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Abstract— Radio equipped mobile devices have enjoyed
tr emendousgrowth in the past few years. We observe that in
the near futur e it might be possible to build a network that
routesdelay-tolerant packetsby harnessinguser mobility and the
pervasive availability of wir elessdevices. Such a delay-tolerant
network could be used to supplement wir elessinfrastructur e or
provide service where none is available. Since mobile devices
in a delay-tolerant network forward packets to nearby users,
the devicescan use short-range radio, which potentially reduces
device power consumption and radio contention.

The design of a user mobility based delay-tolerant network
raises two key challenges:determining the connectivity of such
a network, and determining the latency characteristics and
replication requirementsof routing algorithms in sucha network.
To determine realistic contact patterns,we collecteduser mobility
data by conducting two user studies. We out�tted groups of
students with instrumented wir eless-enabledPDAs that logged
pairwise contacts between study participants over a period of
several weeks.Experiments conductedon thesetraces show that
it is possibleto form a delay-tolerant network basedon human
mobility . The network has good connectivity, so that routesexist
betweenalmost all study participants via somemulti-hop path.
Mor eover, it is possibleto effectively route packets with modest
replication.

I . INTRODUCTION

Mobile devices,which enableentirenew classesof applica-
tions, have enjoyed tremendousgrowth in the pastfew years.
As thenumberof radio-equippedmobiledevicesincreases,we
observe that it might bepossibleto build a network thatroutes
delay-tolerantpackets based on pairwise contact between
users. Such a delay-tolerantnetwork (DTN) [1] could be
usedto supplementwirelessinfrastructureor provide service
wherenoneis available.For packet delivery, thedelay-tolerant
network usestwo transports:usermobility (no radio needed!)
and packet forwarding when usersmeet. In the latter case,
mobile devicesonly needshort-rangeradio,which potentially
reducesdevice power consumptionandradio contention.

Typically, delay-tolerantnetworks exhibit long periodsof
disconnectionwhere nodesseldom have end-to-endinstan-
taneousconnectivity. As a result, designingeffective routing
protocolsis challenging.In particular, existing routing algo-
rithms for ad hoc networks suchas DSR [2] and DSDV [3]
assumereasonableconnectivity andarethusnotwell suitedfor

delay-tolerantnetworks.Furthermore,thedisconnectednature
of the network resultsin incompleterouting information,and
hencereplicationmaybeneededto improve successfulpacket
delivery aswell aspacket delivery times.

Themaingoalof this work is to determinewhetherrealuser
mobility patternscanbeusedto build adelay-tolerantnetwork.
In particular, we wish to addressthe following key questions:
1) what are the connectivity characteristicsof this network,
and 2) what are the latency characteristicsand replication
requirementsof the routing algorithms that can be used in
sucha network.

As a �rst step towards our goal, we conductedtwo user
studies to collect traces of user mobility. In each study,
we out�tted groups of 20 studentswith Bluetooth-enabled
Palm PDA devices.We con�gured the PDAs to periodically
searchfor otherparticipantsandloggedall pairwisemeetings
between users. While this data does not provide precise
informationaboutusermovement,it capturesall opportunities
for communicationin our network.

We thenusedthe tracedatato determinenetwork connec-
tivity andexperimentedwith two typesof routing algorithms
to evaluatethe inherentlatency vs. replicationtrade-off in our
network. Our �rst algorithmusesepidemicpropagation[4] to
forwardpackets.While this algorithmcandeliverpacketswith
the leastlatency, it requiresmakinga large numberof packet
replicas. As a result, we explore link-state algorithms [5],
under varying degreesof source-basedreplication, that use
pastbehavior of contactpatternsto determinerouting paths.

Our resultsshow that even though our network is sparse
it has good connectivity. In particular, while most partici-
pantscome into direct contactwith only a small subsetof
other participants,they are able to indirectly contactalmost
all other participantsvia somemulti-hop path. Furthermore,
even participantsthat comeinto direct contactcan generally
routepackets to eachotherwith lower delayusingmulti-hop
paths.In our network, the medianone-way delivery time is
approximatelythreedays.While this is not practical,we stress
thatourpopulationsizewasverysmallcomparedto theareaof
thecity. Whencomparingepidemicpropagationwith the link-
statealgorithms,we�nd thatthelink-statealgorithmsrequirea
small fraction(about1/10th)of packetscomparedto epidemic
but incur only twice the latency.



This paper makes two contributions. First we show that
it is feasibleto build delay-tolerantnetworks basedon real
traces [6] of human mobility. Second,we characterizethe
performanceof differentclassesof delay-tolerantroutingalgo-
rithms in termsof their latency characteristicsandreplication
requirements.

