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Abstract

We introduce cloud micro-elasticity, a new model for cloud

Virtual Machine (VM) allocation and management. Current

cloud users over-provision long-lived VMs with large mem-

ory footprints to better absorb load spikes, and to conserve

performance-sensitive caches. Instead, we achieve elastic-

ity by swiftly cloning VMs into many transient, short-lived,

fractional workers to multiplex physical resources at a much

finer granularity. The memory of a micro-elastic clone is a

logical replica of the parent VM state, including caches, yet

its footprint is proportional to the workload, and often a frac-

tion of the nominal maximum. We enable micro-elasticity

through a novel technique dubbed VM state coloring, which

classifies VM memory into sets of semantically-related re-

gions, and optimizes the propagation, allocation and dedu-

plication of these regions. Using coloring, we build Kalei-

doscope and empirically demonstrate its ability to create

micro-elastic cloned servers. We model the impact of micro-

elasticity on a demand dataset from AT&T’s cloud, and show

that fine-grained multiplexing yields infrastructure reduc-

tions of 30% relative to state-of-the art techniques for man-

aging elastic clouds.

Categories and Subject Descriptors D.4.7 [Operating Sys-

tems]: Organization and Design – Distributed Systems;

D.4.1 [Operating Systems]: Process Management – Multi-

processing Multiprogramming Multitasking

General Terms Design, Experimentation, Measurement,

Performance

Keywords Virtualization, Cloud Computing

1. Introduction

Cloud computing caters to bursty Internet workloads with a

utility model that emphasizes pay-per-use and elasticity of
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provisioning. As with all utilities, there is a granularity as-

sociated with service delivery and billing. For Infrastructure

as a Service (IaaS) clouds, the granule is the virtual machine

(VM). Adopting virtualization as a building block yields dis-

tinct advantages in security, isolation and ease of manage-

ment, but this coarse granularity imposes inefficient patterns

that harm both users and providers.

In an ideal cloud, ‘elastic’ servers grow and shrink in

tight concert with user demand. Currently, a load balancer

adjusts the size of a pool of full-sized worker VMs [Amazon

a;b] that are booted from scratch from a template. Unfor-

tunately, this heavy-weight mechanism is a poor match for

the operation model of an efficient utility. Creation is slow –

new servers take a while to boot because it’s a laborious I/O

bound task. Moreover, this latency is hard to predict – instan-

tiation latencies in Amazon’s EC2 cloud have been observed

to fluctuate sharply around a two-minute mean [Hyperic].

Furthermore, once booted, the server’s performance-critical

application and OS caches are essentially empty, which de-

grades performance when it is most needed to service de-

mand spikes. Finally, VMs claim a full memory footprint

even if they are required for only short periods of time and

much of their memory is not actually used.

Therefore, server owners have incentives to keep VMs

active for long periods, both to provide slack resources dur-

ing long instantiation latencies, and because servers with

large, warm buffers become crucial to overall performance

and are too valuable to sacrifice. This practice may explain

why the proportion of EC2 ‘Extra Large’ instances (15 GiBs

of RAM) has grown from 12% to 56% in a year, even while

the total number of servers has tripled. Further, the propor-

tion of servers running longer than a month has nearly dou-

bled [RightScale]. These behaviors detract from the cloud

vision of matching resource usage to actual demand, inflate

user costs while still failing to achieve a good QoS if the

load exceeds expectations, and curtail providers’ ability to

consolidate and optimize infrastructure use.

This paper proposes a vision of cloud micro-elasticity,

in which cloud server elasticity is achieved through short-

lived, transient clone VMs, which are copies of a running

VM instance and allocate resources (memory, disk) only on

demand. To enable this, we introduce color-based fractional



VM cloning, a new technique that allows the fine-grained

management of VM state, and enables the swift instantiation

of stateful VMs that allocate resources in proportion to use.

By cloning a warm, running VM instead of booting a new

one, our workers inherit their parent VM’s state and do

not require warming. They come online faster, reach peak

performance sooner, and because short-lived worker VMs

typically access only a fraction of their state, they can service

transient spikes in load from within a smaller footprint.

Color-based fractional VM cloning uses a novel VM state

replication technique. Instead of blindly treating the VM as

a uniform collection of pages, it bridges the semantic gap

between the Virtual Machine Monitor (VMM) and the guest

OS by examining architectural information (e.g., page table

entries) and other clues to glean a more detailed understand-

ing of the guest’s state. This higher-quality knowledge al-

lows the VMM to optimize the propagation of state to clones

by identifying semantically related regions. Specifically, we

use VM state coloring to tailor the prefetching of kernel vs

user space regions, code vs data regions, and to optimize the

propagation of the file system page cache. Finally, coloring

provides hints that guide memory consolidation by identify-

ing regions with a high likelihood of content similarity.

To evaluate the performance of color-based fractional

VM cloning, we implemented Kaleidoscope, an elastic

server that reacts to transient load spikes by spawning frac-

tional VMs. Experiments using elastic Web and Online An-

alytical Processing (OLAP) workloads show that Kaleido-

scope significantly improves on the current state of the art.

First, Kaleidoscope instantiates new stateful clones in sec-

onds, and nearly matches the runtime performance of an ide-

alized cloning strategy that uses zero-latency eager full state

replication. Second, by bridging the semantic gap, Kaleido-

scope is effective in finding state that is likely to be needed

by the new clone. For example, for the OLAP workload,

it achieves 2.9 times the query throughput with 43% less

waste than color-blind cloning. Third, Kaleidoscope’s frac-

tional VM workers grow only as needed to satisfy new allo-

cations or hold newly transferred state. In our experiments,

the memory footprint of workers reached only 40% to 90%

of their parent’s memory allocation.

To further evaluate the advantages of color-based frac-

tional VM cloning, we simulated its effects on traces col-

lected from AT&T’s hosting operation. The simulation

shows that the finer-grained handling of VM state drasti-

cally reduces infrastructure use. With VM cloning to rapidly

create new workers, a server can scale faster, and therefore

requires much less slack capacity to deal with load increases.

Also, the reduced memory footprint translates into a denser

packing of VMs on physical infrastructure. The net result is

a 30% reduction in infrastructure, which creates energy and

money savings that can be shared with end-users via more

attractive fine-grained pricing schemes.
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Figure 1. Aggregate CPU demand for sample customers
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Figure 2. Elastic workers are typically short-lived

We also discuss the ways in which Kaleidoscope ensures

correct and consistent behavior. Although VM cloning is not

universally applicable without tuning, many legacy server

applications, including the OLAP database and Ecommerce

Apache Web server used in our evaluation, function cor-

rectly without modification.

This paper makes the following contributions. First, we

introduce the notion of VM state coloring as a general mech-

anism to bridge the semantic gap and glean high-quality in-

formation on the runtime state of a VM. Second, we show

how state coloring can be implemented efficiently by ex-

ploiting x86 architectural properties and guest kernel in-

trospection extensions. Third, we present Kaleidoscope, a

micro-elastic server that uses state coloring to optimize the

replication and sharing of VM state, and delivers a QoS that

approaches that of fully over-provisioned servers, while con-

suming resources proportional to the immediate demand.

