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Abstract—In many edge computing scenarios data is generated
over a wide geographic area and is stored near the edges, before
being pushed upstream to a hierarchy of data centers. Querying
such geo-distributed data traditionally falls into two general
approaches: push incoming queries down to the edge where the
data is, or run them locally in the cloud.

Feather is a hybrid querying scheme that exploits the hi-
erarchical structure of such geo-distributed systems to trade
temporal accuracy (freshness) for improved latency and reduced
bandwidth. Rather than pushing queries to the edge or executing
them in the cloud, Feather selectively pushes queries towards the
edge while guaranteeing a user-supplied per-query freshness limit.
Partial results are then aggregated along the path to the cloud,
until a final result is provided with guaranteed freshness.

We evaluate Feather in controlled experiments using real-
world geo-tagged traces, as well as a real system running across
10 datacenters in 3 continents. Feather combines the best of cloud
and edge execution, answering queries with a fraction of edge
latency, providing fresher answers than cloud, while reducing
network bandwidth and load on edges.

I. INTRODUCTION

Consider a hypothetical Industrial-Internet-of-Things (IIoT)
application deployed over a 3-tier network [1], as shown in
Figure 1. Machines on the factory floor generate large volumes
of data, used locally for low-latency process control decisions
on the production line. The data is also forwarded to a local
aggregation center, perhaps one per factory or a group of
factories, where more resource-intensive predictive maintenance
models can be applied, and where latency requirements are less
stringent. Finally, data is forwarded from the core to a cloud
server, where a management backend shows a web dashboard
with global production status and inventory. It can also be used
for training machine learning on historical data, since more
resources are available in the cloud. Similar unidirectional data
flow is common in other settings, such as urban sensing [2]–
[4], smart grid [5], [6], IoT and wearable devices [7]–[9], and
healthcare [10], [11].

Data management in this geographically-distributed en-
vironment can be challenging: network links have limited
bandwidth, high latency variation, and can intermittently fail .
Luckily, many applications exhibit strong locality: most reads
and writes can be done locally, and changes need not be
immediately replicated to the entire network. Therefore, a
common scheme provides fast local reads and writes using
a high-performance local data store (e.g., one per factory
floor), then periodically propagate data it upwards using a
best-effort or on-demand strategy [8], [12]–[14]. This scheme
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Fig. 1. Example IIoT application components deployed over a 3-tier network.
Data is collected from each factory floor and must be sent up the hierarchy.
Process control functions run on the factory floor, since they require fresh local
data and low latency. Predictive maintenance models consume more resources,
but use staler data from multiple production lines. Global dashboard runs in
the cloud, and requires balancing data freshness with answer latency.

is eventually-consistent, handles link failures, and is relatively
straightforward to implement and reason about.

This scheme, however, provides no guarantee on the fresh-
ness of data received from lower layers when executing read
queries at the parent (e.g., cloud). Consider a read query
initiated on the cloud by the management backend in our
example. Since the most up-to-date data is distributed over
factory floors and local aggregation centers, it is difficult to
guarantee the freshness and completeness of the read query.

One common approach to handling such queries is to
execute them on the cloud’s local replica: since all data
will be eventually replicated to the cloud, we can answer
the query using the data that has already been replicated.
This provides an answer very quickly, but it might be very
stale; there are no guarantees on data freshness. The other
extreme is to fetch up-to-date data from edge devices to
the cloud where the results can be aggregated [15]. This
results in fresh data but incurs high latency, additional load
on edge nodes, more bandwidth usage, and may even miss
data if an edge is unreachable. Another alternative is stream
processing: queries are decomposed to graphs of operators, and
are distributed across the edge network. Data can be processed
and aggregated as it is streamed from the edge towards the
cloud. However this approach requires deploying, coordinating,
and executing operators across various datacenters. Moreover,
distributed stream processing across edge networks is difficult
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due to unreliable links, frequent reconfigurations, and high
latency [16], [17]. Stream processing therefore incurs high
setup and ongoing costs, and is therefore better suited for
processing a small set of recurrent or continuous queries that
is known in advance. In contrast we are interested in enabling
ad-hoc queries and data exploration.

Our Contribution: We present a hybrid approach for ef-
ficient on-demand global queries with guaranteed freshness
by exploiting the underlying hierarchical structure of edge
networks.

Feather is an eventually-consistent tabular data management
system for edge-computing applications that allows users to
intelligently control the trade-off between data freshness and
query answer latency. Users can specify precise freshness
constraint for each individual query, or alternatively a deadline
for the answer. We then execute this query over a subset of the
network, using local replicas in intermediate network nodes
as caches to avoid querying edge nodes. The result set is
guaranteed to include, in the absense of failures, all data that
is at least as fresh as the specified limit; we further return an
actual freshness timestamp telling users how up-to-date the
query answer is.

To deal with intermittent link errors, Feather also allows
returning of partial answers, and provides users with an
estimate of how much data was missed by the query. Our
Feather prototype supports features typically available in high-
performance tabular data stores: filtering, aggregation, grouping,
ordering, and limiting of the result set. This allows existing
read queries that currently run on centralized tabular databases
to be easily ported.

We evaluate Feather by emulating a geo-distributed service
that is deployed on an edge network, and use traces of geo-
tagged data to mimic the request patterns of geo-distributed
clients. In controlled experiments, we evaluate the effect of
network, topology, and Feather parameters on the tradeoff
between latency, staleness, bandwidth, and work at edge nodes.
We validate our findings by conducting a real-world experiment
where we instantiate an edge network that spans North America,
Europe, and Asia to process local Twitter data. Feather is able
to combine the best of cloud and edge execution, answering
queries with a fraction of edge latency, providing fresher
answers than cloud, while reducing network bandwidth and
load on edges.

II. BACKGROUND

For clarity, we first define key concepts we will use
throughout the paper, and then review several examples of
edge-computing scenarios where ad-hoc querying mechanisms
can be beneficial.

Edge Networks: By edge network, we mean a hierarchical
network where each node is a datacenter in which part of the
application is potentially deployed. At the top of the network is
the cloud datacenter, with high-performance computational and
storage resources that are easy to scale. As we go down the
network hierarchy, datacenters become increasingly resource-
constrained, but also closer to the users and sensors that are

the source of the data. At the very edge of the network are
edge nodes: these are small datacenters, often comprised of
a limited number of computationally-limited machines [18],
[19]. We refer to datacenters on the path from the cloud to an
edge as core nodes. Note we do not consider user devices
or sensors as part of the network itself. Edge computing
applications are applications deployed over edge networks
that divide computation and storage tasks between edge, cloud,
and core nodes.