Therestof this paperis organizedasfollows.Thefollowing
sectiondescribestheexperimentweconductedto collecttraces
of pairwisecontactsbetweenusers.SectionIII characterizes
the mobility data trace and motivates the need for multi-
hop routing strategies.Next, SectionIV describesthe routing
algorithmsthat we experimentwith. SectionV describesour
results,andSectionVI discussesourexperiencesin conducting
mobility studiesandsometechnicallimitations in our current
study. We cover relatedwork in SectionVII, andpresentour
conclusionsandavenuesfor future work in SectionVIII.

I I . EXPERIMENT

Since we wish to use real user mobility data to evaluate
the feasibility of human-baseddelay-tolerantnetworks, we
conductedan experimentto collect tracesof pairwisecontact
betweenusers[6].1 Our experimentidenti�ed when any two
usersmet, but did not transferreal dataor measureconnec-
tion bandwidth.This approachwas easierto implementand
provided suf�cient datato evaluateour routing algorithms.

To collect tracesof pairwise user meetings,we out�tted
users with instrumentedmobile devices. The instrumented
deviceshadto satisfythreerequirements:1) thereneededto be
motivationfor theuserto carrythedevice asoftenaspossible;
2) the datacollection had to work independentof the user's
activities; and3) thedevicehadto operatefor at leastaneight-
hour period, i.e. a work day. Below, we describehow these
requirementsweremet in our experiments.

We provideduserswith a featurefuldevice to encouragefre-
quentcarrying,andimplementedour instrumentationsoftware
to have minimal impact on usability. Thoughwe could have
usedspecializeddevicesfor our experiment(e.g.,motes[7]),
we usedcommodityPDAs (a Palm device with a short-range
Bluetoothradio) becauseit helpshighlight our motivation to
network consumermobile devices in interestingways.

Our aim was to detectopportunisticpairwisecontact,even
whenusersmight not beawareof it. Contactcould take place
while at a meeting,waiting for an elevator, or even walking
by anotherparticipant.Usersmight not be awareof who may
or may not be a participant, and they might not be using
their devices during that moment of contact. Nevertheless,
it is desirable to record such contact since it presentsa
communicationopportunity. As a result, our instrumentation
softwareran continuouslyand invisibly in the background.

We expectedthatmostuserswould not have anopportunity
to rechargetheir device until theendof theday. Sothedevices
had to operatefor at leastan eight-hourwork-day. Requiring
mid-day rechargeswould be disruptive of the user's routine
and increasethe likelihood of the device being forgottenor

1We refer to participants(subjects)in our userstudiesas “users”.

Fig. 1: Radioprotocol

left behind. Unfortunately, our experienceshowed that it is
not possibleto meetthe eight-hourbatteryrequirementwhen
the Palm devices, even with short-rangeradio, are continu-
ously powered and transmitting on their radios. Therefore,
judiciously managingdevice activity, and in particular radio
transmissions,was essentialto achieving our data gathering
objectives.

The design of our radio protocol was in�uenced by two
main factors: 1) catching opportunisticcontact; and 2) en-
suring the devices operatedfor at leasteight hoursbetween
recharges.Assuminga10-meterantennarange,andanaverage
walking speedof 2 m/s, there is a 10-secondwindow of
opportunityto detecta userwalking directly pastanothersta-
tionaryuser. Thereforewe expect10-secondintervalsbetween
devicesearchesto besuf�cient for catchingmostopportunistic
contacts.

Unfortunately, a 10-secondperiod consumedtoo much
power anddevicesfell shortof the eight-hourwork-daygoal.
As a result,our protocolsearchesfor peerdevicesonceevery
16 seconds.We recognizethat the 16 secondsearchinterval
can miss certaininstancesof pairwisecontact.However, this
simply meansour datatracesareconservative.A shortersleep
time will capturemoredata,but requiresmorebatterypower.

To maximizepower conservation underour radio protocol,
device radiosare active for a shortperiod of time within the
16 secondperiod and sleepthe rest of the time. To increase
the odds of successfuldetection we time-synchronizedall
devices[8] at the startof the userstudyusingNetwork Time
Protocol(NTP).

Our protocol is illustrated in Figure 1. All devices start
the protocol cycle at the sametime, where they enter into
an active radio mode. Within this mode, devices listen for
peersaswell astransmittheir presencefor threesecondsat a
randomizedtime. BecauseBluetoothdevicesarehalf-duplex,
the randomizationprovides a necessaryform of contention
avoidance.Devices then sleepfor the restof the period until
the start of the next cycle. Under normal user activity, this
radio protocol gave approximately8 to 10 hours of battery
life. To ensurethat clock drift doesnot hinder the protocol's
effectivenessduringtheuserstudyperiod,we re-synchronized
eachPalm device at leastonceper weekusingNTP.