And fourth, we quantify the benefits of deploying Kalei-

doscope servers using a data set of multi-customer demand

extracted from AT&T’s hosting operation, showcasing sub-

stantial savings for users and providers.

2. Real Data Motivates Micro-Elasticity

To use resources efficiently, elastic servers should grow and

shrink in tight concert with user demand. We examine the

potential for such elasticity using a month of demand data

from AT&T’s hosting operation (see Section 9 for more de-

tails about the data traces). AT&T hosting is a traditional

hosting business in which customers buy rack-space to stat-



ically provision web-facing multitier applications, such as

portals, shopping sites, and enterprise services.

Need for Elasticity. Analysis shows that over the whole

month, an average customer tier has a mean demand of only

15.3% of its peak, thus indicating ample long-term fluc-

tuations. Furthermore, demand elasticity also percolates to

smaller timescales. Figure 1 shows the total CPU demand

for three sample customer tiers. While the characteristics can

be very different across customers, they all exhibit signifi-

cant short-term variations, and thus could benefit from fine-

grained elasticity.

Elastic Workers are Short Lived. Figure 2 shows the rate

of creation and the lifetimes of elastic server workers, if

we were to closely follow demand by maintaining a CPU

utilization of between 70% and 90% across all workers. The

results show a frequent creation of very short-lived workers:

23,214 workers would be created for a set of only 248 elastic

servers. The mean worker lifetime would be only a little

over 10 minutes, with over 85% of the workers needed for

less than an hour. These workers, therefore, are essentially

single-purpose entities that are frequently created to service

a narrow workload during short periods of demand pressure,

and have limited time to grow their active memory footprint.

A mechanism that could allow them to be created cheaply,

quickly, and with an allocation proportional to their use

would be of great benefit.

3. Designing Efficient Micro-Elasticity

We achieve micro-elasticity by building upon live VM

cloning, and augmenting its capabilities through two sepa-

rate techniques: coloring of VM state to improve its propaga-

tion and sharing, and fractional VM allocations to minimize

state footprint. Through the combination of these techniques

we enable the swift instantiation of fractional, stateful VMs

that are virtual copies of an existing server instance, but

which are allocated resources (memory, disk, network) pro-

portional to their actual use. In this section we provide back-

ground on cloning, illustrate its limitations and motivate the

introduction of state coloring and fractional VM allocations.

3.1 Live VM Cloning with SnowFlock

SnowFlock [Lagar-Cavilla 2009] introduced the concept of

live VM cloning across a cluster or cloud of physical ma-

chines. Cloning requires replicating the state of a VM, and

SnowFlock achieves this with on-demand paging. In this

approach, a clone is quickly created from a small archi-

tectural VM descriptor containing metadata, virtual device

(NIC, disk) specifications, and architectural data structures

such as page tables, segment descriptors, and virtual CPU

(VCPU) registers. The clone VM then triggers page faults

as it encounters missing pages of memory or disk, and any

referenced state is lazily transferred by a copy-on-demand

mechanism.

SnowFlock complements copy-on-demand with multi-

casting of VM state. Multicast enhances network scalabil-

ity and results in implicit prefetching, as clones will receive

replies to requests issued by sibling clones created at the

same time, and presumably accessing similar code or data.

SnowFlock’s multicast need not guarantee delivery of state

to all clients, only to the client explicitly requesting it.

3.2 The Challenges of State Propagation

SnowFlock adopted on-demand paging to minimize instan-

tiation time and optimize resource usage. With on-demand

paging, there is space to apply ‘late-binding’ optimizations

that may overlap or hide the overhead of state propagation

with useful work performed by the clone. Unfortunately,

for many servers, on-demand paging as implemented by

SnowFlock results in an extended warmup period in which

performance of the new instance is significantly degraded

due to blocking waiting for the working set to be fetched

(discussed in Section 8.1). Our experimental results show

that on-demand fetching is so inefficient that it negates the

benefits derived from warm caches.

An alternative to on-demand paging is eager full replica-

tion; this approach is similar to traditional VM migration,

with the difference that at the end, there are two VMs run-

ning. Unfortunately, eager full replication places heavy de-

mands on the network and results in long instantiation times.

In addition, it requires that memory be allocated for all the

parent’s state, much of which may not be used. On the up-

side, because all state is fetched eagerly, once started, the

new worker can quickly achieve peak performance.

3.3 Color-Based Fractional VM Cloning

To achieve the benefits of both eager and on-demand prop-

agation (fast VM instantiation, short warmup period, re-

source allocation proportional to use) without their respec-

tive shortcomings, we use two novel mechanisms that op-

timize VM cloning performance: VM state coloring, which

discriminates otherwise uniform VM state into semantically-

related regions allowing state to be efficiently prefetched and

shared; and fractional allocation, which dynamically allo-

cates memory to accommodate only the state that is actually

accessed by the new worker.

Color-based fractional VM cloning makes it possible for

users to achieve high resource utilization while still accom-

modating transient load increases at a low rate of service vio-

lations. Users keep just enough server instances to deal with

the average short-term demand placed on the service (e.g.,

keep average worker utilization at 80%), and instantiate new

transient workers to deal with any sudden load increases. As

shown in Section 2, short-term demand spikes are preva-

lent and typically result in the creation of workers that are

needed for ten or less minutes. When demand for the ser-

vice subsides, the transient workers are shut down and their

resources returned to the cloud. Our approach significantly

reduces memory footprints relative to static overprovision-



ing, but it should be noted that this benefit is not entirely

free. It incurs a modest network cost for the fractional state

transfer.

By cloning a warm, running VM, new workers come

online within a few seconds, and by inheriting their par-

ent VM’s state, they do not require warming. Using VM

state coloring, we efficiently prefetch state to mitigate the

page fault blocking associated with on-demand VM cloning,

which significantly boosts performance. By allocating mem-

ory on demand and sharing identical pages, fractional VM

workers save space, and short-lived workers service transient

spikes in load from within a smaller footprint.

4. VM State Coloring

Historically, VM state has been treated as uniform binary

state, enabling virtualization to simplify many tasks. For ex-

ample, by saving the entire RAM of a VM as one flat bi-

nary file, computation migration can be implemented ro-

bustly [Satyanarayanan 2005]. However, the limited infor-

mation that the VMM has about the state of the guest, re-

ferred to as the semantic gap [Chen 2001], can constrain the

effectiveness of system services such as I/O scheduling or

malware detection [Jones 2006a;b, Litty 2008].

We have devised a set of VM state coloring mechanisms

that allow us to classify the memory of a VM into a set

of semantically meaningful regions. We color VM state by

inspecting architectural information, such as that contained

in page table entries, and performing introspection on the

guest kernel’s data structures. Without adding significant

overhead, the discrimination of otherwise opaque VM state

into semantically-related regions allows us to optimize VM

cloning performance.