Applications: Edge computing plays a key role in many
upcoming application scenarios. We focus on a common
scenario where data collected from from end-user devices or
sensors is initially stored locally, and must be later forwarded
to higher layers for ad-hoc querying and analysis. We give
three such examples.

First, in advanced industrial automation scenarios, resource-
limited Internet-of-Things (IoT) devices can log huge amounts
of data metrics, but store it locally to save on bandwidth
and other costs [1], [20]. Figure 1 is an example for such a
scenario. An efficient ad-hoc global querying mechanism can
allow remote monitoring and management without incurring
significant bandwidth or computation overhead. For example,
if a fault in certain class of equipment is suspected, an operator
could query specific relevant metrics for that equipment for the
last minute, hour, or day. Second, smart cities use distributed
sensors to collect data used for pollution monitoring [2],
transportation and traffic control [4], [21], and healthcare [10],
[11]. These sensors produce large amounts of valuable data
and sensory information, not all of it needed to be streamed
in real-time for processing. Instead, data is often uploaded in
batches. Some queries can be ad-hoc, in response to specific
events. For example, an operator could query for the number
of pedestrians and bikes in a specific area affected by a car
accident. Finally, utility companies have been using smart
meters to aggregate usage information from customers [5],
[6]. While these meters periodically send data to a centralized
location for coarse grained analysis, on-demand querying could
allow for fine-grained analysis, which in turn could enable more
responsive resources management.

Eventual-Consistency and Tabular Databases: While the
above scenarios benefit from and efficient and accurate global
querying mechanism, in practice strong consistency over a
large geographical area is difficult to achieve [22], [23]. Data-
heavy edge computing applications are therefore built to
accommodate relaxed consistency guarantees such as eventual
consistency [24]. Updates are not propagated immediately to
all replicas, but are instead propagated periodically or on-
demand. Similarly, edge computing applications often rely
on distributed tabular or key-value stores, rather than classic
relational databases. Joining tables and transaction support can
be prohibitively expensive in distributed settings [25], particu-
larly when the volume of data is large. While relational and
transactional databases in geo-distributed settings is an active
area of research, many current high-performance distributed
databases are tabular or key-value stores [26].
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Fig. 2. The freshness guarantees for Feather global queries. Actual freshness
Tf is guaranteed to be between Tq − L and Ta. Any row created before Tf

(blue) is guaranteed to be included in the results, while rows created after Tf

(green) may or may not be included.

III. DESIGN

In this section we describe the design considerations of
Feather: an geo-distributed tabular data management systems
for hierarchical networks that supports on-demand, global
queries with guaranteed, user-specified lower-bound on data
freshness.

Feather offers applications two types of queries, local and
global. Both types can access data written locally and by de-
scendent nodes, but differ in their guarantees. Local queries are
fast reads and writes executed directly on the high-performance
local data store. This is the type of queries ordinarily performed
by applications, and are also supported by several edge-centric
eventually-consistent distributed databases [14]. Global queries
are the main contribution of Feather. These are on-demand read
queries that provide user-specified freshness guarantees. When
executed on a node, the query response will be computed from
recent local and descendant data, up to a user-specified limit.
By carefully keeping track of update times for data stored
at intermediate nodes, Feather avoids querying remote edges,
allowing for faster responses and conserving bandwidth.

Beyond the freshness guarantee, Feather provides additional
features such as setting query deadlines, estimating result
coverage, and handling link failures gracefully.

A. Semantics of Global Queries with Guaranteed Freshness

We first explain the querying semantics and the guarantees
provided by Feather on-demand query mechanism.

Feather global queries include a freshness constraint provided
by users, which we call laxity L. This constraint guarantees
that data created up to a time t requested by the user will be
in the result set, relaxing the freshness requirements on data.

Formally, if query time Tq is the time the query was sent
for execution to the system, Feather guarantees that the set
of rows used to process the query contains all data updates
(insertions, deletions, and updates) that occurred before the
freshness threshold time defined as Tq −L. While laxity gives
a limit on data freshness, query results can in practice be more
fresh than the limit. Thus query answers also include an actual
freshness time Tf : all data updates that happened before Tf
are included in the answer. Note that updates that happened
after Tf may also be included in the result, but cannot be
guaranteed to be so. The exact value of Tf depends on which

time

A

B C

D E F

K2, 3

K2, 3
K4, 7

K1, 2

K3, 4
K1, 2
K6, 7
K5, 10

2
(K1)

3
(K2)

4
(K3)

7
(K4,K6)

10
(K5)

Tq = 8

L = 2

Fig. 3. Edge network with 6 rows K1 to K6, with row update times (numbers
next to keys). A query submitted to A at time Tq = 8 with laxity of L = 2
must retrieve all keys updated before time Tq − L = 6, and must therefore
access nodes B, C and E, but not D and F .

data has already been replicated up the hierarchy. Additionally,
even if we set L = 0 and had a fresh copy of all data, the
answer could still be slightly out of date: queries take time to
execute and data takes time to transfer between datacenters.
Note that it is possible, though rare in practice, that Tf > Tq .
Hence, we define staleness as the difference between answer
time Ta and the actual freshness time: Ta − Tf . In summary,
Feather guarantees:

Tq − L ≤ Tf ≤ Ta .

Figure 2 illustrates these semantics.
For example, consider a dashboard query from the industrial

monitoring application (Figure 1) that retrieves the average
power consumed by arm robots in the last 10 minutes (600
seconds). Given the needs of the application, we may decide
to allow the data to be out of date for up to 30 seconds, but
no more. We therefore execute the query:

SELECT AVG(power) FROM hardwareStats
WHERE machine = ’arm robot’

AND timestamp >= NOW()-600
LAXITY = 30

This query asks for the average power in all rows created up
to 600 seconds before query time Tq whose machine is arm
robot. The laxity constraints guarantees the average includes
all rows created 30 seconds before query arrived at time Tq,
and perhaps even more recent rows. Suppose this query took 2
seconds to process and answer, so Ta = Tq + 2 seconds, and
the result includes all data up to 20 seconds before Tq. Then
we have that while laxity L = 30 seconds, actual freshness is
Tq − 20 and staleness is Ta − Tf = 22 seconds.