UserStudy1 UserStudy2
subjects 21 gradstudents 23 undergradstudents

3 stationary 3 stationary
lengthof study 2.5 weeks 8 weeks
tracelength 30486tuples 11161tuples

TABLE I: Summaryof UserStudies

A. Data CollectionPrototype

For our experiments, we used Palm Tungsten T PDA
devices, running the Palm OperatingSystem(PalmOS). Be-
causesuf�cient batterylife is a major concern,the PocketPC
platform,which usuallylastsapproximatelytenhourswithout
radio usage,wasnot a viable option. Similarly, due to power
concerns,we useBluetoothradio insteadof WiFi (WiFi can
consumebetween10 to 50 timesmorepower thanBluetooth
in low-usagemodes2 [9]).

EachPalmdevicerecordedtuplesof contactdata.At theend
of the userstudy, the logs of eachof the Palmsweremerged
togetherto form a singletrace.This traceis a list of tuplesof
the form: (timestamp, node id, node id) .

It shouldbe notedthat for the experiment,devices do not
track or shareuser information, and the mappingof devices
to usersis kept con�dential. The trace data for analysisis
anonymized beforeuse.At this time we do not considerthe
securityandprivacy concernsin sucha network.

B. User Studies

We conductedtwo separateuser studies.Each study in-
volved approximately20 studentsin total from two separate
classesin two different departmentsat the University of
Toronto:ComputerScience(CS)andElectricalandComputer
Engineering(ECE).

The �rst user study involved only graduatestudentsand
lastedfor two-and-a-halfweeks.Nine studentswere in a CS
graduatecourse,eightstudentswerein agraduateECEcourse,
andonestudentwasunrelatedto eitherof thosetwo courses.In
additionwe hid threestationarydevicesin several locationsto
simulatean alwaysavailablestationaryuser. The seconduser
studyinvolvedonly undergraduatestudentsandlastedfor eight
weeks.Tenstudentswerein anundergraduateCSclassandten
in anundergraduateECEclass.Again, threestationarydevices
werehiddenin variouslocationsto simulatestationaryusers.
A summaryof the userstudiesis shown in Table I.

I I I . INITIAL CHARACTERIZATION

In this section,we presentan initial analysisof the data
traceswe collected.Speci�cally, we show that routingpackets
throughintermediatenodesimprovesnetwork connectivity and
reduceslatency.

A. Connectivity

Figure2 shows the adjacencyandreachability of all nodes
in the two user studiesover the full length of the traces.
Adjacency refers to the numberof other peersthat a node

2Low usageis de�ned as,on average,90%of time in sleepmodeand10%
of the time in receive andtransmitmodes.

comesinto contactdirectly. Reachabilityrefersto the number
of other peersthat a nodecomesinto contactindirectly, via
somecausalpath of intermediatenodes.Along the X-axis is
an enumerationof all nodesin each study, sorted by their
connectivity. Connectivity (shown on the Y-axis) refers to
eitheradjacency or reachability, i.e. thenumberof otherpeers
that the nodecomesinto contactdirectly or indirectly.

We seethatmulti-hoppathsprovidea signi�cant increasein
connectivity. On the far left of Figure2(a), the nodewith the
smallestadjacency (it comesinto direct contactwith 5 other
peers),is ableto reachalmostall otherpeers(19 otherpeers)
via somemulti-hop path. Over half of the nodesin the �rst
userstudycomeinto direct contactwith lessthanhalf of the
otherpeers;andyet reachabilityfor all of the nodesis nearly
perfect.We seea similar trend in Figure 2(b) for the second
user study, where most nodesare adjacentto less than half
of the otherpeers,andyet areable to reachmostor even all
peersvia multi-hop paths.

Since many participantsattendthe samelectures,we ex-
aminewhetherclasstime hasan effect on the connectivity of
thetrace.We remove momentsof contactwhich take place15
minutesbefore,during, and 15 minutesafter scheduledclass
times of the participants.The effects are illustrated by the
lines labelled “no class” in Figure 2. Thoughthe classtime
removal shows someloss in adjacency, reachabilityremains
consistentlyhigh.

We also examined the degree to which speci�c nodes
werecritical in forming the connectivity of the network. The
adjacency andreachabilityof nodeswerere-examinedmultiple
times,eachtime independentlyremoving a node.In all cases
network reachabilitywasnot signi�cantly affected.Thisshows
that there is robustnessin the contactsbetweennodes,and
alternative paths for reachability can often be found. Thus
while nodeswith high adjacency are bene�cial, they are not
vital to the connectivity of the network asa whole.

Furthermorewe alsoexaminedthedegreeto which thehid-
den stationarynodesplayeda role in providing connectivity.
We performedthe above analysisafter removing all contacts
involving the three hidden nodes.We found no signi�cant
loss from removing thesestationarydevices.We believe the
stationarydeviceswerenot effective as intermediariesdue to
the short radio rangeof Bluetooth.

Theseresultsaresigni�cant in that they show it is possible
to createa network basedon pairwise meetingsand node
mobility. While mostnodesonly meeta small fraction of all
nodesin thestudy, forwardingpacketsover intermediatenodes
enablescommunicationbetweenalmostall nodes.Moreover,
theseresultsshow that there is signi�cant robustnessin the
network with many alternativemulti-hoppathsbetweennodes.