4.1 Architecture-based Coloring

Page table entries in x86 contain a wealth of information re-

garding memory pages. First, pages are tagged as executable

or not by the NX bit. Second, pages can be tagged as be-

longing to the kernel or user space with a ‘user’ bit. Even

if the OS (or the VMM) chooses not to use this bit, a walk

of the page tables allows for the reconstruction of a corre-

sponding virtual address: both 32 and 64 bit OSes typically

allocate the lower portion of virtual addresses for user space

and the higher portion for kernel space. Third, commodity

x86 OSes present a bijective mapping between user-space

processes and root page table pages, allowing for the dis-

crimination of state unique to a given process.

Using this architectural information we can color mem-

ory in roughly four groups: kernel code, kernel data, user

code and user data. Further granularity can be achieved by

splitting the user colors on a per-process basis, which is left

for future exploration. We also note that using x86 architec-

tural information in this fashion makes our coloring robust,

as its usefulness is completely independent of the software

stack.

A complication arises in 64bit OSes such as Linux, which

install a contiguous mapping of the entire physical memory

into the kernel data space for expedited access to physical

memory addresses. This mapping is called the ‘direct map’.

As a result, all pages including free ones, have at least one

page table mapping. Many kernel data structures are only

reached via their address in the direct map, without any other

mappings needed. To tell apart kernel data from free (or

uncolored) pages, we need to go beyond page table analysis.

4.2 Introspective Coloring

At the root of the semantic gap problem is the fact that the

OS has a more complete knowledge of system resources than

the VMM. Both the Xen VMM and the Linux OS maintain

a ‘frame table,’ an array of compact records describing the

properties of a page. Among other things, a Xen frame table

entry indicates the owner VM and the number of page table

mappings of a page across all VMs in the system.

A Linux frame table entry has more useful information.

First, page records corresponding to frames of memory that

belong to a file lead to a radix tree containing all fellow pages

mapping the same file. Memory frames can thus be colored

as belonging to the file system page cache, and for further

granularity, we can group the pages used for each individual

file. We underscore that the latter requires no knowledge of

the actual file attributes nor file system internals.

Second, the page record indicates whether the page is

being used by the guest, or is free. It reflects ‘real’ usage

of the page and is intended to capture all usage, through a

combination of a reference count and a set of flags. We thus

rely on a page structure record with all of its fields and count

reset to identify pages as free. This enables differentiation of

free and kernel data pages. Given the circumstances, we find

this to be the most conservative method and also the most

robust, as the notion of a page structure record is broadly

applicable.

We note that the original implementation of VM cloning

[Lagar-Cavilla 2009] performs a form of paravirtual color-

ing. By instrumenting the kernel page allocator it could iden-

tify victim pages used for new memory allocations, and pre-

vent the clone VM from issuing a request for a victim page

which will be immediately overwritten. There is naturally a

very high correlation between victim and unused pages.

4.3 VM State Coloring for Efficient Propagation

We apply VM state coloring at the point of cloning. During

the generation of the architectural descriptor, all page table

entries have to be processed to turn MFNs (machine frame

numbers, i.e., the memory frames of a host) into PFNs (phys-

ical frame numbers, i.e., the memory frames of a guest VM)

– this translation is later undone when the clone VM is cre-

ated in a different host. At this point, architectural coloring

is applied to partition memory into four disjoint regions; the

kernel and user space regions are each subdivided by data vs

executable.



Figure 3. Color map Rendering of a memory snapshot of a

VM running the SPECweb Support workload. X axis is page

number and wraps around for presentation. Legend: Page

Cache - yellow; User and Kernel Data - light and dark blue;

User and Kernel Code - light and dark red; Free - black.

After the architectural descriptor is generated, a mem-

ory server is left running on the parent VM’s host machine.

This memory server keeps a map of the parent VM’s mem-

ory frozen at the point of cloning (a ‘checkpoint’), and uses

copy-on-write to allow the parent VM to proceed with exe-

cution while serving the frozen image to clones. The mem-

ory server is aware of the architectural coloring information,

and is able to examine at will the VM’s frozen memory,

and in particular the guest kernel’s frame table. In this way,

the memory server performs introspection to identify free

pages, which are re-colored to form a fifth region. Further,

the memory server identifies pages belonging to the file sys-

tem page cache, and also re-colors these pages on a per-file

basis. For pages that have multiple colors, for example an

executable page that is also in the file system page cache,

the specific color that will be used is application-dependent

and configurable.

To better understand the advantage of coloring state, con-

sider the color map (Figure 3) of a Web server at the point

of cloning. For the sake of presentation, we have not refined

the coloring to be per-file. A key observation is the inter-

spersing of different colors in the physical memory space of

the VM due to virtual-to-physical translations and memory

fragmentation.

Each clone is aided by a memtap process in charge of

obtaining the memory the clone needs. Memtap’s objective

is to keep the clone’s VCPUs blocked as little as possible.

A blocked VCPU not only affects the QoS of the request

it is serving, but also effectively disables the guest kernel’s

ability to multiprocess and service any other requests with

that VCPU. When a clone faults on a missing page and

requests it from the parent, it also asks for suggestions of

related pages that are likely to be needed soon. The memory

server uses the principle of spatial locality within the color

in which the explicit request falls, so the pages prefetched

may be scattered across physical memory.

Table 1. Kaleidoscope’s prefetching is tuned by color.

Color Window Color Window

Kernel Code 4 Kernel Data 12

User Code 4 User Data 16

Page Cache Data 8

A naı̈ve alternative to per-color prefetching is ‘color-

blind’ prefetching, which lumps together multiple unre-

lated colors (including free pages, which cannot be dis-

tinguished without the use of introspective coloring) in the

same prefetch block. Because prefetched pages are allocated

even if they are not used, color-blind’s less targeted approach

wastes memory. We show in Section 8 how the color map

increases the accuracy (fewer ‘wasted’ fetches of unneeded

pages) and efficiency (more faults avoided) of prefetching,

and how it outperforms color-blind.

In the Kaleidoscope prototype, we tuned the prefetch

strategy by semantic region to further improve efficiency

(see Table 1). We obtained our per-color policies by post-

processing the state propagation activity on a set of experi-

ments with coloring turned on, but no prefetching enabled.

We simulated lookahead and pivot policies with different

window sizes, and chose the most effective ones for the eval-

uation in Section 7. Kaleidoscope’s primary distinction is to

use a reduced prefetch window for executable pages, regard-

less of whether they reside in the file cache. Secondarily, we

found that by refining the window size by data page prop-

erties provided a modest improvement. By increasing the

prefetch window for user data and reducing the window for

data pages in the file system page cache, efficiency and ac-

curacy improved by 5.5% and 0.7% respectively, compared

to a uniform window size of 12 for all data pages. We leave

for future work the online prediction of prefetching policies

using techniques similar to our post-processing profiling.

5. Fractional Allocation

When a typical VM is created, all of its backing memory

is pre-allocated. This is also the case in the SnowFlock VM

cloning implementation, where the cloned VM’s memory is

allocated eagerly, and subsequently populated with the state

that is fetched from the parent VM on-demand. In contrast,

the fine-grain, per-page usage knowledge we extract through

coloring opens up the opportunity to optimize the memory

footprint of the cloned VM.