By tuning the laxity constraint, system operators can fine
tune the trade-off between query response time and freshness.
Higher laxity thresholds can result in faster response latency
and reduced bandwidth. To illustrate this, suppose the state
of the system is as shown in Figure 3. A is the cloud, B and
C are core nodes, and D, E and F are edge nodes. Power
consumption events (rows K1 to K6) are created on the nodes
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D to F , and some rows such as K1 have already been replicated
to parent nodes. If a global query to retrieve all rows was
executed at time Tq = 8 starting from node A with a laxity
L = 2, then Feather must guarantee that rows K1,K2,K3

will be in the answer set. As a result, at least nodes B, C,
and E will have to be queried because they all have rows
that should be in the answer set, while F ’s last propagation
time to C is recent enough and therefore we need not query
it. Suppose instead we were to execute the same query at the
same time, Tq = 8, but with a more permissive laxity L = 4.5.
In this case, it would be sufficient to query only nodes B and
C to obtain K1 and K2, resulting in a faster response though
staler data. Returning the previous IIoT example: suppose we
allowed laxity of L = 120 seconds, and received an answer
from the cloud’s local replica in 15 milliseconds with actual
freshness of 90 seconds behind Tq. In such a case, staleness
will be Ta − Tf = 90.015 seconds.

Our freshness guarantee is similar to formal treatments such
as ∆-atomicity [27] and t-freshness [28]; we discuss these in
Section VI.

B. High Level Design

Feather’s assumptions are common in geo-distributed,
eventually-consistent databases [13], [14], [28]–[32]. As de-
scribed in Section II, we assume the system is deployed over
a set of geographically distributed datacenters (nodes) that
communicate through an underlying hierarchical network, and
have synchronized clocks. Specifically, clock drift must be
lower than the minimum one-way latency of any link, i.e.,
up to a few milliseconds. While requiring certain engineering
effort, such accuracy is well within the capability of GPS clocks
and IEEE-1588 [33] which reach microsecond accuracy for
even low-cost hardware [34]. The hierarchical structure of our
system follows the topology of the underlying network. The
local replica at each node need only know about its parent and
keeps track of its children, which allows for both horizontal
and vertical scaling of the system. As with any eventually-
consistent database, users can insert, update, or read data at any
node, and it will be eventually propagated up the hierarchy.

1) Local Persistent Storage: Each Feather replica contains a
high-performance persistent store for both user data as well as
metadata used by Feather1. Local queries from applications are
served directly from this persistent store. Thus, data updates are
written to this local storage by either applications running at the
same datacenter or by Feather when replicating. Similarly, data
is read by user applications as well as by Feather. The local
data store is configured to be strongly consistent, for example
using quorum reads and writes. Since the local storage in each
Feather replica is independent of other replicas, it is easy to
scale it horizontally within a local datacenter.

2) Pushing Upstream: Feather replicas periodically push
batches of new or updated (“dirty”) data upstream to their
parents. The update period and batch size are configurable,

1In practice, such sharing can have security and performance isolation
implications in production systems. While it is not fundamental to our design,
for simplicity, we describe a single local data store that runs a single application.

and control the trade-off between data freshness and resource
usage (such as link bandwidth, CPU, and storage).

Each push update from child to parent also contains the
update time, a timestamp that describes how fresh is the data
being pushed. The update time is defined recursively. For
Feather replicas on non-edge node, the update time is set to
the minimum of latest update times of all its children. For an
edge node, the update time is set to the current timestamp if
the push includes all dirty data, or the update timestamp of
latest row pushed up to the parent if the update needed to be
batched. The update time is used by the querying mechanism
(Section III-C) to guarantee freshness, and is inspired by how
stream processing systems such as Flink [35] and Google Cloud
Dataflow [36] use watermarks to manage operators. Even when
there are no dirty rows, replicas send empty updates to their
parent with the update time as defined above. This helps avoid
spurious child queries in the querying mechanism.

Consider for example in Figure 3. Node C maintains the
latest update time for nodes E and F . If E’s pushed data at
time T2, it would push an empty update with update time T2
to C (since K3 has not yet been created). Now suppose F
pushes data at time T3: it would push K1 to C with update
time T3. The update time for C is therefore T2, the minimum
of the latest update times from E and F , reflecting the fact
that C has not received any data updates from E after T2.

C. Answering Global Queries

The hierarchical global querying algorithm provides the
query semantics defined in Section III-A. Unlike local applica-
tion queries, which are served directly from the persistent store,
the global queries described in Section III-A are processed
hierarchically. Each replica first determines the set of children
needed to execute the query, and then recursively sends it to
each child. Once all partial results sets are received, the replica
merges them and its own local answer, and sends the result to
the parent.

Algorithm 1 describes the hierarchical querying algorithm.
At its core, this algorithm is a recursive, parallel tree traversal.
When a global query is received at a node at time Tq with laxity
L, we must first determine whether it can answer the query
locally, or does it need to recursively query any of its children.
This decision depends on the latest update time received from
each child c, denoted Tu(c). If this time is larger than the
freshness threshold Tq − L, we know that the data we already
have from that node is recent enough that there is no need to
query that child or its own children. If Tu(c) < Tq − L, then
the data pushed by the child to the parent is too stale and we
have to visit the child. This decision then plays out recursively
on each child, which returns the result to its parent.

Nodes execute queries in parallel: queries are first dispatched
asynchronously to child nodes (line 6), then the local query is
executed (line 7), and finally we wait for child responses and
add incorporate them into the query results (line 11).

Finally, the actual freshness time Tf for the result is
defined recursively, similarly to the latest update time. It is the
minimum between the latest update time for the current node
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Algorithm 1: The hierarchical algorithm for global
queries with freshness guarantee L.