B. Latency

To understandwhethermulti-hop pathscan provide lower
latency communicationbetween nodes comparedto peers
meetingdirectly, we ran the tracesthroughanexperimentthat
implementsepidemicpropagation.For all of our experiments,
we randomlygroup nodestogetheras sendersand receivers.
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Fig. 2: Adjacency andreachabilityplots

Every node acts as a sender, and is randomly assigneda
speci�c receiver. No two nodesareassignedthesamereceiver,
andit is not necessarilythe casethat sender-receiver pairings
arebidirectional.Becauseof the natureof epidemicpropaga-
tion and almostfull connectivity of our network (over time),
we expect that multiple replicasof a packet will likely arrive
at its destination.We call the �rst successfuldelivery of every
packet the�r st arrival. We providea moredetaileddescription
of the epidemicpropagationin SectionIV-A.

Figure 3 shows the distribution of hop countsfor all suc-
cessfullydelivered�rst arrival packets.The graphshows that
approximately81% (100%-18.37%)of packets found lower
latency pathsto their destinationvia multiple hop paths.This
result shows that not only are multi-hop pathsnecessaryfor
connectingnodes,but they also provide lower-latency packet
delivery.

IV. ROUTING PROTOCOLS

In this section,we describethe two routing protocolsused
in our experiments.Our objective is to explore the latency vs.
replicationtrade-off in theseroutingalgorithms.We startwith
epidemicpropagation,which candeliver packetswith theleast
latency but can result in a large numberof packet replicas.
Next, we explore two variationsof a link-statealgorithmthat
usepastbehavior to determineroutingpathsat runtime.These
algorithmslimit packet replicationbut increasepacketdelivery
latency. We thenexploretheeffect of incrementallyincreasing
source-basedreplicationin our link-statealgorithms.

A. Epidemic

In epidemic propagation,every packet transmittedby a
sourcenodeeventually arrives at every nodereachablefrom
thesource.Whentwo nodesmeet(asindicatedby an entry in
thetrace)they transmitto eachothercopiesof all theirpackets.
Oncea nodehasa packet, it is kept inde�nitely anddoesnot
receive new copiesof it. Epidemic,by its nature,providesthe
lowest latenciesand highestsuccessrate for packet delivery.
Sinceall nodes(including intermediaries)replicatethepacket,
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up to N replicascan be created,whereN is the numberof
nodesin the network.

By itself, epidemic propagationcontains no method for
packet removal. Techniquesexist for removing packets from
queues,suchastime-to-live restrictionandprobabilisticdeliv-
ery detection.However, in the worst case,the entirenetwork
must be �ooded with any given packet to ensuresuccessful
delivery.

In our epidemic experiment, nodeskeep packets until a
global oraclehasdeterminedthat a packet hasbeensuccess-
fully delivered. Clearly, such an oracle is highly idealized.
Even so, our experimentshowed that, on average,epidemic
created11 copiesperpacket in a network with only 21 nodes.
The medianis 10 copies,with a maximumof 21. This is an



intuitive result basedon our �ndings in SectionIII. Because
almost all nodeshave a causalpath from itself to all other
nodes,on averagewe expect half the network to be �ooded
for a given sourceto reacha given destination.

As describedin SectionII, power managementis an im-
portant factor for mobile devices, especiallywith respectto
radiouse.Eachadditionalreplicain theexperimentrepresents
additionalpacketsto betransmittedoverradio.Thusthereis an
inherentrelationshipbetweenreplicationand increasedradio
use.Thoughshortrangeradiotechnologiescanhave very high
throughputspeeds,theprimaryconcernis powerconsumption.
This resultmotivatesexploring routingalgorithmsthat require
fewer replicas.

B. Link-StateProtocol

Unlike connectedad hoc networks,delaytolerantnetworks
are mostly disconnectedand partitioned.In sucha network,
route queryingon-demandwould be impractical.Instead,we
assumethat pastusermobility patternsare a good predictor
of future patterns.The intuition is that peoplehave regular
schedulesand meetingpatterns,leading to regular pairwise
contactpatterns.

We explore the use of a link-state basedprotocol to de-
termine routing pathsat runtime in delay-tolerantnetworks.
In a link-stateprotocol, eachnodemaintainsstateabout the
connectivity of the network. Eachnodesharesthis statewith
othernodesthat it meetsandre-evaluatesits own statebased
on its own observations combined with the state of other
nodes.Intuitively, this meansnodestrack who they meet,and
learnwith whom othernodesmeet.

In our link-stateprotocol, eachnodestoresa graphof its
perceived state of the network, which we refer to as the
link-stategraph. This graph is storedas a table of edgesof
the form (node id, node id, weight, version) .
The table, in the worst case,can have N � (N � 1) edges,
whereN is the numberof nodesin the system.

