puppeteer overhead consists of two elements: a one-
time initial cost and a continuing cost. The one-time initial
cost consists of the CPU time to parse the document to
extract its PIF and the network time to transmit the skeleton
and some additional control information. Continuing costs
come from the overhead of the various exported API
commands used to control the application.

5.3.1 Initial Adaptation Costs

To determine the one-time initial costs, we compare the
latency of loading PowerPoint, Word, HTML, e-mail,
Presentation, and Writer documents in their entirety using
the native application and the application with Puppeteer
support. This policy represents the worst possible case; it
incurs the overhead of parsing the document to obtain the
PIF and it does not benefit from any adaptation (i.e., it loads
all components at their highest fidelity).

Figs. 8a and 8b show the latency overhead, and Fig. 9
shows the data overhead for loading entire documents with
PowerPoint,Word, IE,Outlook, Presentation, andWriter.We
maximize the overhead by using a policy that requests
components individually. This policy does not benefit from
the batching of control messages and, instead, incurs a
separate control message for every loaded component.
Latency and data overheads are normalized by the latencies
and data traffic for loading the documents with the native
applications.Overall, for all these applications, thePuppeteer
latency overhead becomes less significant as document size
increases and network speed decreases. Moreover, for large
documents transmitted over medium to slow-speed net-
works, where adaptation would normally be used, the
Puppeteer latency overhead is small compared to the total
document loading time. For example, the overhead for
PowerPoint and IE for large documents is just 2 percent over
384 Kb/sec and 4.7 percent over 56 Kb/sec, respectively.

DE LARA ET AL.: ITERATIVE ADAPTATION FOR MOBILE CLIENTS USING EXISTING APIS 13

3. In COM, a vendor needs to create a brand new interface in order to
add new calls to an exported API. This constraint ensures that older clients
retain forward compatibility, while newer clients can take advantage of the
new functionality.

Fig. 8. Initial adaptation costs. (a) and (b) show latency overhead for loading documents and emails with Puppeteer for PowerPoint, Presentation,

Outlook, Word, Writer and IE.



Puppeteer’s overhead is larger for Presentation and
Writer than for PowerPoint and Word because Presentation
and Writer are more efficient parsing and rendering
documents than PowerPoint and Word. While the Puppet-
eer execution time is virtually identical for the two sets of
applications, the lower parsing and rendering time in-
creases Puppeteer’s relative contribution to overall latency.

Fig. 9 decomposes the data overhead into data trans-
mitted to fetch the skeleton (skeleton) and data transmitted
to request components (control). This data confirms the
results of Figs. 8a and 8b. The Puppeteer data overhead
becomes less significant as document size increases. For
example, the data overhead for PowerPoint and HTML
documents is as little as 2.9 percent and 1.3 percent,
respectively.

5.3.2 Continuing Adaptation Costs

The continuing costs of adaptation using the exported APIs
are clearly dependent on the application and the adaptation
policy. Our purpose is not to give a comprehensive analysis
of exported API-related adaptation costs, but to show that
they are small compared to the network transfer times.

We perform two experiments: loading and pasting new
slides into a PowerPoint presentation and replacing all the
images of an HTML page with higher-fidelity versions. To
prevent network effects from affecting our measurements,
we make sure that the data is present locally at the client
before we load it into the application.

For PowerPoint, we find that the average time to load a
single slide in a presentation is 894 milliseconds with a
standard deviation of 819 milliseconds. For each additional
slide inserted in the application with the same API call, the
average time is 539milliseconds with a standard deviation of
591milliseconds. In comparison, the average network time to
load a slide over the 384 Kb/sec network is 2,994 milli-
seconds, with a standard deviation of 3,943 milliseconds.

For IE, the average time to load an image in a page is
33 milliseconds with a standard deviation of 19 milli-
seconds. Loading additional images as part of the same
update takes an average of 33 milliseconds per image with a
standard deviation of 12 milliseconds. These image update
times are small compared to the average network time. For
our data set, the average time to load an image over a
56 Kb/sec network is 565 milliseconds with a standard
deviation of 635 milliseconds.

The above results suggest that the cost of using exported
API calls for adaptation is small (e.g., for IE, the API
overhead of loading an image is 5.8 percent) and that most
of the time that it takes to add or upgrade a component is
spent transferring the data over the network.