Input: query q, query time Tq , laxity L, current node n
Output: result R, actual freshness time Tf

1 Initialize set of accessed children A← ∅
2 Initialize result R
3 foreach child c ∈ children(n) do
4 if last update time from child Tu(c) < Tq − L then
5 Add c to accessed children: A← A ∪ {c}
6 Send global query q to child c
7 Rloc ← execute q on local store on rows not from A
8 Update result R with local results Rloc

9 Set freshness time Tf to latest update time:
Tf ← minc{Tu(c)}

10 foreach response Rc, Tc from child c of node n do
11 Update result R with child result Rc

12 Tf ← min(Tf , Tc)
13 Return results R and actual freshness Tf

minc{Tu(c)} (line 9) and the freshness Tf returned by each
of the sub-queries (line 12). Tf strongly depends on the push
period and the depth of the hierarchical network. We explore
this in Section V.

D. Reversed Semantics for Providing Latency Guarantees

Feather also lets users specify limits on the query response
time. Recall the example query from Section III-A. Suppose
this time the query is executed by a web dashboard with latency
SLA, so we must return an answer within 150 milliseconds even
if it does not include all the freshest data. We therefore replace
the freshness constraint LAXITY = 30 with the latency
constraint DEADLINE = 150ms, which guarantees that the
response will be sent to the client after 150ms. As before,
every response comes with actual freshness time Tf , allowing
the dashboard to display the freshness of this response to the
user. Coverage estimation (Section III-E) provides additional
information as to how much data was included.

Latency guarantee is achieved by treating nodes that did not
respond in time as failed links (Section III-F), and by a small
modification to Alg. 1. When a child receives a global query
from parent, it decreases the deadline to take into account
latency between parent and child, plus some headroom for
processing. In addition to executing the query in line 7, we
also execute one query on the local dataset for each child
that we contacted in line 6 (i.e., a local query for every child
in A). Finally, for every queried child whose response was
not received by the deadline, we instead use the result of the
respective local query to update R in line 11 and Tf in line 12.

E. Result Set Coverage

With each query result, Feather provides analytical informa-
tion on how many nodes participated in the querying process,
how many data rows were included in the query, and an estimate
of the number of updated data rows that were not included in
the query due to freshness constraints or link errors.

The first two are easy to provide: each replica knows how
many children it must query (Algorithm 1), and the total number
of rows received from children and its own local queries.

Estimating the number of new or updated data rows requires
us to track the rate of row updates (and insertions) received
from each child. We estimate the rate of updates from each
child node ρ(c) as the mean rate from the last K updates. In
addition to recording the last update time, each replica also
records the timestamps of the last K + 1 pushes received from
children, and the number of new rows reported on the child.

Let T0(c) be the time of the last push from the child, T1(c)
be the time of the push before that, and so on until TK(c)
Similarly, let Ri(c), i = 0 . . .K, be the number of new rows
on the same child reported during the respective pushes. We
estimate the rate of new rows from the sub-tree at the child as

ρ(c) =

∑K−1
i=0 Ri(c)

T0(c)− TK(c)
.

The estimated number of new or updated in a child c at time
t > T0(c) is therefore ρ(c) · (t − T0(c)). When returning an
answer, we includes the sum of estimates for all children.

As we show in Section V, this simple estimation technique
is sufficiently accurate for the datasets we tested on. If more
accurate estimation is needed, more sophisticated time series
prediction approaches can be used [37]–[39].

F. Handling Failures

Failures are common in geo-distributed environments. In
particular, since networks are large and intermittent link errors
are not uncommon, it is important to have queries running
even if connectivity to some data centers is lost. In addition to
a monitoring system that keeps track of the health of Feather
nodes between datacenters, our queries can timeout. When
Feather produces results for a query, it includes information
about what datacenters it was not able to access.

If a link to a child that must be queried has failed or a
sub-query timed-out, then we cannot provide the freshness
guarantee for that particular query. In such cases, Feather
provides either a complete but less fresh answer that includes
old results for the missing child, or a partial but up-to-date
answer. In the first option, the result set is complete not for
the freshness guarantee requested by the user, but rather a less
strict one that depends on the last update time for the child
connected by the failing link. In other words, the answer is
guaranteed to be complete for the actual freshness Tf , but this
actual freshness is below the freshness threshold: Tf < Tq−L.
For example, though the user requested data that includes no
less than 5 minutes ago, the system returns a complete result
set for the data as of 15 minutes ago. Alternatively, the query
result can fulfill the original freshness guarantee Tf > Tq −L,
with the caveat that it is partial: it does not contain any new
information from the sub-tree that cannot be queried.

In both cases, the failure is communicated to the user: the
answer includes the sub-tree that was excluded, as well as the
estimated number of rows that the query is missing (using the
row coverage feature). Given the actual freshness returned and
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Fig. 4. The main components of an Feather replica. Global queries are sent
to the query server for execution. To provide fast local access, applications
run local writes and reads directly on the persistent store using a user-level
library that handles additional columns needed by Feather.

the number of missing rows, users can then intelligently use
or discard the query results, depending on the application.

G. Adding and Removing Nodes

In Feather, modifications to the topology are local operations
and only involves a parent and child node. Nodes can join the
topology by connecting to their parent node and a parent node
can remove a branch at anytime.

IV. IMPLEMENTATION

We implemented a prototpe of Feather as a Kotlin standalone
application that uses Cassandra 3.11.4 as its persistent storage.
In this section we describe the details of our implementation.

A. Architecture

Feather is comprised of four components on each node,
shown in Figure 4: persistent storage for local data, a query
server to receive queries from parents and return results, a
push daemon to push periodic data updates to parents, and a
receive daemon to receive child updates.

To eliminate overheads, local reads and writes are executed
directly on the local data store. Writes are done through a
small client-side driver that adds the necessary metadata for
the push demon and query servers.

1) Persistent Storage: Our implementation uses Cassandra
[40] as the persistent storage component. Each local replica
runs an independent single-datacenter Cassandra cluster, which
allows horizontal scaling within a datacenter by simply adding
nodes to the local cluster. We configure Cassandra to QUORUM
reads and writes to provide strong consistency within the
datacenter. Feather’s design is independent of the choice of the
underlying datastore, and can be adapted to use other systems.

2) Push Daemon: The push daemon is responsible for
replicating new and updated data upstream towards the cloud.
Whenever a row is written or updated on a local database, the
row is marked as dirty, with an update timestamp. The push
daemon runs in the background and periodically pushes dirty
data to the receive daemon in the parent [13], [14]. To avoid
saturating links or overwhelming the parent, dirty data that is
too large is pushed in batches sorted by timestamp from older
to more recent. After a row has been successfully pushed on
to the parent receive daemon, it will be marked as clean.