First, on-demand fine-grained propagation of the memory

of a clone VM calls for the on-demand allocation of its

memory frames, a technique we call fractional allocation.

Second, the hints extracted through memory coloring can

direct content-based sharing of memory pages across VMs

with great efficiency and modest effort.

5.1 Implementing Fractional Footprints

Fractional allocation is achieved by allocating on-demand

the underlying pages of memory of a cloned VM. This is re-



alized through the concept of a ‘ghost MFN’. A ghost MFN

has the property of serving as a placeholder that encodes the

clone’s PFN that it backs, and a flag indicating absence of

actual allocation. The ghost MFN is placed in lieu of an al-

located MFN in the page tables, and the PFN-to-MFN trans-

lation table that each Xen paravirtual guest maintains. The

first guest access to the PFN triggers a shadow page fault in

the hypervisor, which is trapped and handled by allocating

the real MFN to replace the ghost. Note that the very same

page fault is already handled to draw missing state from the

parent VM. Separately, as state is prefetched by the memtap

memory daemon, the daemon itself can request the alloca-

tion of the MFNs needed to store prefetched content. Finally,

we avoid fragmenting the host’s free page heap by increas-

ing the granularity of requested memory chunks to, for ex-

ample, 2 GiBs or 512 pages at a time, while still replacing

ghost MFNs one at a time.

5.2 VM State Coloring for Memory Deduplication

The color map’s semantic hints allow clone VMs to signif-

icantly reduce their memory footprint for very little cost.

Certain colors, specifically page cache pages and executable

pages (kernel or user-space), yield a relatively high probabil-

ity of inter-VM sharing within the same host. Other colors

are typically populated with data (stacks, unaligned buffers,

heap pointers) that all but nullify the chances of sharing. A

similar principle is exploited in related para-virtual sharing

work [Milosz 2009].

During construction of the descriptors, we calculate the

128-bit hash values [Hsieh 2004] of pages in candidate col-

ors and include them for use by the clone. Each host main-

tains a content-addressable store (CAS) of shareable pages

it has previously fetched for different clones, with in-use

pages stored once in physical memory and referenced by

each live clone that needs it. Using coloring to guide content

sharing is more efficient than previous work [Gupta 2008,

Waldspurger 2002] for three reasons. Because hash values

are calculated once on the parent and passed to every clone,

we efficiently avoid repetitions of brute force traversals of

memory and hash calculations – Section 8 shows that our

color-directed sharing captures most of the sharing opportu-

nities among VMs with an order of magnitude less overhead.

Also, cloned worker VMs have ‘fate determinism’: they are

single-purpose, transient, and seldom start new processes or

significantly change their behavior. Thus the expense of pe-

riodically re-scanning the memory for sharing opportunities

is not warranted. Finally, sharing is applied only to seldom-

updated executable and file system page cache pages, which

minimizes the overhead cost incurred by breaking sharing of

pages that are updated.

Sharing pages with identical contents complements frac-

tional allocation to reduce the footprint of clone VMs. The

net effect is a clone footprint that grows as a function of

the workload. Because the footprint reflects state fetched as-

needed, minus color-directed sharing, it allows the clone to

perform the work of a fully stateful VM with an effective

footprint which is much less than what is typically achiev-

able via ballooning or brute-force memory deduplication.

It should be noted that both footprint reduction mecha-

nisms have a welcome performance side-effect. Sharing hits

prevent round-trips to the server to fetch the necessary page.

Coloring prevents the needless propagation of free pages, as

their actual contents are irrelevant – with fractional alloca-

tion we can simply take a free page in the host and scrub

it. We note that in an environment without fractional alloca-

tion, coloring could enable the mapping of all free pages to

the same underlying physical frame. This would work as au-

tomatic ballooning, without the need for guest collaboration,

and with instantaneous self-regulation as shares are broken.

It would also yield a higher sharing ratio than content-based

sharing by disregarding the actual (unused) contents. We

leave exploration of this opportunity for future work.

6. The Kaleidoscope Prototype

Kaleidoscope is a prototype elastic server that uses live VM

cloning, state coloring, and fractional footprints to create

VM workers in response to bursts in load. New workers

are created in seconds and inherit the warm state of their

parent VM. We describe the architecture of a Kaleidoscope

server, how the worker pool is managed, and how new clones

interact with secondary storage. We close the section with

a discussion on the mechanisms we provide to guarantee

correctness of live-cloned servers.

6.1 Kaleidoscope Server Architecture

A Kaleidoscope elastic server is a dynamically-resizing clus-

ter of VMs. There are three roles in the cluster. First, there is

a parent VM which is a traditional (i.e., booted from scratch)

VM containing the necessary software stack. Second, frac-

tional worker VMs are cloned from the parent as transient

workers to handle load fluctuations. Third, a gateway VM

interfaces the cluster with the outside world and manages

the load using the Linux IP Virtual Server (IPVS). It routes

client requests to workers, monitors the number of incom-

ing client connections, and spawns new clones when a high

water-mark threshold is exceeded. In this manner, no server

in the pool, parent included, is ever overloaded – provided

there are physical resources available to create more clones.

Conversely, when the load drops, extraneous workers are

starved of new connections and discarded once their work

is complete.

Kaleidoscope currently creates a fresh checkpoint for

each generation of clones to ensure the warmth of the in-

herited file system cache, although this could be tuned to

reuse ‘master’ checkpoints to conserve resources if slightly

cooler buffers provide sufficient performance. Similarly, its

scaling speed can be tuned by configuring how many new

workers are created simultaneously. Because Kaleidoscope

can multicast VM state, in a highly bursty environment with



flash crowds we can aggressively clone multiple workers at

each step, and subsequently scale back quickly if the large

step proves unwarranted.

The local disk of the parent VM is cloned to all child

VMs. Typically, this is the root disk with application bi-

naries and libraries, while high-volume application data is

served by a storage backend. The semantics of disk cloning

are identical to memory: clones see the same disk, although

modifications to it remain private, and are discarded upon

clone termination. We have not seen the necessity to im-

prove upon the original disk cloning implementation [Lagar-

Cavilla 2009]. The local disk is provided purely on-demand,

but is rarely used by transient clones who find most of their

requests satisfied by in-memory kernel caches, whose prop-

agation we do optimize. We also note that the virtual disk is

implemented as a sparse flat file for clones. This implicitly

guarantees fractional allocation of disk blocks as a function

of use, mirroring the behavior of a clone’s memory footprint.

Multi-tier stacks rely on a variety of engines for data

backends: RDBMSes like MySQL, caching layers like mem-

cached, infrastructure key-value stores like SimpleDB [Ama-

zon c], and user-deployed key-value stores such as Cassan-

dra [Lakshman 2009]. With the complexity associated with

deploying a data backend for a given application, we have

decided to stay clear of any specific storage backend archi-

tecture in this work. We assume that, in most cases, a back-

end can be found that is fast enough to render the processing

servers the bottlenecks. In this paper, workers get their static

data from an NFS server.