Edge weights in the link-state graph provide an estimate
of delaybetweenpairwisecontacts,andarea function of the
inter-contact time intervals. For example, the edge may be
assignedthe averagetime interval betweenpairwisecontacts.

We explore two methodsfor maintaining edge weights:
medianlatencies(which we referto asmedianweighting),and
exponentiallyweightedlatencies(which we referto asaverage
weighting).With medianweighting,eachedgeentry in a link-
stategraphmaintainsanunboundedarrayof contactintervals.
When computingweightsor exchanginglink-stategraphen-
tries, the medianvalue is selectedfrom this array, and used
asthe weight.The contentsof the unboundedarrayarenever
shared.With averageweighting,edgeweightsareupdatedus-
ing the formula: weightnew = (1 � � ) � I + � � weightold ,
whereI is the time interval sincelast contactwith the given
peer and � is the weighting parameter. We choosea large
valueof � (0.9) to give weight to the time interval history.

Over time,nodeswill make updatesto their link-stategraph
tableandsharetheupdatedentrieswith othernodes.We usea
single-writing/multi-readermodelwhereonly the ownerof an

edgeentry can updateit and incrementthe versionnumber.
Next, we describeour link-stateprotocol, which consistsof
threephases,and how the graphstructureis used.Note that
the link-stateprotocolonly runsuponradio contact.

StateUpdate: In this mode,eachnodeupdatesits edge
entry in the link-state graph for this node pair by adjusting
theedgeweight andincrementingthe entry's versionnumber.
The edgeweight is derived from the time interval from last
contactbetweenthis pair, asdescribedearlier.

StateSharing: Next, the pair of nodeswill sharetheir
link-state graphswith one another. Each node will transmit
“newer” graph entries to its peer: entries that are unknown
to its peer, or entriesthat have a higherversionnumber. The
recipientnodecreatesnew entriesor replacesexisting entries
with newer versions.In this statesharingmode,N � (N � 1)
entriesmay have to be exchangedin the worst case.

StateLookup: Oncestatesharinghascompleted,thepair
of nodes(still in contact)enterstatelookup mode.Eachnode
performsa min-pathsearchover its link-stategraph,resulting
in a minimum spanningtree from itself to all other known
nodes.An exampleof the resultingspanningtreegeneratedat
node 02 in our experimentis shown in Figure 4. For every
packet in its queue(which may include packets generated
by it as well as handedto it by other nodes), the node
pairs communicateto compare the expected latency from
themselves to the destination.If the expectedlatency from
the peer is less than from itself, the packet is transmittedto
the peer. Otherwise,the packet remainsqueued.

C. IdealizedLink-StateGraph

Becauseour link-state protocol must learn the network
stateat runtime, thereis a considerable“warm-up” cost.We
experimentedwith a link-state graph with preset read-only
weights.This idealizedlink stategraphhasno warm-upcost
anddoesnot suffer from makingcon�icting decisionsdue to
frequentstatechangesandtransitions,thusproviding anupper
boundfor how well our live algorithmswill work in practice.
In the idealizedlink stateexperiments,we �rst precomputed
the link-state graph structureby walking the full length of
the trace.We thenprovide all nodeswith a copy of this data
structurebeforethe startof the experiment.

Note that epidemicpropagationhas no warm-up cost be-
causeit alwaysreplicatespacketsuponcontact.The link-state
protocolshave a �x ed numberof replicasper packet. Thus
idealizedlink-stateprotocolprovidesus with a comparisonof
replicationversuslatency trade-off.

D. ScalabilityConsiderations

Before continuing, we take a moment to discusssome
limiting factors in our link-state protocol. In this work we
presenta protocolcapableof learningnew nodes,new paths,
andedgeweightupdatesonline.However, for simplicity, there
is currently no mechanismfor eventual removal of old and
stalenodesor edges.The link-stategraphcanbe extendedto
supportaging,penalizing,and entry pruning.We leave these
extensionsfor future work.
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Our link-stateprotocol maintainsknowledgeof all known
nodesin thesystemanddiffusesthat informationin full. For a
largesetof nodes,thecostof sharinginformationmaybecome
burdensome.Therearemany optionsfor reducingthe sizeof
link-statemessagesandthelink-stategraph.Nodescanchoose
to prunestateupdatemessagesto speci�c nodes,dependingon
expectedusefulnessof thatinformation.Nodesmight take into
considerationpruningfactorssuchasthepeers'successrateat
routing packets,its degreeof separationfrom othernodes,or
elapsedtime sincelast contact.Similarly, the link-stategraph
tables can be reorganizedinto more hierarchicalstructures,
allowing nodesto determinesubsetsof datato share,instead
of sharingall data.