3) Receive Daemon: The receive daemon is a background
process running on each replica that is not located on an edge
node. It is responsible for receiving data from the children’s
push daemonson the node and storing data on the persistent
storage. It also records the latest update time as received from
each child.

4) Query Server: The query server processes global queries,
and is responsible to executing Algorithm 1 using information
recorded by the receive daemon.

B. Writing and Replicating Data

User applications write data directly to the Feather local
store at the node they are running at. To support replication
and querying, the following columns are added to the client
applications’ schema, and added to user writes by a client-
side driver: (i) a timestamp column; (ii) a Boolean dirty
column to identify rows that have not yet been pushed up; and
(iii) a prev_loc that determines from which node the row
was received from. If the row was produced on the same node,
it will be populated with that nodes’ ID.

After data is written to a replica on a node, it is replicated
(pushed) to ancestor nodes on the path to the cloud. Feather
implements a write log for each row of a table by adding
a timestamp column as the last element of the table’s
clustering key. This is a UUID timestamp that records the
time the row was inserted. It is used to resolve write conflicts
with a last-write-wins policy, and to determine update times
(Section III-B). As described in Section III-B, Feather assumes
that all replicas have sufficiently synchronized GPS clocks.

Modifications and updates are propagated through the
hierarchy by the push daemon on each node. The push daemon
periodically selects all rows that have not been pushed to the
receive server (starting from the older ones) and sends them to
the receive daemon on the parent node through ZeroMQ [41],
which writes the data to the parent’s persistent storage. Feather
marks a row dirty when it is inserted into the local Cassandra
instance by a local write or the receive deamon. The row is
only marked as clear when the parent acknowledges reception
and storage of the write.

C. Implementing Global Queries

As shown in Figure 5, Feather queries follow the for-
mat of CQL queries, with additional conditions on data
freshness or result latency. To make porting applications
easier, and since it is built on top of Cassandra, we support

276



SELECT * | expression [, ...]
FROM table
[ WHERE condition ]
[ GROUP BY expression [, ...] ]
[ LIMIT count ]
[ LAXITY time-delta | DEADLINE time-delta]

Fig. 5. The syntax of a query in Feather.

almost all features provided by CQL, specifically all ag-
gregate functions (*, MAX, MIN, AVG, COUNT, SUM)
and most clauses (WHERE, GROUP BY, ORDER, LIMIT,
DISTINCT). This is sufficient for many eventually-consistent
edge-computing applications, and for the kind of high-volume
queries executed on cloud Cassandra installations. We do not
support the CQL IN clause, as support of this clause is severely
limited even in a centralized Cassandra installation.

Our Feather prototype implements global read queries using
Algorithm 1 as described in Section III-C. To support querying
rows received from specific children (line 7 in Algorithm 1),
cloud and core nodes use a materialized view that includes
conditions on the freshness and from which children the query
came from (edge nodes do not have this materialized view since
they do not have children to query.) The materialized view
allows us to use an efficient IN predicate, which Cassandra
only supports on columns that are part of the primary key.
When a query is received on Feather with a requirement on
freshness, the query is executed on the materialized view rather
than the original table. Consider an example query initiated on
node A from Figure 3:

SELECT * FROM table WHERE key = value
LAXITY = L

Since F ’s data is already on C, it can be fetched from C’s local
store without querying the child F . Thus, the query executed
locally on C will be:

SELECT * FROM table WHERE key = value
AND timestamp > NOW() - L
AND prev_loc IN (’F’,’C’)

where NOW() - L implements the freshness requirement.
Finally, To support GROUP BY global queries, we execute

them without the GROUP BY condition and perform the
GROUP BY operation in memory.

D. Merging Results

Algorithm 1 requires incrementally updating results sets
(lines 8 and 11). For queries that do not aggregate rows, we
simply add the rows into the result set. For aggregate queries
and GROUP BY queries, we update the result based on the type
of queries, for example by adding values for SUM, updating
maximum/minimum, matching groups, and so on. Note our
current implementation of aggregate queries assumes rows sets
are disjoint: the same row (or key) is only created and updated
by the same edge node. While this is sufficient for the scenarios
we are targeting, we discuss this limitation in Section IV-E.

To perform aggregation queries such as MIN, MAX, SUM,
COUNT on a node, only a single value is retrieved as a result
from a children nodes, for queries involving AVG, two values:
the average and the number of elements in the set is required
to perform the aggregation. If there is a GROUP BY clause,
we compute the aggregation functions for each group, and
send the results to the parent node, which merges results
from each group with those from other children. Similarly,
for a WHERE clause, the clause is applied locally on the data
and then the result is sent to parent node for aggregation.
However for the DISTINCT, ORDER, LIMIT clause, our
current implementation aggregates result at the final layer of
aggregation rather than at intermediate nodes. While there is
rich literature on more efficient aggregation [42]–[44], this is
not the focus of this work.

E. Prototype Limitations

Our current Feather implementation has certain limitations.
First, our implementation of aggregates (e.g., COUNT, SUM)

currently assumes the set of rows (or keys) written to by
different nodes are disjoint, which is the common case in
our targeted applications. We plan to address this using data
summary techniques such as Cuckoo filters [45] and Count-Min
sketches [46] to detect conflicts.

Second, while Feather supports deletion by the application,
we do not clear (i.e., evict) “live” data from intermediate nodes
to reclaim space. For our target applications, very old data is
seldom relevant for the kind of ad-hoc queries we are targeting.
Such data is often migrated from the cloud replica to a separate
batch processing system or cold-storage system in the cloud
for later analysis and then deleted, or simply deleted by edge
nodes. Supporting such eviction is possible by only evicting
data after it already been pushed up, and by modifying the
query server to also include local results.

Finally, queries can only read data written locally or
propagated from descendants. Again, this is by far the common
case for the kinds of scenarios we target, where nodes make
local decisions based on local or downstream data. For the
rare cases where a query needs data from the whole network,
we can offload it to the cloud and execute it there.Another
option is downstream replication. While we currently do
not replicate data updates down the hierarchy, this is not
a fundamental limitation. In practice supporting periodic
or on-demand updating from parent replicas to children is
a matter of engineering, and has been addressed in prior
works [13]. Alternatively, the global querying mechanism can
be extended to perform an upwards traversal followed by the
usual downward traversal.