6.2 Correctness and Consistency

Spontaneously cloning random, unsuspecting servers may

yield unsatisfactory results. For instance, if an email server

were cloned in the middle of sending a queue of messages,

the clones would unwantedly send duplicates of the mes-

sages still in the queue of the parent at the time of cloning.

As another simple example, if an application server keeps

a count for the number of sessions it has handled, and pe-

riodically commits it to an underlying database, the count

will drift off in each clone, and conflicting numbers will be

committed by each clone to the database.

So when is it safe to use Kaleidoscope? Kaleidoscope’s

cloning is not intended to be a provider-driven primitive that

is applied to an unmodified server. A power user or sys-

tem administrator who is familiar with the server’s behav-

ior should decide whether Kaleidoscope should be deployed,

when it is safe to clone, and whether code must be modified.

We assume providers still exert ultimate control by limiting

the resources available to users, in order to thwart DoS at-

tacks, ‘fork bomb’-analogous attacks, and other threats.

Despite the nominal necessity for expert intervention,

there is a large set of applications for which Kaleidoscope

cloning is trivial and harmless to apply. In our experience,

many common legacy server applications work correctly

with minor or no modifications. Our Apache Web server

with static files worked fine, as did OLAP database analyt-

ics, and the SPECweb suite of benchmarks, which store their

client account information in a back end. Because Kaleido-

scope does not hand off live connections from the parent to

clone, latency sensitive applications such as video servers

should also work well.

6.2.1 In-Flight Requests

Kaleidoscope can be applied only to servers with built-in

support for maintaining state consistency amongst a dynam-

ically changing pool of load balanced nodes. Beyond this

basic requirement, Kaleidoscope servers need to handle the

case where a server instance is processing a request at the

time of cloning (a likely scenario in a busy server), because

each of the created clones will also be doing so when it

comes alive.

Kaleidoscope servers need to ensure that operations that

are under way at the time of cloning are treated as follows:

(1) read-only operations to clone state need no extra han-

dling; (2) operations that modify state cached on the clone

that needs to remain consistent must either finish or abort on

all nodes. An alternative is to sidestep the issue by queue-

ing new write operations at the load balancer and cloning

only after all ongoing writes have committed at the mas-

ter (a ‘write barrier’); (3) requests that may modify cached

data that need not be kept consistent across nodes need to be

routed consistently. Many servers distribute load by assign-

ing an account or session persistently to a node, and the load

balancer routes requests observing the node-session binding.

Sessions handled by the parent VM at the point of cloning

need to be discarded by the clones, and the load balancer

must still route requests through the parent VM; (4) external

side effects (a write to a database server, file system) need to

happen only once. Conveniently, this is the default behavior

of many applications, such as database servers, which roll

back in-flight transactions submitted over dropped connec-

tions. Alternatively, an intermediary arbitration layer could

handle clone-born duplicates and ensure that that visible ex-

ternal side-effects are emitted only once.

6.2.2 Consistency Mechanisms

Kaleidoscope provides four mechanisms that help applica-

tions maintain correctness and consistency across a VM

clone operation:

Programatic Integration One of the major appeals of live

VM cloning is the ability to integrate cloud fan-out decisions

into program logic, with an interface similar to other privi-

leged system calls. Much like UNIX fork(), the process

within the server invoking the clone call will receive, upon

success, a unique clone ID. This allows programs, modi-

fied or written from scratch, to immediately react to cloning

as part of their flow control logic. We note that throughout

this paper cloning is triggered by a load-balancer; the clones



themselves are not modified to perform an explicit call, but

can retrieve their ID through a proc interface.

IP Address Adjustment Upon cloning, a clone’s IP address

is automatically reconfigured before any inbound or out-

bound packets are allowed. Clones share an internal private

network with their parent and other select entities such as

the load balancer or the backend server. Clones are assigned

a new IP address within the private network as a function

of their ID. The reconfiguration of IP addresses requires no

developer intervention.

On the parent’s side, network connections that are open

at the point of cloning remain open and working. If the

parent VM accepts client connections, Kaleidoscope does

not attempt to hand these off to the clone. On the clone

VM, the connection is inherited but the assignment of a new

IP address during cloning forces all inbound and outbound

connections to drop – in many cases, this will result in

automatically discarding session state that the parent handles

entirely. However, the new clone has to graciously deal with

broken connections to system resources, such as the load

balancer and backend storage. Once those connections are

re-established, the new, cloned workers require no further

network-plane intervention to ensure correctness.

Reconfiguration Hook Much like the Linux hotplug in-

frastructure calls user-space scripts through the creation of

kobjects and uevents, the guest kernel will automatically

invoke a reconfiguration script after cloning, if one has been

registered. As previously discussed, our only modification to

the servers used in this paper was to have clones deal with

automatic IP reconfiguration by remounting their NFS con-

nections and subscribing to the load balancer through a sim-

ple script invoked through the reconfiguration hook.

SIGCLONE For more involved scenarios, a special asyn-

chronous signal can be sent to processes once a clone comes

alive. Handling of this signal will require code level changes,

and is only intended for complex situations – none of our

experiments in this paper used SIGCLONE. Processes ex-

plicitly subscribe to receive SIGCLONE, which will be sent

as a one of the available POSIX real-time signal and thus

terminate the process if unhandled.

7. Experimental Setup

As we anticipated, it is much faster to clone workers than to

boot them (five seconds vs. two minutes). Thus, our exper-

iments look past this major advantage, and instead examine

the value of micro-elasticity and warmed caches by compar-

ing cloning to an idealized cloud where new workers boot

instantly at no cost. We measure the initial behavior of six

worker prototypes under five workloads, and examine the

benefits of fractional footprints and page sharing.

7.1 Worker Prototypes

Each of the six prototypes strikes a different balance be-

tween performance and efficiency. All prototypes run on

identical hardware, and all applications, including Apache

and MySQL, run without modification. Where indicated,

the prototypes are previously warmed by a related workload

(different random seeding). All cloned worker VMs run on a

different physical host than their parent. The prototypes are:

Warm Static Previously warmed, this statically overpro-

visioned server sets the upper bound for achievable per-

formance. This worker is equivalent to an idealized zero-

latency cloning strategy that uses eager full replication.

Cold Standby Recently booted and held on cold standby,

it represents an idealized version of current elastic clouds,

where copying and booting workers is instant and free. Cold

standby results, if extended by an average of two minutes,

are comparable to results from today’s commercial clouds.

Minimal Clone Newly cloned using basic VM cloning, this

worker faults on every page it needs with no wasted fetches.

Kaleidoscope Newly cloned worker that uses the color map

to prefetch close PFNs within the same semantic region. The

prefetch window is tuned by semantic region (see Section

4.3 and Table 1).

Aggressive Clone This color-blind clone is tuned for higher

performance and prefetches the next 16 PFNs.

Conservative Clone Color-blind clone tuned for efficiency

by constraining its prefetch window to four pages.

7.2 Web and Database Workloads

We tested each prototype under five workloads.