6 RELATED WORK

There are many possible implementations of bandwidth
adaptation. Based on where the adaptation is implemented,
we recognize a spectrum of possibilities with two extremes:
system-based [9] [11] and in-application adaptation [7], [8],
[18]. With system-based adaptation, the system performs all
adaptation by interposing itself between the application and
the data. No changes are needed in the application. System-
based adaptation also provides centralized control, allow-
ing the system to adapt several applications according to a
system-wide policy. With in-application adaptation, the
application is changed to add the required adaptive
behavior. System-based adaptation is limited to data
adaptation, while in-application adaptation allows both
data and control adaptation. Iterative adaptation attempts
to bring together the benefits of system-based and in-
application adaptation, namely, to implement control
adaptations without modifying the applications and to
retain centralized control over adaptation.

Another approach that tries to strike a middle ground
between system-based and in-application adaptation is
application-aware adaptation [10], [26]. Here, the system
provides some common adaptation facilities and serves as a
centralized locus of control for the adaptation of all
applications. The applications are modified to implement
control adaptations and to perform calls to an adaptation
API provided by the system. Iterative adaptation has
similarities to application-aware adaptation. Both ap-
proaches delegate common adaptation tasks to the system,
which provides a centralized locus of control for adaptation
of multiple applications. The approaches differ, however, in
how control adaptation policies are implemented. In
iterative adaptation, the applications export the interfaces
and the system invokes those interfaces to perform
adaptation. The precise opposite occurs in application-
aware adaptation, where the applications are modified to
call on the system’s adaptation API. Iterative adaptation is a
more flexible approach to adaptation than application-
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aware adaptation. Whereas application-aware adaptation
requires the application designer to foresee all necessary
adaptations at the time the application is written, iterative
adaptation enables third parties to add new adaptation
policies after the application has been released.

Visual Proxies [18], an offspring of Odyssey [26],
implements application-specific adaptation policies without
modifying the application by using interposition between
the window system and the application. This technique is
limited to window system commands and does not use
exported application APIs. While it enables some of the
same adaptations, it requires much more complicated
application constructs.

Several groups [27], [28], [29] have suggested the need
for centralized adaptation systems that implement system-
wide adaptation policies. In these approaches, the adapta-
tion system monitors system resources and user behavior
and coordinates the adaptation of the applications running
on the client by issuing commands that force the applica-
tions to adapt. Although similar in nature to Puppeteer,
these efforts have been mainly focused on streaming media
and limit the adaptation system to switching the application
between a few predefined operation modes.

Iterative adaptation differs from approaches that use
exported APIs to change the application’s algorithms by
dynamically reconfiguring the application’s component
structure [30], [31], [32], [33], [19]. While dynamic compo-
nent-based application reconfiguration is a technique that is
arguably more powerful than iterative adaptation, at the
time of writing, we are not aware of any widely-deployed
commercial application that supports dynamic component
reconfiguration.

7 CONCLUSIONS

This paper presents the concept of Iterative Adaptation.
Underlying iterative adaptation is the idea that the
adaptation system controls applications by calling methods
in the APIs that the applications export. This approach has a
number of advantages: it allows a wide variety of
adaptation policies to be implemented with popular office
productivity applications, it achieves significant latency
reductions over low-bandwidth links, and it does not
require any modifications to the applications.

We have implemented the concept of iterative adaptation
in the Puppeteer system. We have used Puppeteer to
evaluate the extent to which existing APIs can be used for
the purposes of adapting document-based applications for
bandwidth-limited devices. In particular, we have imple-
mented a number of adaptation policies for popular
applications from the Microsoft Office and the OpenOffice
productivity suites and for Internet Explorer. Although we
have found some limitations in their APIs, we have been
able to implement a large number of adaptations policies
without much complexity and with little overhead. More-
over, Puppeteer achieves performance similar to in-applica-
tion adaptation, an approach that implements adaptation by
modifying the application, while requiring just a fraction of
the coding effort.

Puppeteer’s modular architecture is specifically designed
to limit the amount of development for integrating new

applications and new adaptations. Overall, we have found

that the bulk of the code is platform and application-

independent. Due to the lack of uniform document formats,

APIs, and event handling mechanisms, some amount of

development remains necessary to support a new applica-

tion. Once the application-specific code for Puppeteer is

implemented, however, writing new adaptation policies

proves much easier.
In future work, we plan to explore requirements for

standard interfaces and file formats that would make

applications more amenable to adaptation and limit the

programming effort that goes into supporting new compo-

nent types. We are also pursuing related research in

specifying and enforcing complex adaptation policies that

provide fair use of system resources across multiple

applications.
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