V. EVALUATION

Since applications execute local read or write queries directly
on the local Cassandra store of each replica (Section IV), we
focus instead on evaluating the performance of global queries.
We issue global queries in the cloud, as this allows better
exploration of the tradeoffs.

We evaluate Feather’s performance on several metrics:
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TABLE I
TOPLOGIES IN CONTROLLED EXPERIMENTS.

Topology Depth Split Nodes per tier Latency per tier

Wide 3 10 1-10-100 85, 45
Deep 5 3 1-3-9-27-81 70, 30, 20, 10
Medium 4 3 1-3-9-27 80, 85, 15
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Fig. 6. Number of rows covered by each query over the length of experiment.

• Latency, defined as the time between arrival of the user
query and availability of results Ta−Tq . This time includes
all execution times on local and remote persistent stores,
as well as communication in the edge network.

• Staleness, defined as the difference between query answer
time and the actual freshness time of the results: Ta−Tf .

• Bandwidth, which we define as the total number of rows
sent over all links in the edge network.

• Work at edges, defined as the average number of rows
retrieved by edge nodes from the local Feather replicas
to answer a query.

• Coverage estimation accuracy, our ability to correctly
estimate how many data rows were needed to answer the
query (Section III-E).

We evaluate Feather’s global query mechanism in both con-
trolled and real-world experiments. The bulk of our evaluation
is carried using controlled experiments. The evaluation real-
world experiment is detailed in Section V-F.

A. Experimental Setup for Controlled Experiments

Our controlled experiments are designed to evaluate the
benefits and limitations of Feather under controlled settings
and on a publicly available dataset . Each experiments uses
one of three topologies, summarized in Table I: wide uses a
network with depth of 3 and split of 10 (one cloud, 10 cores,
and 10 edges for each core), deep with depth of 5 and split
of 3, and medium with depth of 4 and split of 3. We run each
node on the edge network as a collection of containers on
an Amazon instance. The cloud node is an c5.xlarge AWS
instance running Ubuntu 18.04 and the the rest of the network
is emulated on three m5.16xlarge instances. Each topology
has total edge-to-cloud latency of 130ms, divided between the
network tiers as explained in Table I (the end-to-end latency
and tier division is similar to real edge networks, such as
in Section V-F). The network delays and jitter between the
containers is emulated using Linux’s Traffic Control [47], [48],
and each link has a bandwidth of 1Gbps.

For end user data, we use the New York Taxi Dataset which
is a repository of nearly 7 million rides of taxi collected for the
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Fig. 7. Mean query latency, result staleness, and bandwidth (rows sent over
the network) when running global queries on the medium topology using
different global querying systems.

month of December 2019 [49], sped up ×30 times to provide
more dense data and to allow experiments to run faster. This
data set contains geo-distributed labelled data (pick-up and
drop-off zones), as well as information such as fare amount,
number of passengers, and so on. When inserting data rows,
we use each row’s drop-off zone to determine which edge node
to add it to. The dataset contains 265 such geographical zones.
We distribute the edge nodes geographically such that when
we map each zone to the nearest edge node, there is a roughly
equal number of zones per edge node.

We issue 3 queries on the data, all filtered to a window of
the last 90 seconds of real time, corresponding to 45 minutes of
sped-up time. The SELECT query returns the fare amount and
timestamp for all rides in the window for rides with distance
larger than 8km. The GROUBPY query groups all rides in the
window by passenger count and returns the count of rides
and sum of fares, for computing average fare per passenger.
The MIN query returns the minimum fare for all rides in
the window. These queries were selected to demonstrate the
selection, grouping, and aggregation mechanisms of Feather,
and because they are representative of the kind of queries that
might be run in an application.

In each experiment, we run Feather for about 18000 seconds,
which covers about a week of recorded data. Figure 6 shows
the number of rows covered by the 90 second window in each
such query, showing a clear diurnal pattern. Every second, we
issue a single query with laxity set between 0 and (D− 1) · f
where D is the depth of the topology and f is the period of
the push demon. The query is selected in round robin order
from the 3 possible queries described above. To better measure
steady-state behavior, we discard measurements from the first
300 queries in each run. Unless otherwise noted, we set the
push daemon interval between two pushes to f = 30 and jitter
is set to 10% of link latency.

B. Latency/Staleness Tradeoff

Feather is designed to provide controlled tradeoff of answer
latency and answer staleness in global queries. This tradeoff
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Fig. 8. Staleness vs latency of the answer for each query. Colors/markers indicate the depth of most distant node which was involved in answering the query.
For clarity, we only show a sample of the queries.

depends on query laxity, network topology, period of the push
demon, and data update distribution among the edges. To
evaluate this tradeoff, we run controlled experiments where
we vary the first three, while fixing the data distribution to the
NYC Taxi data.

We compare Feather’s hybrid approach to the two prevailing
approaches in edge computing: querying the cloud replica [14]),
and querying the edge nodes [15]. Figure 7 shows performance
of global queries for the medium topology for several latency
levels. Sending all queries to the edge (laxity L = 0) results in
fresh answers but high latency and bandwidth usage. Running
them on the cloud replica results in low latency and zero
bandwidth, but stale answers. Feather freshness guarantee
(“hybrid”) provides flexible trade-off of latency, bandwidth,
and staleness, while guaranteeing the freshness threshold L.
Error bars show standard deviation.

Figure 8 shows a more complete picture across different
topologies and push daemon period f . Each point depicts the
answer staleness and latency for that query, and the color
indicates the lowest tier involved in answering the query.

The most immediate observation is that query performance
is clustered based on the depth of the lowest tier involved
in answering them. This is partly because our controlled
topologies have similar latency for all nodes in a tier, and
the key factor is the round-trip time from cloud to the most
distant node (we explore this in Section V-F). We also observe
that frequent pushes (top row) result in much fresher answers,
at the cost of increased load on the network.