OLAP Server In the absence of an accepted standard

OLAP benchmark, we drive the MySQL database server

with ad hoc decision-support queries drawn from the TPC-

H [TPC-H] benchmark. We use only 17 of the 22 TPC-H

queries because five are long running and are poorly suited to

evaluate a server’s initial, transient performance. Our elastic

OLAP server is read-only and does not support database

writes, which is consistent with standard industry practice,

where complex decision-support queries are typically run

against a read-only copy of a business’s main OLTP database

to avoid performance interference.

Web Server with Static Content Apache Web server is

driven by Httperf [Mosberger 1998], requesting 3,000 files

selected randomly from 7,500 static HTML files (random

sizes, 1 to 128 KiB). Where warmed, all files are loaded in

random order into the file system cache.

Web Server with Dynamic Content Apache is driven

by requests for dynamic content by the industry-standard

SPECweb 2005 [SPECweb 2005] benchmark. This bench-

mark consists of three standard workloads: Banking, where

users check balances and manipulate accounts through se-

cure connections; Ecommerce, where users search, browse

and purchase products; and Support where users browse and

search product listings and download files through insecure
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Figure 5. Prefetching reduces the length of time that pro-

totypes fail to meet SPECweb’s minimum acceptable QoS.

Legend top-to-bottom matches columns left-to-right.

connections. Each workload is a closed-loop simulation of

user visits based on Markov chains derived from the web

logs of typical sites. The workloads draw from many repre-

sentative files and model a typical distribution of file sizes

and overlaps in file access patterns.

All workers are implemented as Xen 3.4.0 VMs running

64-bit Linux (Debian Core 5) on eight identical Sun Fire

X2250s (each with eight Xeon cores, 8 GiB RAM, and

dual Gigabit Ethernet). Workloads are generated on five Dell

servers (four Xeon cores, 4 GiB RAM, Gigabit Ethernet).

OLAP workers run MySQL 5.1.47 in a 2 GiB VM. Web

workers run Apache 2.2.9 in a 768 MiB VM. All workload

data files are accessed through NFS.

8. Results

In this section we discuss the performance, efficiency and

resource use of the six prototypes under the five workloads.

8.1 Performance

In our experiments, we measure performance in two ways.

For the OLAP and Httperf benchmarks, which impose a

fixed volume of work, we measure the run time to assess per-

formance (Figure 4). For SPECweb, however, the run time is

fixed because the benchmarks sustain a specified load over

time, and instead we measure whether the server’s QoS is
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Figure 6. VM cloning copies state on demand, leaving the

VCPU frequently blocked while page faults are serviced.
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Figure 7. With fewer faults and less blocking, new Kalei-

doscope workers run database queries faster. No faults were

registered after the first 33 seconds.

‘acceptable’, which is defined as meeting a minimum latency

for a specified percentage of requests. For these benchmarks

we measure the ‘degraded duration’, the number of seconds

for which SPECweb finds the instantaneous QoS ‘unaccept-

able’ (Figure 5). Another difference between the two groups

of benchmarks is the value of their accrued state. For OLAP

and Httperf, the warmed memory state speeds future work,

as evidenced by the margin at which Warm Static outper-

forms Cold Standby (factors of 3.7 and 5.6, respectively).

For the SPECweb benchmarks, the dynamic content varies

for each request, which renders cached state much less valu-

able and causes Cold and Warm to perform nearly equally.

The Minimal Clone’s lazy state propagation exacts a

heavy price, resulting in the worst performance on every

benchmark. Minimal Clone is unable even to match the

Cold Standby performance, showing that the cost of copy-

ing state purely on demand negates the entire benefit of

warmed memory state. Figure 6 provides insight into Mini-

mal Clone’s poor performance. The plot shows that fetching

state purely on demand leaves the VCPU frequently blocked

while page faults are serviced.

In contrast, Kaleidoscope nearly matches the perfor-

mance of Warm Static for all benchmarks. For OLAP,

it leverages the inherited warm state to outperform Cold

Standby by a factor of 2.5, and ran only 10 seconds slower

than Warm Static, achieving 67% of its best-possible through-



put. By comparison, Cold Standby achieved only 27%

throughput during its 77 second run time. (Note that these

performance gains would be even more dramatic if the la-

tency and overhead of booting the cold VM were included.)

Figure 7 shows that Kaleidoscope’s color-directed prefetch-

ing largely eliminates the state transfer cost that so hampered

Minimal Clone. In summary, Kaleidoscope’s approach to

state replication achieves the fast instantiation time asso-

ciated with on-demand cloning while coming very close to

matching the runtime performance of eager full replication.

Both color-blind prototypes performed better than Min-

imal Clone, but failed to materially beat Kaleidoscope on

any benchmark. The key is that prefetching a page before

it is needed eliminates faults, reduces VCPU blocking and

boosts performance, whereas prefetching an unneeded page

wastes network bandwidth, and in our fractional footprint

environment, memory allocation. Figure 9(a) shows the rel-

ative fault reduction and waste of blind prefetching for var-

ious window sizes, with conservative strategies toward the

top left, and aggressive toward the lower right.

By bridging the semantic gap, Kaleidoscope is better

at estimating whether pages are likely to be needed (Fig-

ure 9(b)), and eliminates more faults with less waste. For

the OLAP workload, it outperforms the Conservative Clone

and achieves 2.9 times the throughput with 43% less waste.

The Aggressive Clone is tuned for higher performance, but

still falls 16% short of Kaleidoscope’s OLAP throughput and

wastes seven times as much prefetch bandwidth and clone

memory allocation.

8.2 Scalability

To maintain an acceptable QoS for large spikes in load, it is

important that Kaleidoscope’s performance scale well with

the number of simultaneous clones. Figure 8 shows that,

for up to eight simultaneous new workers under the OLAP

workload, Kaleidoscope scales well and outperforms Cold

Standby. Kaleidoscope’s inheritance of the parent’s warmed

caches is efficient, and multicast is effective in distributing

the universally needed pages to the sibling clones. In fact,

each clone’s fetch act as prefetch for others, which boosts

overall performance. In contrast, Cold Static workers tend to

slow each other as they contend for the central database files.

Larger-scale Kaleidoscope elasticity can be achieved by

cloning multiple parents in parallel. Although not imple-

mented in the current prototype, clones older than several

minutes could be converted into cloneable parents by trans-

ferring the full VM image. This configuration should support

an exponentially increasing load that doubles every minute.

8.3 Lightening the Backend Load

Clones, with their inherited warm caches, sometimes exert

less load on the backend storage than cold workers that

warm their caches from scratch. This secondary benefit is

most pronounced for the Httperf benchmark, where static

HTML files stored in the page cache save 200MB of reads,
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Workload Pages Faults Pages Fetched

Needed Avoided Unnecessarily

OLAP 193,788 163,987 8,195

Banking 97,451 76,675 21,341

Ecommerce 75,044 58,734 17,352

Support 65,786 51,387 13,589

Httperf 58,850 39,980 8,625
(b) Kaleidoscope’s color-directed prefetching efficiently avoids most
faults with relatively few wasted fetches.

Figure 9. Prefetch Efficiency Kaleidoscope’s use of se-

mantic hints yields better fault reduction with less waste.

and for OLAP, where MySQL’s user space data structures

are sufficient to satisfy future queries, eliminating 890MB of

backend reads. The least benefit is derived for the SPECweb

workloads. Because they randomly selects files from a very

large set, cached results are statistically unlikely to help.