In a larger or denserdevice population,a more relaxed
sharing model such as a gossippingprotocol, where infor-
mation is sharedon a randomizedand selective basis can
be effective. Becausecommunicationopportunitiesaresparse
in our network, we chooseto use a strict link-state sharing
protocol.We leave the explorationof gossippingprotocolsin
densernetworks for future work.

V. EXPERIMENTAL RESULTS

In this section,we evaluatethe performanceof the routing
algorithms, describedin the previous section, in terms of
successfullydelivered packets and one-way and round-trip
latency of packet delivery. As was the casein Section III,
we randomly group nodes into senderand receiver pairs.

Becausecertainpairingscan result in optimistically good (or
pessimisticallybad) results,we ran eachsuiteof experiments
over � ve setsof randomizedpairings.To obtain comparable
results,eachsuite of experimentsusedthe samepairing and
randomnumberseeding.The resultspresentedin this paper
combinethe � ve setsof experimentaldata.

To explore the latency characteristicsof our routing algo-
rithms,thepacket generationpolicy mustbe carefullychosen.
Thekey issueis selectinga generationpolicy which shows the
least and the highestexpectedlatencies.We chosea packet
generationpolicy basedon pairwisecontactin our datatrace
sincethey representmomentsof communicationopportunity.
Whenever a sourcemeetsa peer, it createsa packet to its
assigneddestination(which may not be the peer in contact)
immediately before and immediately after the moment of
contact. This approachgeneratesthe least and the highest
expectedlatenciesfor every communicationopportunity.

To enableus to measureround-trip times,we extendedthe
experimentsso that receiver nodesgeneratean acknowledge-
ment packet (destinedfor the sender)for every packet they
receive. For simplicity, we refer to the original packet sentby
a senderas a ping and the resulting responsepacket as an
ack. Ping andack packetsarehandledandroutedin thesame
way, thoughthey maytake differentpathsback.We considera
packet to be successfullydeliveredif it reachesits destination
beforethe endof the simulation.

For simplicity, we only presentresults for our �rst user
study. We found that the resultsfrom the two studiesshow
similar characteristics,and the trendsfound in the �rst user
studyareapplicableto the seconduserstudy.

A. Delivery Rateand Latency

Figure 5 shows a CDF plot of the latenciesof �rst arrival
packets for all the routing algorithms.Along the Y-axis is
the cumulative proportionof all packets.Along the X-axis is
latency, measuredin hours on a semi-log scale.The graph
shows the comparative latenciesof epidemic comparedto
link state routing using different edge weighting methods.
Figure 5(a) shows latenciesfor ping packets only, and 5(b)
shows ping+ackround trips.

Themedianlatency for ping timesunderepidemicpropaga-
tion is just underthreedaysand86%of packetsareeventually
delivered successfully. The median latency for round trip
ping+ack times under epidemicis just under six days,with
a successfuldelivery rate over 82%. Note that at the end of
the experiment,many recentlygeneratedpacketsarestill “in-
�ight”, countingagainsttheprotocolas“undeliveredpackets”.
Thesemedianping and ping+ack times (both less than one
week) are good, consideringthe very sparsenature of our
network. Recall that our userstudysubjectsarestudentswho
haveoneweeklyclassin common– outsideof classthey could
be anywhereon or off campus.

We seein Figure5(a) that the link-staterouting algorithms
achieved approximate40% successrate of packet delivery –
almost half of epidemic's successrate. Idealized link state,
which did not suffer from a warm-uppenalty, performedwell
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Fig. 5: Comparative CDF plot of routing algorithmsin userstudy1
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Fig. 6: Comparisonof 1 and2 multi-copy impacton medianlatency weight link statein userstudy1

comparedto epidemic,achieving over 60% successfulpacket
delivery with a mediantime of six days.On the upside,the
link-statealgorithmsused,on average,1/10th of the number
of packetscomparedto epidemic.In thecaseof idealizedlink
state,this signi�cant reductionin packet replicationcostonly
twice the latency.

B. IncreasingNumberof Replicas

In previous sections,we examinedlink-staterouting strate-
gies using no replication. Now we will study the improve-
ments,if any, in latency reductionthat derive from increasing
thereplicationfactor. In theseexperiments,we limit replication
to only the source node of the packets; subsequentinter-
mediariescan only forward packets.Without this restriction,
replicationwould eventually result in epidemic-like �ooding
in the network.

Figure6 showstheeffectsof extrareplicationsin themedian
andaverageweightinglink-stateprotocols.Idealizedlink state
shows similar characteristicsand thereforeis not shown. In
eachof the�gures, we show theepidemicprotocol,two source
replications,onesourcereplication,andno replicationfor the

given routing protocol, indicatedby “epidemic”, “2 replica-
tion”, “1 replication”, and“0 replication”, respectively.