What is the effect of topology on the tradeoff? The wider
spread of latency for on-cloud queries in the wide topology
indicates increased load at the cloud. Thus, in wide and shallow
topology, setting higher push deamon period f might make
more sense if we aim to reduce load on the cloud. Finally,
deeper network do not inherently result in larger overall latency,
it is the round-trip time that counts. Rather, deeper network
result in more performance clusters, allowing a more fine-
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Fig. 9. 95th percentile of latency as a function of laxity for different with push
period f = 30 seconds and f = 60 seconds. Shaded areas show standard
deviation. Dotted lines show the time it takes data to be pushed from edge to
the cloud (D − 1) ∗ f .

grained tradeoff of staleness vs. latency.
Different systems have different requirements: some aim

to minimize average latency, while others must meet an SLO
such as 95th percentile of latency below a threshold. Feather
can help meet these objectives by setting a flexible upper
limit of freshness. Figure 9 shows how system operators can
tune required laxity and push demon period to meet latency
requirements. For example, on a medium topology, to have
95th percentile latency below 230ms with push period f = 60,
laxity must be set to L = 111 seconds (alternatively, we can
set a deadline constraint of 230ms directly). If this is too stale
for application requirements, using push period of f = 30
seconds with laxity of L = 50 will achieve the same thing. As
before, deeper topologies offer more fine-grained tradeoffs.

A single static laxity setting may not be sufficient as the
network conditions and data distribution change. Since Feather
provides freshness guarantee per query, it is amenable to
dynamically varying the freshness threshold as the workload
changes. We plan to explore such dynamic control policies in
future work.
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C. Bandwidth and Query Type

We measure the bandwidth used by each query as the number
of rows sent over all links in the edge network to answer these
query. This depends not only on the data, but also the type of
query. Let rows(n) be the number of rows sent by the query
sever in node n to the parent to answer a query q. The total
number of rows sent over the network is thus

∑
n rows(n).

We define the number of rows returned by each participating
node to be 1 for aggregate queries (MIN), and the number of
groups in the node’s replica for grouping queries (GROUPBY).
For nodes not queried, rows(n) is 0.

Figure 10 shows the bandwidth reduction for each query type
and topology. Feather reduces bandwidth across the board with
even a modest laxity, since queries are answered by a smaller
set of nodes. Note that for queries that aggregate multiple
response from all children to one response (MIN and GROUPBY
queries), the number of rows is basically a multiple of the
number of links in the network. Since the medium topology
has fewer links than wide and deep topologies, we see that
those queries requires less bandwidth.

D. Work at Edge Nodes

Edge notes are often resource constrained, and one of Feather
goals is to offload work from the edge nodes towards the inner
nodes in the network (core and edge nodes). Figure 11 shows,
for every laxity level, the average number of rows accessed on
the persistent store of local edge replicas. As laxity increases,
we observe a linear drop in rows accessed by global queries on
edge nodes, leaving more resources to deal with local queries.
When laxity grows above the push daemon period (L > f ),
practically all queries can be answered without involving edge
nodes since all new data would have been pushed to the core.
Note this figure does not show accesses to the persistent store by
the push daemon itself. Such an access (once per updated row)
would be present in some form in any eventually-consistent
database, and we are interested in the extra work induced by
ad-hoc queries.

E. Coverage Estimation

As detailed in Section III-E, each global query returns an
estimate of the number of rows involved in answering it, and
the percentage of rows used to answer the query. When queries
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Fig. 12. Rows covered per query across all topologies and laxity ranges. (a)
estimated row coverage compared to real row coverage. Dashed line shows
equality (Y=X). (b) estimation error (the difference between estimate and real
row coverage) as a function of how many nodes participated in the query.
Dashed line shows the mean coverage estimation error. For clarity, we only
show a sample of queries.

execute on the edge (L = 0), this number is accurate since
we know how many rows were accessed. When L > 0, we
must estimate the number of updated rows in child nodes not
contacted by the algorithm, which we denote as E. Let Q be
the true number of rows that would be accessed for each query,
and R the number of rows accessed by nodes involved in the
query. We define row coverage as R

E+R , i.e., the estimated
fraction of rows needed to answer the query, and the real
coverage as R

Q . We also define node coverage as the fraction
of nodes that participated in answering the query.

Each point in Figure 12(a) shows the real and estimated
coverage for one query from the deep, medium, and wide
experiments with f = 30. Despite the simplicity of the
estimator for E, we see strong agreement between the real and
the estimated row coverage. Figure 12(b) shows the coverage
error, defined as the difference between the real and estimated
coverage. The mean coverage error is only 2.7%, confirming
the accuracy of the estimator. Unsurprisingly, when more nodes
are involved in answering a query, the estimate is more accurate.
However, even when very few nodes participate in answering
a query, coverage error is below 25%.
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F. Real World Experiment

In this experiment we deploy Feather over a real edge
network, comprised of 10 datacenters from three different
cloud operators spread over three continents. Figure 13 shows
the topology of the edge network, and the mean round-trip
latency between every two datacenters.

We use geo-tagged public tweets as the dataset for this
experiment to simulate the pattern of event arrivals. In this
emulation the creation of a tweet is a local event. We scraped
a total of 1 million tweets from New York City, Toronto,
London, Paris, Singapore, and Tokyo over a one week period
from December 2019 using Twint [50]. We speed time up for
this experiment by ×7. As with the previous experiment, we
run over 33000 queries at a rate of 1 query per second, and
set the push daemon period to f = 30 seconds. The query we
run is a MAX query on the number of hashtags per tweet in
the past 10 minutes. For this experiment we do not add any
artificial network delay or jitter.

Figure 14 shows the latecy/staleness tradeoff for queries
in the twitter experiment. While the overall shape of the
curve remains similar to those seen in Figure 8, we observe
many more clusters. Though the depth of the lower tier still
determines query performance, we observe that the key factor
is the round-trip time from the cloud to the most distant node
that participated in answering the query. Since the link latency
in this experiment is much more varied, we can observe more
clusters and even associate some of them with specific nodes.

Figure 15 shows the mean latency for each laxity level,
which can be used to determine laxity and push period to
maintain SLOs. It also shows the average work per edge for
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Fig. 16. Accuracy of coverage estimation for all queries in the real-world
experiment. For clarifty we only show a sample of the data.

this experiment drops linearly with increased laxity, as with
previous experiments, reaching zero when L = f .

Finally, Figure 16 confirms that coverage estimation remains
very accurate in the real-world, with a mean error of 0.4%.