8.4 Fractional Footprints

Kaleidoscope’s fractional VM workers grow only as needed

to satisfy new allocations or hold newly transferred state,

as illustrated for the five workloads (with page sharing dis-

abled) in Figure 10(a). For the SPECweb workloads with

their large numbers of files and simulated users, the workers

grow to claim approximately 90% of their allocation within

the first minute. The Httperf and OLAP benchmarks are

quite different, and under their intense but narrower loads,
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Figure 10. Fractional Footprints Kaleidoscope’s workers

efficiently avoid fetching or allocating unnecessary pages.

Kaleidoscope workers reached only 40% and 39% of their

nominal memory size, respectively. Figure 10(b) shows the

distribution of the unfetched parent state by semantic region.

The 3,000 static HTML files of the Httperf benchmark

are easily cached with capacity to spare, and since future re-

quests hit the same files, the allocation remains stable. As

may be common given the coarse sizing of VMs available

in today’s commercial clouds, the worker is oversized for

the load requirements, and Kaleidoscope offers the attrac-

tive possibility of efficiently retaining the unused capacity

for other purposes. The OLAP worker is similar. It, too, is

oversized, and clones of the parent VM are even more so

– fractional footprint results in over one GiB of savings.

Whereas the parent temporarily needed memory to cache the

database files while it populated its user space data struc-

tures, the cache is later not needed to service requests and

therefore remains unfetched and unallocated by the clone.

8.5 Sharing Identical Pages

A ‘fair’ evaluation of the content-addressable store (CAS) is

important because results are dependent on the experimen-

tal design. For example, clones of the same parent and from

the same, or even different, generations are extremely sim-

ilar, and for read-only workloads could be nearly identical.

This would skew the analysis of sharing opportunities. We

Table 2. Color-Directed vs Blind CAS
Kaleidoscope Blind CAS

Size of CAS Cache 22,507 248,717

Pages Hashed 26,166 258,072

Saved by Sharing 5,522 9,355

Lost to Divergence 1,848 2,413

Net Savings 3,674 6,942

therefore assess Kaleidoscope’s page sharing with clones of

the MySQL and Apache parents as follows. We assume that

a Kaleidoscope deployment would avoid placing siblings on

the same host, but that hosts might be used for workers of

several distinct parents. To determine the ‘initial sharing op-

portunities’ we consider two clones and their initial state as

inherited from each parent, and count the duplicate pages

present in the union of their states. As the clones service their

workloads (OLAP and Banking respectively), they update

some of their pages, which may require that shares be bro-

ken. After both workloads are complete, we consider the ‘net

savings’, the count of duplicate pages that are still shared.

Kaleidoscope provides very high CAS efficiency by

tracking hash values only for those pages that are the most

likely to be sharable, and are the least likely to subsequently

diverge. Table 2 shows the initial and longer-term sharing

opportunities for the Banking and OLAP benchmarks run-

ning on the same host. By tracking only free, kernel (except

the file system cache), and executable pages (including those

in the file system cache), Kaleidoscope captures 53% of the

sharing opportunities while computing hashes for only 10%

of pages, and performs an average of 7.1 hash calculations

per page saved. Blind CAS netted additional pages at 10

times that cost.. Kaleidoscope is not intended to compete

with general CAS systems, but is rather taking advantage of

savings it encounters at nearly zero cost. It should be noted

that Kaleidoscope has relatively few sharing opportunities

because it has already eliminated the wholesale waste from

free pages by avoiding their allocation entirely.

As a further benefit, the local CAS cache can be used

to service clone page faults without incurring the round

trip cost of fetching the page from the parent VM. This

could happen frequently where hosts are used for subsequent

generations of workers servicing later spikes in load.

9. Implications for Cloud Data Centers

Finally, we examine the implications of deploying Kaleido-

scope for the QoS, resource use, and infrastructure require-

ments of elastic clouds. We conduct a simulation-driven

study using one month of CPU and memory demand data

collected from AT&T hosting in January 2010. The data is

for a subset of 248 customers’ tiers hosted on a total of 1,740

statically allocated physical processors (PPs) and collected

at 5 minute intervals. The selection of customer tiers was

based on those customers who had instrumentation of pro-

cessor and memory consumption turned on – from that set



we retained only those PPs devoted to web and application

server tiers. We consider a scenario in which this demand

is served by a hypothetical cloud data center that contains

identical physical machines (PMs) with 16 CPU threads and

24 GiB of RAM. VMs are packed into PMs using a first-fit

bin-packing algorithm - a newly created VM is allocated to

the first PM which has sufficient memory and CPU capacity

available.

CPU demand (% PP used) is aggregated over all PPs be-

longing to a customer tier at every time interval and then

divided equally amongst the number of VMs. When the ag-

gregate utilization (i.e., aggregate CPU demand/CPU capac-

ity across all VMs belonging to the tier) for a customer

exceeds the high threshold TH , sufficient additional VMs

are created to reduce utilization back below TH . When the

aggregate utilization falls below low threshold TL, enough

VMs are removed to bring utilization back between TL and

TH . The thresholds determine how efficiently the cloud’s re-

sources are utilized. High values will delay new VM creation

and hasten the destruction of underutilized VMs, and fewer

VM’s will be needed to satisfy a given demand.

The additional capacity of a newly instantiated VM is

brought online only after an instantiation interval whose

duration depends on the VM creation mechanism. We con-

sider an ‘overload’ an event in which the CPU demand at

that point in time exceeds the current VM allocation. Over-

loads happen because the VM creation mechanism used is

too slow and VMs are not created with sufficient anticipa-

tion. We measure QoS degradation due to overloads by the

accumulated value of the ‘unmet demand’ in CPU-seconds

- i.e., one CPU-second implies a shortfall of an entire CPU

core’s worth of demand for the period of one second.

We estimate the seconds of unmet demand, the CPU-

hours used by all the customers, and number of physical

machines required in the cloud for the following scenarios:

Warm Static: Each physical processor (PP) is mapped to

a single VCPU VM (100% demand) with the PP’s peak

memory allocation. VMs are statically allocated at the be-

ginning of the simulation. This represents traditional over-

provisioning with the best performance, and meets all de-

mands at the expense of a large infrastructure commitment.

Elastic Cloud: Simulates current elastic clouds with dy-

namic addition and removal of VMs. Each VM is allocated

memory equal to the peak demand of any PP in the tier over

the entire month. An instantiation interval of 2 minutes is

used based on current clouds. Page sharing is optimistically

simulated by reducing the parent VM’s memory by a fixed

tunable percentage throughout the whole simulation. Extra

workers do not share pages due to their transient nature.