The �gure shows that the �rst replicahasa large impacton
improving latency and delivery successfor both medianand
averagelink-statealgorithms.However, additionalreplication
provided limited gains.Allowing replication at intermediary
nodesmight providemoreopportunitiesfor improving latency.
However, determining when an intermediatenode should
replicateis subjectof future work.

C. IncreasingTraceLength

Our link state basedalgorithms rely on past behavior in
order to establishrouting decisions.Unfortunately, our two-
week long traceprovides insuf�cient time for the algorithms
to recouptheir warm-upcost.To explore how the algorithms
might perform over a longer trace, we concatenatedour
data trace eight times and repeatedthe experimentsfor the
routing algorithms. Unlike idealized link state, the median
and exponentiallyweightedlink-stategraphscan suffer from
“bouncing” wherecon�icting decisionsare madedue to fre-
quentstatechangesandtransitions.



Fig. 7: Comparative CDF plot of round-trip (ping+ack)rout-
ing, usingrepeatedtracefrom userstudy1

Our examinationof thedatatracesuggeststhatmany nodes
have weekly meeting patterns,even outside of class times.
Therefore,for eachsubsequentconcatenation,tracecontacts
aretime-shiftedto preserve the day-of-weekandtime-of-day.
We acknowledgethat this introducesidealizedregularity into
the trace.However, our analysisof the datatraceshows that
some nodesdo have regular meeting patterns,even in our
sparsetrace.The aim of this experiment is to explore what
might be possiblewith more tracedata.

Figure 7 shows the ping+ack resultsfor all routing algo-
rithmsover therepeateddatatrace.With the longerdatatrace,
all routing algorithms performedbetter, with the link state
basedprotocolsshowing signi�cant improvement.

Underepidemic,themedianroundtrip time in the repeated
traceis just over6 days.Takingadvantageof theregularity, the
link-stateprotocolsshow signi�cant improvement.Usingonly
1/10th of the packet replication,link-staterouting achievesa
medianlatency of just over two weeks.

While thesedelaysarenot yet practical,we emphasizethe
very sparsenatureof our network. In mostcasespacketswere
successfullydeliveredto their destinationvia a multi-hoppath
faster than waiting for direct contact.We expect latency to
decreasewith a muchdensernetwork.

D. Discussion

Our analysisof the data trace relies on using idealized
packetsandin�nite bandwidth.Thisassumptionwasnecessary
becausethetracedatadoesnot containbandwidthinformation.
As a result,thecharacterization,which relieson packet count-
ing, can produceexaggeratedresults.For example,a single
moment of contact can result in the delivery of thousands
of packets, which might not be possible under less ideal
assumptions.

Despitethis idealizedassumptionour study highlights the
inherenttrade-off betweenlatency andreplication.Replication
can improve delivery latency andsuccessbut eachadditional
replica representsadditional radio usage.As our user study
experiment in Section II shows, battery life is a signi�cant
limiting factorfor mobiledevices,andradiouseis asigni�cant
sourceof power consumption.

VI . EXPERIENCES

In hindsight,we �nd thatour original estimateof an8 to 10
hour work-dayis insuf�cient for our user-base.After the �rst
user study with graduatestudents,we believed our estimate
workedwell. However, theseconduserstudyprovedto require
evenmoreworking batterylife. In post-experimentinterviews,
we found that graduatestudentskept chargersat their of�ce,
andwould regularly recharge the deviceswhile at their desk.
Thusmost graduatestudentsdid not fully exercisethe eight-
hour batterylife.

Most undergraduatestudentscannotrecharge their devices
mid-day. Fromtheonsetof theseconduserstudy, a signi�cant
numberof the userscould not �nish their work-day without
drainingtheir devices.Thoughwe establisheda strict regimen
of collecting data on a weekly basis, they often suffered
catastrophicdataloss from batteryexhaustion,losing several
daysworth of data.

Furthermore,we alsofound that graduatestudentswerefar
moreconservative with thePalm devices.Few usedmorethan
thebasicfeatures,andmostonly carriedthedevicesdiligently
without muchusage.After the �rst experiment,many partici-
pantsmentionedthat they understoodthe experimentalnature
of the software and objective, and treated the device with
delicatecare.

In contrast, the undergraduatestudentsused the devices
liberally. Within two weeks of the seconduser study, we
foundthatmostof theparticipantshaddownloadedsigni�cant
numbersof third-party software to useon the Palm devices,
including numerousgames.Clearly the usagepatternsof the
undergraduatesweremoredemandingthananticipated.

VI I . RELATED WORK

Relatedwork whichutilize realmobility of subjectsincludes
ZebraNet[10], [11] and SWIM [12], which usedzebrasand
whales, respectively. However, theseworks are focusedon
sensordata collection, and used epidemic propagation[4]
for data forwarding. The focus of our work is to determine
whether real user mobility can be harnessedfor building a
delay-tolerantnetwork.