VI. RELATED WORK

There are several general approaches for querying in geo-
distributed settings: querying the edge nodes directly, dis-
tributed engines for query planning and execution, and stream
processing. We also review existing approaches to providing
and characterizing freshness guarantees.

Querying Edge Nodes: Respawn [15] is a distributed time
series database that provides low latency range queries on a
multi-resolution time series from edge devices. In Respawn,
sensors send data to nearby edge nodes which store the data
and compute aggregates at different time resolutions. Lower
resolution aggregated data are periodically sent to a cloud
node, and a query dispatcher on the cloud node decides on
whether to send the query to the edge nodes or process it on
the cloud node based on the requested resolution. Similarly,
EdgeDB [51] is a time-series database for edge computing
that proposes a multi-stream merging mechanism to aggregate
correlated streams together at runtime.

Other approaches aggregate data closer to the devices [52],
[53] or reduce bandwidth using lossy data transformations such
as resampling [54]. Unlike Feather, these approaches do not
provide a flexible guarantee on data freshness. Moreover, they
limit the complexity of queries that can be executed, as they
are limited to time series data and to queries that allow error
due to the aggregation.
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Distributed Query Engines: Distributed query engines such
as Apache Spark SQL [55], Apache Impala [56] or Facebook’s
Presto [57] process queries on top of heterogeneous data stores
such as Hive [58], PostgreSQL, Hadoop, MySQL and Apache
Kafka [59] among others. Presto is an open source distributed
SQL query engine that receives SQL queries and enables
analytic querying against data in different sources of varying
size. Similarly, Spark SQL provides support querying for
structured and semi-structured data. However such systems are
not designed for geo-distributed and edge computing settings:
they assume data is co-located or is distributed over a flat
topology comprised of few cloud datacenters. In addition they
do not enable querying based on freshness requirements.

Stream Processing: In the stream processing paradigm
continuous queries are described as directed acyclic graphs
(DAG) of operators, which are then instantiated across the
datacenters in the network. Data is processed and aggregated
as it is flows from the edge towards the cloud. However, while
well-established in the cloud setting, existing frameworks [35],
[60], [61] have not been designed for geo-distributed settings
where communication is unreliable, datacenter resources are
limited, and latency between datacenters limits performance and
creates flow control issues [16], [17]. Recent research extends
the stream process paradigm to the edge computing settings,
as generic stream processing frameworks or bespoke applica-
tions [16], [62]–[68]. Despite progress, stream processing is
better suited for processing a small set of continuous, recurrent
global queries, rather than ad-hoc queries. This is because
queries must be broken down into operators in advance, and
then deployed, coordinated, and executed on various datacenters
across the networks – all of which have costs. Additionally,
stream processing frameworks do not support CRUD operations
or local queries at arbitrary nodes.

Wireless Sensor Networks: Many studies have discussed the
idea of storing and querying data in a set of distributed sensor
node networks [69]–[74]. In these studies, the network itself is
the database [69] and to extract information from the network,
various methods [72], [74] are proposed to aggregate and
propagate data resulting from a query to a single base station.
TAG [74] and TinyDB [72] provide SQL-like APIs to express
declarative queries over the network and the system aggregates
queries over values while considering communication and
storage requirements. Feather flexible freshness guarantee can
be extended to this setting, since wireless sensor networks can
be organized in a communication tree.

Freshness Threshold: Google Cloud Spanner [75] and
Microsoft Cosmos DB [76] also allow users to specify bounded
staleness to boost performance as a feature for read queries.
Spanner is not a suitable choice for edge computing, however,
since it is designed for a collection of resource-rich datacenters
connected by high quality links, and because it aims to provide
strong consistency. When edges are disconnected, for example,
local writes cannot proceed. Moreover, when links between
nodes have high latency writes are prohibitively expensive since
they involve writing to multiple nodes. Spanner’s freshness
guarantee mechanism is much simpler than Feather’s: it chooses

a single replica that satisfies the freshness threshold to execute
the query on, relying on strong consistency. It is therefore more
equivalent to executing a query on the cloud in our setting. In
contrast, Feather allows local queries to proceed unhindered
even when edges are not connected, and for global queries
it can combine results from multiple nodes, which allows
fresher answers than available on any single replica. Cosmos
DB similarly executes global queries in a single replica, and
does not aggregate results from multiple datacenters. As with
Spanner, it is designed for resource-rich datacenters.

The tradeoff between freshness, accuracy, and performance
in continuous (streaming) queries was investigated by Heintz et
al. [77], [78]. They propose an online algorithm that determines
how much data aggregation should be performed at the edge
versus the center, where windowed grouped aggregation is used
to minimize both staleness and bandwidth. Conversely, Feather
is designed for ad-hoc queries and supports a larger set of
queries including grouping, aggregation, and raw row retrieval.

Formal Consistency Properties: Golab et al. [27] propose the
∆-atomicity property for quantifying staleness, and describe
algorithms for formally verifying and quantifying it. Our
freshness guarantee is similar to ∆-atomicity, and Feather
can be viewed as an implementation of it for tabular data in
the edge computing setting. Rahman et al. [28] propose the
t-freshness property which considers when operations begin
rather than end, and use it to derive CAP-style impossibility
results for the tradeoff of partitioning, latency, and freshness.
They also describe GeoPCAP, a distributed key-value store with
probabilistic guarantees. Unlike Feather, GeoPCAP assumes a
flat structure where replicas contact each other directly, which
may be infeasible in large hierarchical edge networks with
high latency links. Moreover, Feather is a tabular store that
supports querying multiple rows, and must therefore compose
results from multiple data sources.

VII. CONCLUSIONS

We proposed Feather: a geo-distributed, hierarchical,
eventually-consistent tabular data store that supports efficient
global queries using a flexible freshness guarantee. While
most existing work execute global queries on one replica or
push to edges, Feather executes global queries on a subset
of the network required to meet the user-provided freshness
guarantees. Our evaluation of Feather on real and controlled
settings show it provides a user-controlled tradeoff between
latency, staleness, bandwidth, and load on edge nodes.

We plan to extend Feather in two directions. First, we
want to support more types of applications by allowing data
to flow “downstream” on-demand, and by improving the
implementation for non-disjoint keys. Second, we want to
investigate dynamic control policies for the latency/staleness
tradeoff. By tuning the laxity parameter dynamically, we can
better adapt to changes in data distribution and query patterns.
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