Kaleidoscope: Similar to the Elastic Cloud with an instan-

tiation interval of 5 seconds, based on performance reported

in Section 7. A new clone’s memory starts at 20% of its fi-

nal size and grows dynamically for 40 seconds according to

one of two memory growth profile’s from Figure 10(a) - a

large footprint clone corresponding to the Support, Ecom-

merce, and Banking workloads that grows to 90% of the full

memory allocation, and a small footprint corresponding to

the Httperf and OLAP workloads that grows to 40% of the

full memory allocation. Finally, the final memory size on

all VMs (parents and clones) are reduced by a fixed tunable

percentage when simulating memory sharing. To account for

missed sharing opportunities in the transient clones, we re-

duce sharing percentage by 47% for clones (according to

Table 2). We do not take into account the improvements in

sharing overhead caused by Kaleidoscope’s state coloring.

Figure 11(a) shows the substantial impact of Kaleido-

scope on QoS by plotting cumulative unmet demand across

all customers over the entire one-month period. We used

TL = TH − 20% and interpolated the demand data to 5 sec-

ond intervals. The plot shows that QoS degrades exponen-

tially with the slower VM creation time of the Elastic Cloud

and higher CPU thresholds. In practice, VM cold booting

used in the Elastic Cloud will result in even higher QoS vio-

lations for many applications due to the performance degra-

dation, caused by cold caches, that is ignored in these re-

sults. In comparison, Kaleidoscope with TH = 90% has over

three orders of magnitude less unmet demand than the Elas-

tic Cloud. Thus, slow VM creation imposes the adoption of

more conservative VM creation and deletion thresholds, and

is, in effect, the modus operandi in today’s IaaS operations.

Higher CPU thresholds lead to better utilization of re-

sources and increased IaaS efficiency. Figure 11(b) shows

the number of CPU-hours actually allocated to all customers

over the one-month period, as a function of the CPU thresh-

old. CPU hours are counted (with a five-second granularity)

from the moment an allocation decision is made, and thus

are independent from the instantiation latency. The corre-

sponding Warm Static allocation, whose CPU-hour count is

independent of creation thresholds, is over an order of mag-

nitude higher (4.2 million CPU-hours) and is not shown in

the figure. By combining the results from Figure 11(b) with

Figure 11(a) we see that Kaleidoscope with a TH = 90%

outperforms current Elastic Clouds with TH = 50% by re-

sulting in a 98% reduction in the number of seconds of un-

met demand, while still requiring 26% fewer resources to be

purchased by cloud users.

Finally, Figure 11(c) shows the number of physical ma-

chines required as a function of memory page sharing. We

compare the Elastic Cloud and Kaleidoscope scenarios. For

Elastic Cloud, we consider two creation thresholds, an ag-

gressive one that minimizes resource usage (90%), and a

conservative one that minimizes unmet demand (60%). For

Kaleidoscope we only consider the aggressive 90% thresh-

old, and compare three different memory growth profiles

for clones: Support (growth of up to 90% of the footprint),

OLAP (growth of up to 40%), and a 50-50 Mix with cus-

tomers randomly assigned either profile. For both Elas-

tic Cloud and Kaleidoscope we also factor in an overall
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Figure 11. Simulations using AT&T Hosting data show that Kaleidoscope improves cloud QoS, resource use, and efficiency.

page sharing success percentage. Even with identical CPU

thresholds, Kaleidoscope significantly reduces the number

of physical machines needed by the IaaS provider by 5% to

30%. If the VM boot techniques used in the Elastic Cloud

setup require a conservative threshold of 60%, then even

higher infrastructure reductions of up to 50% are possible.

10. Related Work

We propose VM state coloring as another way of bridg-

ing the semantic gap between VM management and OS

knowledge, and is very different from ‘memory coloring’,

which has been used in the past for techniques improving

the performance of processor memory caches. The prob-

lem of the semantic gap in virtualized environments was

first formulated by Chen and Noble [Chen 2001]. Patago-

nix [Litty 2008] and Antfarm [Jones 2006a] perform a form

of architecture-based semantic gap bridging, using x86 page

table knowledge to identify user-space processes inside a

VM. Self-migration [Hansen 2004], is an approach to migra-

tion that demands tight collaboration between the host VMM

and guest VM, pervasively bridging the semantic gap.

Geiger [Jones 2006b] targets semantic gap issues related

to the OS page cache, and presents an OS-independent alter-

native to our page cache identification mechanism. Geiger,

however, requires the use of approximation heuristics to de-

tect when a page in the page cache has been given a dif-

ferent use. It also needs to reverse-engineer the underlying

filesystem to detect block device transactions pertaining to

the journal or other non-file structures, and to group guest

pages according to their backing file.

Potemkin [Vrable 2005] implements a different form of

VM cloning: Potemkin clones are short-lived lightweight

VMs residing in the same host as the parent (or template)

and sharing memory via copy-on-write. The canonical work

in memory management of VMs is Waldspurger’s [Wald-

spurger 2002]. Conceptually, Difference Engine [Gupta

2008] extends these ideas by adding sub-page sharing. Both

systems perform repeated cycles of brute-force fingerprint-

ing of the entire host memory to achieve memory dedupli-

cation. Satori [Milosz 2009] is similar to our work in that

it uses an efficient source of VM introspection, virtual disk

DMA operations, to guide the sharing mechanism.

To the best of our knowledge, we are the first to evalu-

ate the use of VM cloning to dynamically scale servers and

preserve QoS during spikes in load. Prior related work has

focused on optimizing application QoS within a static VM

allocation. Approaches include the utilization of VM migra-

tion to relieve datacenter hot spots [Wood 2006], workload

management and admission control to optimize QoS and re-

source use [Elnikety 2004, Urgaonkar 2008a], and allowing

applications to barter resources [Norris 2004].

We close by highlighting related work in the broad area of

dynamic resource provisioning. Typically, dynamic VM pro-

visioning is achieved with copy-and-boot techniques [Mur-

phy 2009, Urgaonkar 2008b]. Another technique is to keep a

pool of pre-configured machines on standby, and to bring

these generic hot spares to bear as required [Fox 1997].

These are all examples of approaches that tie up comput-

ing resources in reserve, or present prolonged instantiation

latencies leading in many cases to subpar performance.

11. Conclusions

In this paper we have introduced the notion of cloud micro-

elasticity, in which servers react to load by swiftly spawn-

ing transient, short-lived cloned VM’s with warm applica-

tion caches and a tightly adjusted fractional memory foot-

print. Micro-elasticity is achieved by tailoring propagation

and sharing policies to the different types of memory in a

VM, a technique we call VM state coloring. VM state color-

ing can spawn stateful clones with warm application caches

at a fraction of the cost (and footprint) of state-of-the-art

techniques. By simulating cloud micro-elasticity on traces

collected from AT&T’s multi-tenant hosting environment,

we obtain reductions in infrastructure use of roughly 30%,

which benefit both providers and users.

There are two important paths for future work. First, the

consistency assumptions governing some multi-tiered ap-

plications might be subverted by the impromptu addition



of cloned VMs. This has not been the case for our Web

and OLAP workloads; nonetheless, we need to further ex-

plore the suitability of our sanitization mechanisms for other

workloads. Second, the principles of VM state coloring can

be very useful in WAN VM migration; improvements on the

efficiency of content-addressing, prefetching, and even fetch

avoidance are all valuable optimizations to migration.
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