Due to the popularityof wirelessnetworking, many works
[13]–[15] have studiedtracesof wirelessaccesspoint charac-
teristics,includingclient movementandpacket usagepatterns.
Chaintreauet al. [16] transformedtheseWiFi tracesto appear
aspairwisecontacttracesfor DTN analysis.The transforma-
tion assumesthatclientswhichcanseeanaccesspointcanalso
seeeachother. However, we believe usingWiFi tracesis over-
optimistic.Due to the largerangeof WiFi, clientson opposite
sidesof anaccesspointmightnotbeableto communicatewith
oneanother, despiteboth beingableto communicatewith the
accesspoint.

Chaintreauet al. alsoprovidedatatracesof pairwisecontact
collectedfrom a conference.Their analysisshows long-tailed
distributionsfor contactintervals,which suggeststhat random
strangersare not good candidatesfor ef�cient forwarding of
packets.We hypothesizethat physicallyco-locatedcommuni-
ties of nodesarebettercandidatesfor effective forwarding.



Recentworks in forwardingalgorithmsover DTNs include
Spray and Wait [17], where nodesspreada limited number
of multiple-copy replicas into the network using heuristics
for optimizing distribution. Spray-and-Wait shows promising
resultsundera randomwalk model[18]. Determininghow the
algorithmperformsunderan empiricaldatatraceis a topic of
possiblefuture work.

Spropouloset al. [19] provides a theoreticalanalysisof
severalsingle-copy forwardingstrategiesundera randomwalk
model. This work introducesa forwarding algorithm based
on diffusing contact interval information betweennodesas
a probabilistic utility function. Our work differs in that we
provide an analysis over empirical traces.Furthermorewe
contend that use of history information, such as our use
of a link-state routing algorithm, can provide nodes with
more information regarding physical communities.This can
subsequentlyimprove routing androutemaintenance.

Many related works have examined gossipping proto-
cols for ad hoc routing and resourcelocation [20]–[23].
Li Em AZ. [24] shows that with location information,gossip
messageforwardingprobabilitycanbe tailoredto an elliptical
region,reducingthenumberof gossipmessagesby up to 94%.
However, theseworks assumeuniform or randomplacement
of immobile ad hoc nodeswithin a boundedregion. Nodes
communicateby forming connectedad hoc networks, using
radiocoverageto transmitfrom hopto hop.Ourwork is unique
in that we apply a network link state information sharing
protocol over datatracesof usercontactpatterns.Our nodes
arehighly mobile,andconnectedadhocnetworksrarelyform.
Thus exploring how a gossippingschemecan be effectively
appliedto sucha mobile network is left for future work.

VI I I . CONCLUSIONS

Thegoalof this work wasto determinewhetherrealhuman
mobility patternscanbeusedto build adelay-tolerantnetwork.
To this end, we performedtwo user studiesto collect trace
dataof pairwisecontactbetweenmobile usersin a university
environment.This datashowed that even thoughour network
is sparse,it hasgood connectivity, and multi-hop forwarding
canbeusedto reducedelivery latenciescomparedwith waiting
for nodesto have direct contact.

Nodesin a delay-tolerantnetwork areseldomin contactand
do not typically have instantaneousend-to-endconnectivity.
As a result,traditionalroutingalgorithmsfor adhocnetworks
are not well suited for delay-tolerantnetwork. In addition,
routing information in thesenetworks can quickly become
staleso replicationmay be requiredto improve packet deliv-
ery latencies.We study this latency versusreplication trade-
off by running our tracesunder epidemicpropagation(low-
latency, high replication) and link-state routing algorithms
(low replication,potentially high latency). Our resultsshow
that it is possibleto perform single-replicalink statebased
routing in our delay-tolerantnetwork, using only 1/10th of
the packetscomparedto epidemicwhile incurring only twice
the latency (seven vs. threedays).While the medianlatency
of the collectedtracesis measuredin days,it is importantto

take into accountthesparsenatureof our network. We expect
thata deploymentwith hundreds,or eventhousands,of nodes
would have much lower latencies.

Finally, we describedour experiencesin developing and
deploying instrumentedmobile devicesto real users.Our ex-
periencesshow that power managementfor consumerdevices
is still an areawith much room for improvement.Currently,
mobile devices have either an active or a sleep mode of
operation.They would greatlybene�t from a third background
ambientmode of operationwhere they sensetheir network
environment.

As future work, we plan to instrumentanotheruserstudy,
with improved device battery longevity, and collect longer
traces.Furtherstudieswill also include bandwidthmeasure-
ments which will allow a more detailed comparisonwith
otherdelay-tolerantandBandwidthdatawould alsoallow the
evaluation of energy trade-offs in different routing policies.
We expectthata morefocusedusergroup,for examplenurses
in a hospitalor elder carefacility, will provide densertraces
of pairwisecontactswith improved network connectivity and
latencies.Further in the future, we plan to experimentwith
larger groupsof usersto determineusercommunities.
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